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Abstract 

A novel Pseudo Random Number Generator is developed using a Fuzzy State Automaton. 

The NIST STS Test Battery 800-221a has been implemented using MATLAB R.2011a. The 

random bit sequence generated has been tested for expected qualities of randomness, 

uniformity and independence using visual tests and statistical tests using NIST Test 

battery. Quality of the random bit sequence generated has been compared with that of 

true random bits HOT BITS and a standard JAVA random number generator. It is found 

that the random sequence developed in this work is much simple and powerful and 

therefore it has very good scope in future cryptographic applications. 
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1. Introduction 

In this paper, we have developed a novel Pseudo Random Number Generator (PRNG) 

using Fuzzy State Automaton (FSA). The random bit sequence generated has been tested 

for expected qualities randomness, uniformity and independence, confusion and diffusion. 

Algorithms are developed for implementing NIST STS 800-22 Revision 1a (2010) 

standard a standard test battery. The quality of PRNG-FSA bit sequence is compared with 

that of random number generator of Java and true random numbers obtained from HOT 

BITS. In section 2, basics of random number sequence and types of random number 

generators are discussed. Important applications of RNGs and increasing need for 

developing new PRNGs in various application areas are discussed in section 3. Section 4 

gives basic definitions and mathematical results used in the rest of the chapter. In section 

5, we have discussed random binary sequence generation using binary Finite Automaton 

(FA) and Fuzzy State Automaton. In section 6, we have given algorithms for 

implementing PRNG using FSA and NIST STS test battery. Experimentation and results 

are discussed in section 7. The paper ends with conclusions and future scope for research 

in section 8. 

 

2. Random Number Generators 

Two types of RNGs exist: a True RNG (TRNG) and a Pseudo RNG (PRNG). In 

TRNG random numbers are generated from the output a naturally available physical 

source or phenomenon. Some commonly used sources used are radioactive decay, noise 

of a semiconductor diode, sound samples of a noisy environment, digitized videos of a 

lava lamp etc. The outputs of these natural processes are truly random and therefore used 

to generate random numbers. TRNGs are unpredictable, slow, not scalable, often biased 

and expensive.  

A PRNG generates a sequence of random numbers using a deterministic 

algorithm. It is usually implemented as a finite state machine and the initial value that is 

initialized with initial value called a seed.  Once seeded, it then generates a sequence of 

numbers that satisfy the expected properties good 
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random number sequence. Given a seed value, a PRNG always generate the same exact 

sequence each time it is run. Thus, the output of the PRNG is predictable. This property of 

predictability is most important in simulation experiments. PRNGs are easy to implement, 

much faster, computationally cheaper and less costly than TRNGS. The output of PRNGs 

should be subjected to rigorous tests to ensure various properties such as unbiasedness, 

independence, uniform distribution etc.  

Most compilers come with a PRNG that uses a numerical algorithm or a formula 

to produce a sequence of numbers. Commonly available PRNGS that have been 

developed and studied in the past are: Linear Feedback Shift Register (LFSR), 

Linear Congruential Generator (LCG), Quadratic Congruential Generator 1, 2, 3, 

Cubic Congruential Generator II, Modular Exponentiation, Blum-Shub, Inverse 

Congruential Generator, Logged Fibonacci Generator and Mersenne Twister. These 

built-in PRNGs are not suitable for applications where high security and 

confidentiality are essential. Therefore numerous new and innovative PRNGs are 

being developed in the areas of communication and information security.  

 

3. Applications of Random Number Generators 

Random numbers play very essential roles in numerous applications in our everyday life. 

