
International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1242 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

Fault Tolerant Scheduling of Workflows using Improved Check

Pointing Technique

 [1] Kanagaraj K, [2] Swamynathan S

 [1] Assistant Professor, Department of MCA, MEPCO Schlenk Engineering College,

Sivakasi
[2]Professor, Department of IST, CEG, Anna University Chennai

 [1]kanagaraj@mepcoeng.ac.in, [2] swamyns@annauniv.edu

Abstract

Workflow is a set of tasks arranged according to the data and control dependency. Fault

tolerant workflow scheduling is difficult to achieve due to its complex architecture and dynamic

resource requirements. However the emergence of cloud has provided new hope for ensuring

fault tolerance in workflow scheduling. The elasticity in hiring and releasing resources in the

cloud helps to reduce the node failures when scheduling workflows. However workflows with

task and data dependencies introduce various timing and consistency problems. To enable fault

tolerance, the state of an executing program is saved on a stable storage for recovering the

system even after failure. The time at which the state is stored is called as check point. Adding

numerous check points will improve the reliability, but affects the performance. On the other

hand the less number of check points will need more time to recover from failure. In this paper,

an Improved Check Pointing Technique (ICPT) is proposed. The ICPT determines the optimal

check point interval based on the mean time between failure and mean down time. It reduces the

check pointing overhead by 33% and identifies a system with maximum availability for storing

the check pointed image. Experimental results shows that the proposed system ensures high fault

tolerance during workflow scheduling and reduces the check pointing overhead when compared

to the existing techniques

Keywords: Check Pointing, Fault tolerance, Failure; Recovery, Workflow Scheduling

1. Introduction

The emerging computing technologies are made up of gigabit networks and high-speed

microprocessors. These computing environments consist of processors from several servers and

communication between sites need transmission along several intermediate hops. This creates an

important problem called as resource failure that needs to be handled effectively. Among all the

failure management techniques, check pointing is an important technique that stores the state of a

task at regular intervals. The check pointed values can be used to recover the system after failure

and also prevents the loss of work that has been completed earlier.

Check points can be calculated using a variety of techniques. The frequency of the check

points is of great concern when check pointing lengthy applications. When check pointing

parallel applications, parallelism helps to improve the execution speed, however increases the

chances for failure. In a cloud computing environment check pointing helps each VM to resume

computing after failure. The reliability of the system need to be considered while calculating

check points. Based on the system’s reliability, the number of check points can be increased or

decreased.

The process of completing a failed task is called as recovery. Based on the nature of the

application a forward or a backward recovery scheme can be applied. It is necessary to build a

system with high availability by reducing the recovery time. Failure diagnosis is the process of

finding a breakdown and identifying the failed component. This can be achieved by sending

heart beat message between the systems. If any of the system does not send or receive heart beat

message then the probability of failure is more. When executing real time scientific workflows in

the cloud, it requires highly fault tolerant resources, hence workflow scheduling in the cloud

requires more focus on providing a fault free environment.

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1243 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

Check pointing and recovery techniques are very important to ensure the availability of a

distributed environment. Check pointing is the process of periodically saving the state of an

executing program to stable storage, from which the system can recover after a failure. The files

containing the saved data are called as check pointed files. Identifying a suitable system for

storing the check pointed file is also an important problem. Recent research also focuses on

storing the check pointed image in the node memory. Workflows are special kind of parallel

applications.

In a workflow, the number of parallel tasks may vary at different time intervals. So,

applying the existing approach for check pointing parallel programs for workflows may not yield

the desired results. As the resource requirements for workflows are dynamic the wise decision is

to use the cloud resources for scheduling them. Using cloud computing for scheduling workflows

using virtual machines also provides the following additional benefits.

1. Virtual machines are more fault tolerant than traditional machines.

2. Failure recovery is quick using live VM migration other state of the art cloud

specific features.

3. Storing check pointing image and retrieving the saved images are simple in the cloud

environment.

Hence, in this research an improved check pointing technique that harnesses the benefits

of cloud resources for scheduling workflows is presented.

