Improved Convolutional Neural Network for Classification of White Blood Cells

  • Venubabu Rachapudi, Chandra Harsha Talapaneni, Dhanush Kolluri, Abdul Nadeem Akthar, S Anjali Devi

Abstract

     The Classification of White Blood Cells (WBC) is a crucial task as the toll of WBC gives valuable information about the human health as their primary task is to build the immune system by fighting the foreign objects in the human body such as viruses and a certain type of bacteria, thus they prevent the body by falling into ill. The fundamental ambition of this paper is to create a classification method for accurate and efficient segmentation of white blood cells by applying a deep Convolutional Neural Network (CNN) model approach. We employed CNN architecture in this paper because of its accuracy and its automatic detection of important features without human intervention. Two real medical hyperspectral image sets show experimental results that cell classification using CNNs is efficient. In comparison, the proposed approach, employing spatial and spectral features jointly, will achieve better classification efficiency compared to standard support vector machines (SVM) by demonstrating the enormous potential of the CNN-based approach for accurate medical hyper-spectral data classification. We employed this architecture on Kaggle dataset of “Blood Cell Images”.

Published
2020-04-27
How to Cite
Venubabu Rachapudi, Chandra Harsha Talapaneni, Dhanush Kolluri, Abdul Nadeem Akthar, S Anjali Devi. (2020). Improved Convolutional Neural Network for Classification of White Blood Cells . International Journal of Control and Automation, 13(02), 883 - 888. Retrieved from https://sersc.org/journals/index.php/IJCA/article/view/11968
Section
Articles