Random numbers with high-quality are very crucial in the areas such as Computer 

Science, Mathematics, VLSI Circuit testing, Computer Games, Cryptography, Monte 

Carlo Simulation, Information security,  Brownian dynamics, Stochastic Optimization, 

Communication Protocols, Molecular dynamics, Robotics and many other areas of human 

life. Advancements in high speed computing, internet computing, wireless networks, 

telecommunications etc. have resulted in explosive growth of research activities which 

along with various commercial applications demand a very high speed and high quality 

random number generator. PRNGs with acceptable qualities are very crucial in these 

applications. Production of PRNG with acceptable quality is a very challenging task.In the 

current digital era random numbers are used in e-mail access, cashless transactions, point of sale, 

net-banking, prepaid cards, ATMs, internet trade, prepaid cards, wireless keys, online reservation 

systems, general cyber-security and many more daily activities. In Cryptography random numbers 

are extensively used for key generation, authentication protocols, protection against side-channel 

attacks and encryption systems. For applications such as stochastic simulation, the masking of 

protocols and online gambling, huge amount of random numbers are needed and thus fast PRNGs 

are required. In computer and information security, random numbers are used for authentication, 

protecting the integrity, confidentiality and authenticity of information resources. 

 

4. Basic Concepts 

Definition 1: A Random Bit Generator (RBG) is an algorithm or a device which 

generates a sequence of independent, unpredictable and uniformly distributed sequence of 

bits. 

Definition 2: A Pseudo Random Bit Generator (PRBG) is an algorithm that takes a binary 

sequence of small length as input and outputs a very long a binary sequence that looks 

random.  

Definition 3: A PRNG is an algorithm that generates longer string that looks random 

from a short string called seed.  

Definition 4: (Uniform distribution) If N observations in the interval [0, 1] are divided 

into n subintervals of equal length, then the expected number of observations in each 

subinterval is [N/n]. 

Definition 5: (Independence) A property of random number sequence in which a next 

value is generated is independent of the previous values in the sequence. 
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Definition 6: A run of a random bit sequence is a continuous string of 1s preceded and 

ended by 0s and gap is a continuous string of 0s preceded and ended by 1s.  

Definition 7: Level of significance () is a probability that a bit sequence ω appears non-

random even when it is generated by a good random number generator.  

Normally the  value is in the range [0.001, 0.01] and set prior to a test. When  = 0.001, 

it means one sequence out of 1000 sequences generated does not pass the randomness 

test.  

Definition 8: A p-value is the probability that random sequence generated is less than the 

quality of perfect random number sequence. 

In each NIST test, a p-value is computed for each bit sequence using predetermined test 

statistic. The sequence is perfectly random when p = 1and completely nonrandom when p 

= 0. The sequence is considered random if p ≥  and nonrandom otherwise. That means 

some non-randomness present in the sequence when p < . In the present work we have 

conducted all the tests using  = 0.001. 

Definition 9: (erfc) The complementary error function related to normal cdf is defined as 

  

Definition 10: (igamc) The incomplete gamma function Q (a, x) is defined as  

 

 

Definition 11: Standard Normal Cumulative Distribution Function 

 

 

Definition 12: Chi
2 
statistic 

 

Here, Oi and Ei denote observed and expected frequencies of the test measure 

respectively 

 

5. PRNG Using Fuzzy State Automaton (PRNG-FSA) 

The objective of our present work is to develop (design, implement and test) a novel 

PRNG using Finite Automaton (FA). The work is mainly motivated from the paper [1].   

 

 

Fig.1. FA to generate Random Bit Sequence 

We first discuss the construction and working of FSA (Fig. 1) and then we will consider 

designing FSA that will be used to generate random bit sequences. 
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5.1 Random Bit Sequence Generation Using FSA 

We first consider the Finite Automaton (FA) M shown in Fig 1 above. At any 

time t, each state qi will have a state value 0 or 1 (binary).  Initially, when started at time 

t0, M is loaded with binary values I(q0), I(q1), … I(qn-1). M is considered to be circular. Let 

r0 (t), r1 (t), r2 (t) … rn-1 (t) denote the current values of states q0, q1 … qn-1 respectively at 

time t. The configuration (global state) of M is a sequence of state values at any time t 

denoted as C (t) = (r0(t), r1(t), r2(t), … rn-1(t)) where ri (t) = 0 or ri (t) = 1 for 0 ≤  i ≤   (n-1). 