2. Literature Survey

The classification and survey of fault tolerant workflow management systems in the

cloud and distributed computing environments are presented in [1]. In [2] the authors provide a

fault-tolerance technique in dynamic systems that can help system designers to estimate the

number of processors. Zhu et al. [3] proposed a new scheduling algorithm that can tolerate one

node failures for real-time tasks in multi cloud and cluster environment. The adaptive check

point interval placement algorithm [4] meets all tasks deadline. The check point intervals are

adjusted to minimize the impact of stresses and permanent faults on the running hosts.

The work presented in [5] was aimed to minimize the workflow cost with the deadline

constraint in the presence of internal and external failures. The Fault Tolerant Workflow

Scheduling algorithm (FTWS) [6] provides fault tolerance by using replication and resubmission

of tasks, based on the task priority. The replication of tasks depends on a heuristic metric which

is calculated by finding the tradeoff between the replication factor and resubmission factor.

The heuristic metric is considered to avoid resource wastage. Tasks are prioritized based

on the criticality of the task which was calculated by using parameters like out degree, earliest

deadline and high resubmission impact. A recursive list-scheduling algorithm that exploits the

M-SPG structure to assign sub-graphs to individual processors, and uses dynamic programming

to decide how to check point these sub-graphs was proposed in [7].

The effect of spatial and temporal parameters for dynamic fault-tolerant workflow

scheduling (DFTWS) [8] is useful to assign appropriate virtual machine for each task according

to the task urgency and budget quota in the phase of initial resource allocation.

The effect of spatial and temporal redundancy was studied by Anghel et al. [9]. Since the

occurrences of internal faults are usually unpredictable in computer systems, fault tolerance must

be considered when devising workflow scheduling algorithms. Hwang et al. [10] present a fault

tolerant mechanism which extends the primary backup model to cloud computing system.

Parallel execution is running a task on multiple resources simultaneously to guarantee a

viable result, which results in a high spatial cost. Whereas, temporal redundancy relaxes time

constraint to provide more time for re-executing the failed task on the original resources [11].

Chen et al. [12] propose three clustering strategies of fault tolerant to improve the QoS of

workflow and construct a real-time workflow fault-tolerant model that extends the traditional

primary-backup model based on many cloud computing characteristics, and the task allocation

and message transmission mechanism are developed to ensure task faults can be done in the

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1244 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

process of workflow execution. The advantages and disadvantages in dynamic scheduling of

workflows was presented in [13].

Walters and Chaudhary [14] have presented a detailed survey of the different techniques

used in application level check pointing that is very helpful for check pointing parallel tasks. The

performance of synchronous check pointing in a distributed computing environment with and

without load redistribution was presented in [15][17].

A detailed analysis of the existing workflow scheduling schemes was presented in [18].

A technique to provide elastic resource provisioning based on the budget and deadline constraints

of workflows [19] was suitable for scientific workflow

However, these fault-tolerant scheduling algorithms [20] cannot be directly applied to

cloud computing environment or workflow scheduling problem as the fault-tolerant methods

mentioned above only consider the non repairable system.

Due to the recent advancements we can harness the benefit of repairable systems in the

form of VMs in the cloud. This paper proposes a novel idea used to provide a fault tolerant in the

cloud using repairable VMs. The major contributions of this work are

1. To provide a fault tolerant environment for scheduling workflows in the cloud

2. To calculate the check point interval based on the MTBF (Mean Time Between

Failure) and MDT(Mean Down Time) of the VMs used for executing the tasks

3. To select a system with more availability for storing the check pointed image based

on the MTTF (Mean Time To Failure) and MTTR (Mean Time To Recover) of the

available VMs.

3. Improved Check Pointing Technique (ICPT)

The improved check pointing technique proposed in this paper is aimed to calculate the

efficient check pointing interval and to identify a system with more availability to store the check

pointed image. This minimizes the number of check points and speeds up the workflow

execution.

The ICPT uses the MTBF (Mean Time Between Failure) and MDT (Mean Down Time)

of all the virtual machines for calculating the check point interval. The mean time between

failures is calculated using equation (1).