Automaton M runs continuously required number of times producing the output bit 

sequence r0r1r2…rn-1. At each time step t+1, values of all states are updated synchronously 

using a Boolean function „f‟ of 3 variables 

ri (t+1) = f ( ri−1 (t) , ri (t) , ri+1 (t) )                                        (1)   

The function f is a next state function (nsf) or state update function. In the above diagram, 

the next state value of the state qi is a function of the current values of states (qi-1, qi, qi+1). 

In general, if the number of neighbors is k, the next value of state qi is calculated by 

ri (t+1) = f (ri−k (t) , ri−k−1 (t) , …,  ri−1 (t) , ri (t) , ri+1 (t) , ri+2 (t) , ri+3 (t), … , ri+k (t)).   

Thus for k neighbors, state update function f is a function of 2k+1 binary values. Thus 2
m
 

different state update functions are possible, where m = 2
2k+1

. For example, when k = 1 we 

have the following possibilities. 

 xi-1 (t) xi (t) xi+1 (t) : 111   110    101     100    011    010     001    000   

    xi (t+1) :   0    0        0          0        0        0         0        0     (rule-0) 

    xi (t+1) :   0    0        0          0        0        0         0        1     (rule-1) 

.  

.  

   xi (t+1) :    1     1       1          1        1        1         1        1      (rule-255) 

Therefore, when k = 1 we have 2
8
 = 256 different update functions.). Each of these rules 

can be expressed in CNF form using Boolean operators (NOT, AND, OR). For example, 

rule-30 is expressed as  

r i (t+1) = f (ri−1(t), ri(t), ri+1(t)) = ri−1 (t) XOR (ri (t) OR ri+1 (t))                                    (2) 

Random bit sequences are generated using FSA in two ways: serial and parallel. In serial 

method, a single automaton with large number of states is run very large number of times 

and one-bit output (usually from the middle state) is sampled as a random bit. In parallel 

method, hundreds of binary FSA, initially loaded with different patterns (seeds) are run in 

parallel and one-bit from a selected state from each automaton is sampled as output and 

these bits are padded. In both cases, randomness of the output sequence generated 

depends on the seed pattern, number of neighbors and state update function.  

 

5.2 Random Bit Sequence Generation Using Fuzzy State Automaton  
 

Fuzzy State Automaton(FSA) used in our work is designed using the following steps: 

1. Design a k-neighbor binary FA with n-states as discussed in the previous section. 

2. Express the state update function used in binary FSA in CNF form using basic boolean 

operators (NOT, AND, OR). 

3. A fuzzy equivalent of f is obtained by replacing AND, OR and NOT operators in f by 

fuzzy t-norm, s-norm and complement operators respectively. 

4. When started at time t0, load the states q0, q1, … , qn-1 of FSA with initial fuzzy values 

I(q0), I(q1), …, I(qn-1) respectively. 



ISSN: 2005-4297 IJCA 

Copyright ⓒ 2020 SERSC 

 

 

International Journal of Control and Automation 

Vol. 13, No.2, (2020), pp. 1366 - 1378 

 

  

1370 

 

 

For example, a fuzzy state update function f for a 1-neighbor FSA using    rule-30 

mentioned in (1) can be implemented using fuzzy operators as follows: 

 

r i (t+1) = f (ri−1 (t), ri (t), ri+1 (t)) = ri−1 (t) XOR (ri (t) OR ri+1 (t) ).  

Let a = ri−1 (t), b = ri  (t) and c = ri + 1 (t) 

d = [b  c] 

Therefore we have 

r i (t+1) = a XOR d  

             = [a  dˈ]  [aˈ  d]  

             = [a  (1 - d)]  [(1 - a)  d]                                                              (3)                                         

In equation (3) the operators  and  denote the fuzzy OR (s-norm) and fuzzy 

AND (t-norm) operators respectively. Some commonly used t-norm and s-norm 

operators are given table 1 below. 

 
class of fuzzy 

operators 

t-norm  (a ∧  b) s-norm (a ∨  b ) complement 

(aˈ) 

Łukasiewicz Max (0, a + b - 1) Min (1, a + b) 1 - a 

Einstein (ab) / ( 2 – [ a + b - ab ]) (a + b) / (1+ ab) 1 - a 

Hamacher (ab) / ( a + b – ab) (a + b – 2 ab) / (1 – ab) 1 - a 

Dombi 

[λ  ( 0, ∞ )] 

1 

1+[ (1/a-1)-λ + (1/b-1)-λ](1/ λ) 

1 

1 + [ (1/a-1)λ + (1/b-1)λ](1/ λ) 

(1 - a) 

(1 + λ.a) 

Yager 

 [ω  ( 0, ∞ )] 

Min (1, [aω + bω] 1/ω) Min (1, [(1-a)ω + (1-b)ω] 1/ω) (1 - a ω) 1/ ω 

Table 1. Commonly used fuzzy AND, OR and NOT operators 

The randomness of the bit pattern generated depends on various factors such as number of 

states, initial global state (I), number of warm-up cycles, fuzzy operators selected and 

value of the parameter (λ, ω) . 

The Fuzzy State Automaton used in this work is defined as follows. 

Definition 13: A Fuzzy State Automaton (FSA) is a 3-tuple M = (Q, I, f) where Q is a 

finite set of states, I: Q  [0, 1] is a fuzzy initial state and f: Q  [0, 1]
3
  Q  [0, 1] is a 

state update function. 

Here I is the set of initial seed values for all states. 

The FSA is shown pictorially in Fig.1 above. Working of FSA is similar to that of binary 

FSA. But, state values and operators used in state update functions are fuzzy.  In the 

proposed model, each state qi has a fuzzy value ri  [0, 1]. The sequence of fuzzy values 

of all states at any instance of time t denoted as C (t) = (r0 (t), r1 (t), … , rn (t))  is called as 

fuzzy state of FSA at time t. The initial state of FSA denoted C (t0)  = (I (q0), I (q1), … , I 

(qn-1)). The FSA moves through the states C(t1), C(t2) … at time instances t1 , t2 , … 

respectively. The next state value of each state qj is computed using a fuzzy function of 

current state value of q j and its neighboring states. When moving from one configuration 

to the next, all the states are updating state values synchronously. Let Ct = (r0 (t), r1 (t), … , 

rn-1 (t)) be a current state of FSA at time t. The next state of the FSA at time (t+1) denoted 

C (t+1) = (r0 (t+1), r 1(t+1), … , rn-1 (t+1)) is computed as follows. 

r0 (t+1) = f (rn-1 (t), r0 (t), r1 (t)) 

r1 (t+1) = f (r0 (t), r1 (t), r2 (t)) 

r2 (t+1) = f (r1 (t), r2 (t), r3 (t)) 
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. . . . . . 

rn-1 (t+1) = f (rn-2 (t) , rn-1 (t) , r0 (t)) 

From each fuzzy state C (t1), C (t2), … C (tm) of FSA, the output bit sequence is generated 

by sampling selected bits from the binary representation of each state value ri . The bit 

sequences generated from each fuzzy state are padded together to form the final output bit 

sequence. Here m is the number of times we run the FSA to generate random bit 

sequence. 

Example output using rule-30 

Enter no of states: 4 

Initial fuzzy state (I): [0.852957 0.660398 0.953486 0.715240]  

Enter no of cycles:3 

==> Iteration 1 

Fuzzy state 1: [0.284756 0.539602 0.484756 0.284760]  

Binary:[01001000101001010100010000000101001001001001010101010

 10110100101000000010101000000010001010100010001001010

 01011000101001010100010000000101001001001001010100010

 010010001010010000001000100000100100100100010000101010]  

Pattern Extracted: 1000101   0100101    1000101   1000101 (bits 5-11 of each state)  

Sequence generated: 1000101010010110001011000101 

==> Iteration 2 

Fuzzy state 2: [0.389212 0.439712 0.379612 0.892536]  