𝑀𝑇𝐵𝐹 =
∑(𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐷𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑢𝑝 𝑡𝑖𝑚𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 (1)

From equation (2), it is observed that the mean time between failures is obtained by

summing the difference between the up time and down time of the system and dividing it by the

number of failures. Figure 2 shows the process of calculating the MTBF of a system.

Figure 2 Mean time between failure of a system

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1245 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

For workflow applications the the MTBF can be calculated by adding the average MTBF of all

the VMs used for executing the workflow and dividing it by the total number of VMs, as shown

in equation 2.

 𝐴𝑀𝑇𝐵𝐹 =
∑ 𝑀𝑇𝐵𝐹𝑖𝑛

𝑖=1

𝑛
 (2)

MTBF is defined by the arithmetic mean value of the reliability function R(t), which can be

expressed as the expected value of the density function ƒ(t) of time until failure.

𝑀𝑇𝐵𝐹 = ∫ 𝑅(𝑡)𝑑𝑡 = ∫ 𝑡 𝑓(𝑡)𝑑𝑡
∞

0

∞

0
 (3)

The MTBF for the parallel system with two parallel repairable VMs can be calculated as per

equation (4).

𝑀𝑇𝐵𝐹(𝑐1||𝑐2)=
𝑀𝑇𝐵𝐹(𝑐1)∗𝑀𝑇𝐵𝐹(𝑐2)

𝑀𝑇𝐵𝐹(𝑐1)+ 𝑀𝑇𝐵𝐹(𝑐2)

 (4)

Similarly the mean down tome of the VMs can be calculated by adding the average MDT of all

the VMs used for executing the workflow and dividing it by the total number of VMs, as shown

in equation 5.

𝑀𝐷𝑇 =
∑(𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑈𝑝 𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐷𝑜𝑤𝑛 𝑡𝑖𝑚𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 (5)

The MDT of 𝑛 virtual machines used for executing the workflow can be calculated as per

equation (6).

𝑀𝐷𝑇(𝑐1|| … ||𝑐𝑛)=∑
1

𝑀𝐷𝑇(𝑐𝑘)
𝑛
𝑘=1 (6)

The MTTF and MTTR are used to calculate the availability of the system by selecting a system

that has long mean time to failure and has short mean time to repair as shown in equation (7).

𝑆𝑦𝑠𝑡𝑒𝑚 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑇𝑇𝐹(𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅) (7)

The entire process of the ICPT proposed in this research is shown in Figure 3.

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1246 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

Figure 3 Architecture of Fault Tolerant Workflow Scheduler using ICPT

4. Implementation, Results and Discussion

To demonstrate the proposed ICPT, consider a workflow with 15 nodes as shown in

Figure 4. The execution time of the tasks is shown within the circle. The task execution starts at

tasks1 and completes at task15. In between there are 13 nodes that are arranged in different

order. The parallel nodes at different levels. We have used the structure aware resource

estimation technique proposed in our earlier research [16] to calculate the optimal number of

VMs required for executing the workflow. Hence it is desirable to have 4 VMs for executing the

workflow without affecting the deadline. The starting time and ending time of each task is

calculated based on the task dependencies. It means that a task can start its execution only when

all the dependent tasks have completed their execution. The implementation is done using

CloudSim. Considering the task dependencies, the start time and end time of the tasks are

calculated and presented in Table 1.

Figure 4 Workflow with 15 nodes

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1247 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

As the tasks are arranged in parallel, the number of virtual machines used should be equal to the

maximum number of parallel tasks. In this workflow, the maximum number of parallel tasks is 4.

So, four VMs are used to execute the tasks, without affecting the deadline. For the workflow in

Figure 4, the task execution with different VMs is represented in Table 1.

 Figure 3 shows how the tasks are assigned to different VMs for parallel execution. It is

arranged in such a way that the tasks do not wait for a resource. Though the tasks can be

executed without delay, there are other parameters that affect the execution. The most important

factor among them is the VM failure. VM failures should be taken in to account while executing

tasks in a workflow, as no system is 100% perfect.