Binary:[0101010010100000100010100010100010000000101001010000100

 0101010010100000100010100001010010100001010001000101010

 0101010010100000100010100010100010000000101001001010101

 1010101010100010100101010101010100010100100100001001010]  

Pattern Extracted: 0100101    0100101     0100101     1010101 (bits 5-11of each state)  

Sequence generated: 0100101010010101001011010101 

==> Iteration 3 

Fuzzy state 3: [0.345000 0.398159 0.475000 0.645000]  

Binary:[010100000101000101000100001001010010101010010101001010

 01010001001000001010000000010101010000100101000100010

 010100000101000101000100001001010010101010010101001010

 1101000001010001010001000010100100100101000100101010010]  

Pattern Extracted: 0000010 0001001   0000010   0000010 (bits 5-11 of each state) 

Sequence generated: 0000010000100100000100000010 

Output bit sequence:  

100010101001011000101100010101001010100101010010110101010000010000100100

000100000010 
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6. Implementation 

The application developed has two major modules: Generator module and NIST 

STS Test module. The Generator module contains algorithms for PRNG using FSA and 

associated functions to implement state update function using fuzzy AND, OR and NOT 

operators. NIST STS Test module contains functions for 15 NIST tests specified in NIST 

800-22.a (2010) standard test suite. All algorithms are implemented using MATLAB 

R2011.1a. 

6.1 Generator Module (Implementation of PRNG using FSA) 

In this section we give algorithms used to implement a PRNG using FSA. 

Fuzzy Operators used: 

 

AND (∧)   :   

 

 

 

 

OR (∨)      :  

 

 

 

 

NOT (a)   :   

 

Here a, b  [0, 1] are fuzzy values and λ  (0, ∞) is the parameter to compute the values 

of AND, OR and NOT operations. 

 

State update function used: 

r i (t+1) = f ( ri−1 (t) , r i (t) , r i+1 (t) ) = ri−1 (t) XOR (r i (t) OR r i+1 (t) )       (rule-30) 

Function PRNG ( ). This function simulates n-state FSA as discussed in section 7.5.2. 

Initial configuration I is obtained using standard random number generator (rand in 

MATLAB) and m denotes the number of repetition steps used to generate random bit 

sequence. The bit sequence generated during each step is stored in OUTFILE-1 for further 

statistical testing. Next state function nsf is called to update the configuration of FSA 

during each iteration. 

1. OUTFILE-1 = 'E:\KCPRNG\data.txt' 

       fid = fopen (OUTFILE-1, 'w') {open output file in write mode} 

2. Read n {number of states} 

      Read m {number of repetitions} 

3. {Initialize FSA with initial fuzzy state I} 

       a = rand (1, a) {a is n-element array to store the configuration of FSA} 

4. {Run FSA m-times} 

       for i = 1 to m 

                  b = nsf (a) {move FSA to next configuration using fuzzy next state function} 

                  a = b {update the states values synchronously} 

                  {Generate bit sequence} 

                  bin = [ ] {array to store bit sequence during each step} 

                  for  j = 1 to n 

                         t = binary (a [i]) {get binary equivalent of state value of qi} 

                         p = t [5 .. 11] {extract bit5 .. bit11 (6-bits) discarding first 4-bits} 

                        bin = [bin  pat] {append sampled bits} 
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                   end 

                   write (fid, bin) {write a bit sequence generated to the file} 

      end 

5. fclose (fid) {close the output file} 

6. end.  

Function nsf (x). This function takes an array x which is a current fuzzy state 

(configuration) of FSA and updates the state values of each state qi synchronously by 

applying fuzzy function update to each state. Variables a, b, c represent the state values of 

left neighbor, state qi and right neighbor respectively. The updated fuzzy state t is returned 

as output. 

1. n = x  

2. t = zeros(1, n) {n element array to store updated state values} 

3. {update current value of each state and store in the array t} 

      for  i = 1 to n 

            if  (i =1) 

                 a = x [n]  {state value of left neighbor of qi} 

            else 

                 a = x [i-1] 

            endif 

            if  (i = n) 

                 c = x [1] {state value of right neighbor of qi} 

            else 

                 c = x [i+1] 

            endif 

            b = x[i] {state value of qi} 

            t[i] = update (a, b, c) {next value of state qi} 

      end 

4. return t  

Function update (a, b, c). This function takes current state values of states (left neighbor, 

qi, right neighbor) and computes the next state value of qi by applying fuzzy state update 

rule.  

1. d = b OR c 

2. t =  (a AND (NOT(d)) OR (NOT(a) AND d)          {ri (t) = [a  (1-d)]  [ (1-a)  d]} 

3. return t 

Function OR (a, b). This function computes the value of sλ (a, b) 

1. t1 = (1 / a - 1) ^ (- λ) + (1 / b - 1) ^ (- λ) 

2. t2 = 1 + t1 ^ (1 / λ) 

3. t = 1.0 / t2 

4. return t 

Function AND (a , b). This function computes the value of tλ (a, b) 

1. t1= (1 / a - 1) ^ λ  +  (1 / b - 1) ^ λ)   

2. t2 = 1 + t1 ^ (1 / λ) 

3. t = 1 / t2 

4. return t 

Function NOT (a). This function computes the value of  

1. t = (1 – a) / (1 + λ a) 

2. return t 

6.2 Implementation of NIST STS Test Battery 

We have developed algorithms for implementing a battery of 15 different tests specified by 

NIST STS 800-22 Revision 1a (2010) standard. Algorithms have been implemented using 

a
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MATLAB R2011a.   

7. Experimentation and Results 

The experiment conducted has three stages 

1. Generation of random bit sequence  

2. Testing of random bit sequence 

3. Comparison of results with standard random numbers 

7.1 Generation of Random Bit Sequence 

A 32-state FSA is implemented with the initial fuzzy state I (32 - element array initialized 

with 32 random numbers generated using MATLAB).  The FSA is run for 5000 warm-up 

steps and then run for another 1000 steps to generate 1000 sequences. In each step, value 

of each state (fuzzy value) is converted into binary equivalent and then 4-bits (bits 5-8) 

are sampled as output. Thus, 128-bits (32  4) are generated in each step and stored in 

output file (OUTFILE-1). The bit sequence generated is tested quickly using visual tests 

to ensure the basic properties of randomness, uniformity and independence. The 

experiment is repeated with different values of λ and the sequences produced are tested 

quickly using visual tests. The resulting sequence is further subjected to rigorous 

statistical testing using NIST STS test battery. 

7.2 Testing of Random Bit Sequence 

A random number sequence should have the acceptable qualities of uniform distribution, 

independence and randomness. In addition, a cryptographically robust random number 

sequence should also have the properties of confusion, diffusion, avalanche effect and 

completeness. The output binary sequence generated from PRNG-FSA is tested in two 

stages. 

1. Visual Tests 

2. Statistical Testing Using NIST Test Battery 

7.2.1 Visual Tests 

In the first stage of testing, we generated 5000 random integers in the range      

100-250 using FSA and conducted the following visual tests to quickly identify the 

irregularities such as patterns, bias, outliers and relationships between numbers that may 

be present in the sequence.  

  

 
 

         Fig. 2. Results of Visual Tests 
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From the visual tests, it is obvious that, the random bit sequence generated from PRNG-

FSA is mostly random. The sequence is tested further more rigorously using NIST STS 

battery.  

7.2.2 Statistical Testing Using NIST Test Battery 

We have implemented a test battery NIST STS 800-22.1a (2010) Standard containing a 

series of 15 tests using MATLAB R2011.1a. The complete description of NIST tests and 

interpretation of test results is given in [6]. Following parameters are used by NIST tests. 

   n denotes the length of the sequence to be tested   

   M denotes the length of the block 

   m denotes the length of the template to be matched 

   R denotes the no of rows and C denotes the no of columns 

  B is the number template to be matched  

   L denotes the length of sub block  

             Q denotes the no of initialization blocks  

             K denotes the number of test blocks. 

The values of test parameters used when conducting NIST tests on PRNG-FSA random 

number sequence are shown in table 2. 

Test# Test Parameters 

1 Frequency (monobit) Test  n = 100 

2 Frequency (block) Test  n = 100 , M = 10 

3 Runs Test n = 100, τ=2/n=0.2, n=100 

4 Longest Runs Test 

of 1‟s (block) 

n =100, M=8 

5 Binary Matrix Rank Test N= 38912, R=32, C=32 

6 Spectral  Test 

Transform (spectral) 

n = 1000 

7 Non-overlapping Template Matching Test 

 

n =100, template B, m= B = 9 

8 Overlapping Template Matching Test 

 

n = 10
6
,  template B, m=B= 9 

9 Maurer's universal Test 

statistical 

n = 10
6
, L=7, Q =128,  K=1485 

10 Compression Test n = 10
6
, M =100 

11 Serial Test n = 10
6, 

 M=3 

12 Approximate Entropy Test n = 100, M=3 

13 Cumulative sum Test n = 100 

14 Random Excursions Test n = 10
6
 

15 Random Excursions Variant Test 

Variants 

 

n = 10
6
 

Table 2.   Parameters used in NIST Tests 

Data set used for Conducting NIST tests: 

Sequence-1: The output binary sequence generated using PRNG-FSA containing 1000   

lines each line containing 128 bits (outfile1.txt).  

Tests are conducted using the significance level   = 0.001 which indicates that one 

sequence out of 1000 sequences is rejected by the test due to the presence of some kind of 

randomness in the sequence. In each test a p-value for each of the 1000 sequences is 

calculated and average p-value for entire data set is calculated. The results of NIST tests 

on the random number sequence generated by PRNG-FSA are summarized in the Table 3 

given below. The results in table 3 are depicted graphically in Fig. 3 and Fig.4 shown 

below. It is obvious from the results shown in the table 3 and the graphs in Fig.3 and 

Fig.4, the pass percentages of NIST tests are almost uniformly distributed with the values 
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ranging from 85.9% to 100%. The pass percentage of Frequency Tests is 87.4% which 

indicates that 870 out of 1000 binary sequences have passed the randomness tests. 

Test No Test Name Pass  % AVG P-value Result 

1 Frequency (Monobit) Test  87.40 0.335 Pass 

2 Frequency (Block) Test     98.70 0.601 Pass 

3 Run Test 98.60 0.486 Pass 

4 Longest Run Test  98.90 0.611 Pass 

5 Binary Matrix Rank Test 92.00 0.472 Pass 

6 Spectral Test  100.00 0.259 Pass 

7 Non-overlapping Template Match Test 100.00 0.897 Pass 

8 Overlapping Template Match Test  89.60 0.520 Pass 

9 Universal Test  88.70 0.484 Pass 

10 Compression Test 100.00 0.254 Pass 

11 Serial Test   97.50 0.719 Pass 

12 Approximate Entropy Test   94.10 0.351 Pass 

13 Cumulative Sum Test     97.52 0.506 Pass 

14 Random Excursion Test 94.10 0.351 Pass 

15 Random Excursion Variant Test 85.90 0.490 Pass 

Table 3.  NIST Test Results on PRNG-FSA Sequence (Level of significance   = 0.001) 

 

Fig.3. Pass Percentages of NIST Tests (PRNG-FSA) 

Fig. 4 Average P-Values of NIST Tests (PRNG-FSA) 
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7.3 Comparison of Results with Standard Random Numbers 

Two standard random bit sequences are generated to compare the quality of the random 

bit sequence generated using PRNG-FSA. 

1. Sequence-2 (OUTFILE-2): 2000 lines of bit sequence each line containing minimum 

128 bits are generated using standard random number generator available in Java. 

2. Sequence-3 (OUTFILE-3): 4000 lines of true random bit sequences each line with 

240 bits obtained from HOTBITS. 

Above two standard random bit sequences are tested using NIST STS test battery 

separately and the results are summarized in Table 4 given below. 

Test 

No. 
Test Name 

BIT SEQUENCE 

PRNG-FSA Java Standard HOTBITS 

Pass% Average 

P-value 

Pass% Average 

P-value 

Pass% Average 

P-value 1 Frequency (Monobit) Test  87.40 0.335 90.17 0.335 75.19 0.335 

2 Frequency (Block) Test     98.70 0.601 98.34 0.603 99.32 0.574 

 3 Run Test 98.60 0.486 99.09 0.493 98.29 0.464 

4 Longest Run Test  98.90 0.611 99.24 0.642 

 

83.82 0.289 

5 Binary Matrix Rank Test 92.00 0.472 94.86 0.513 

 

90.06 0.444 

6 Spectral Test  90.20 0.259 92.73 0.281 

 

95.81 0.028 

7 Non-overlapping Template 

Match Test 

100.00 0.897 100.0

0 

0.899 

 

100.0

0 

0.964 

8 Overlapping Template Match 

Test  

89.60 0.520 90.47 0.548 

 

93.71 0.414 

 9 Universal Test  88.70 0.484 84.57 0.511 94.35 0.495 

 10 Compression Test 100.00 0.254 100.0

0 

0.299 

 

100.0

0 

0.655 

11 Serial Test   97.50 0.719 98.03 0.723 97.71 0.698 

12 Approximate Entropy Test   94.10 0.351 95.61 0.367 95.42 0.350 

13 Cumulative Sum Test     97.52 0.506 100.0

0 

0.494 

 

100 0.491 

14 Random Excursion Test 94.10 0.351 95.61 0.367 95.42 0.350 

15 Random Excursion Variant 

Test 

85.90 0.490 83.66 0.482 

 

62.67 0.357 

Table 4. Comparison of Random Bit Sequences (Level of significance   = 0.001) 

We compare the quality of the three random sequences considered in this work namely 

PRNG-FSA sequence, Java sequence and Hotbits sequence using pass percentages and 

average p-values of the NIST tests conducted on them. The results of comparison are 

shown graphically in Fig. 5 and Fig. 6 given below.  

 
 Fig. 5 Comparison of Pass Percentages 

From the above graph, we conclude that the pass percentage of PRNG-FSA is almost 



ISSN: 2005-4297 IJCA 

Copyright ⓒ 2020 SERSC 

 

 

International Journal of Control and Automation 

Vol. 13, No.2, (2020), pp. 1366 - 1378 

 

  

1378 

 

 

comparable to that of Java sequence and much better than the pass percentage of Hotbits 

sequence. 

 

Fig. 6 Comparison of Average P-values 

 
The graph in Fig.5 indicates that average p-values of PRNG-FSA and Java sequence are 

almost comparable in all 15 tests whereas the average p-values of PRNG-FSA are higher 

than that of Hotbits except in tests 7 and 10. This indicates that quality of PRNG-FSA bit 

sequence is better than that of a true random sequence HOTBITS. 

 

8. Conclusions 

A PRNG-FSA with 32-states and rule-30 has been implemented and tested for acceptable 

qualities using visual tests and NIST STS that has been implemented in MATLAB. The 

results obtained have been compared with true random bit sequence HOT BITS and a 

standard JAVA random number generator. It is observed that average p-values of PRNG-

FSA and Java sequence are almost comparable in all 15 tests whereas the average p-

values of PRNG-FSA are higher than that of Hotbits except in tests 7 and 10. It can be 

observed that infinite possibilities exists to experiment the generator by varying number 

of states, state update rule, initial seed and neighborhood states. The PRNG-FSA is much 

flexible and a slight change in aspect of the PRNG design leads to very large variations in 

the bit sequences generated. It is obvious that the PRNG developed in this work is much 

simple and powerful and therefore it has very good scope in future cryptographic 

applications. 
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