Figure 3 Sequence of Task Execution in the sample workflow

Table 1. Start Time and End Time of tasks in the sample workflow

Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Start

Time
- 16 16 38 38 70 34 53 53 57 90 81 104 79 137

Finish

Time
16 38 34 70 53 90 57 84 81 79 104 98 137 101 163

There are several methods available for calculating the failure, the most common factor is the

MTTR, MTTF, MTBF and MTD. In order to recover from these failures the obvious technique is

to have check points. The check point interval for the sample workflow is 25 minutes, calculated

using the Optimal

Check Point Interval (OCPT). The formula to calculate the optimal check point interval is shown

in equation (8).

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
√𝑀𝑇𝑇𝐹 ∗ 𝑡𝑐

ℎ
 (8)

Here, 𝑡𝑐 is the time at which check pointing is initiated and is the average percentage of normal

operation in the interval before failure. Figure 4 depicts the checkpoint locations and the number

of checkpoints for the sample workflow using OCPT.

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1248 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

Figure 4 Check Point Interval using OCPT

4.1 Check point interval calculation using ICPT

 The ICPT calculates the check pointing interval based on the mean time between failure

and the mean down time. The MTBF and MDT of the virtual machines used for executing the

workflow are calculated and presented in Table 2.

Table 2 MTBF and MDT of the sample workflow

V
M

s
u

se
d

 f
o
r

E
x
ec

u
ti

o
n

A
v
er

a
g
e

A
n

n
u

a
l

H
o
u

rs
 U

se
d

A
v
er

a
g
e

N
u

m
b

er
 o

f

F
a
il

u
re

s

M
T

B
F

(M
in

u
te

s)

M
D

T

(M
in

u
te

s)

VM1 4380 15 116 34

VM2 5000 12 124 24

VM3 4250 16 116 38

VM4 3900 13 120 33

 Using the values in Table 2 the mean down time of the virtual machines is calculated.

Mean Down Time = 𝑀𝐷𝑇(𝑉𝑀1||𝑉𝑀2||𝑉𝑀3||𝑉𝑀4) = (∑
1

𝑀𝐷𝑇(𝐶𝑘))
4
𝑘=1) = 34

Using these values, the check point interval is 34 Mins. The check pointing locations of the

workflow using the improved check pointing technique is shown in Figure 5.

Figure 5 Check Points based on the interval calculated using ICPT

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1249 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

4.2 Comparison of performance of ICPT and OCPT

 The check pointing intervals calculated using the optimal check pointing technique and

the improved check pointing technique are applied for the sample workflow. The experiment is

carried out using the popular simulator the CloudSim and the results obtained are plotted in

Figure 6.

Figure 6 Comparison of check pointing intervals using OCPT and ICPT

The number of check points as per OCPT is 6 and the number of check points as per

ICPT is 4. The total percentage of reduction in check points is 33%. It will be very useful to save

the overall cost involved in executing the workflow. Moreover it will also have tremendous

savings in execution cost when applied to large scientific workflows like montage, cybershake,

ligo, epigenomics and sipht.

4.3 Predicting System Availability using ICPT

 The system availability is an important factor to be considered for storing the check

pointed file. Particularly in parallel execution there is a compelling need to select a system with

more availability. In this work, the system availability is calculated based on the MTTF and

MTTR of the VMs used of execution and the VM with more availability is used for storing the

check pointed image file.

Table 3 Availability percentage of virtual machines

VMs used

for

Execution

Average

Annual

Hours

Used

MTTF

per

Thousand

Nodes

MTTR

in Hrs

System

Availability

%

VM1 4380 1 0.7 99.8

VM2 5000 1 0.5 99.9

VM3 4250 2 0.5 98.6

VM4 3900 1 0.9 99.5

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1250 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

From the above Table 3, it is understood that the VM2 has high availability when compared to

other VMs used for execution. Hence it is wise to use VM2 for storing the check pointing

images.

5. Conclusion and Future Enhancements

 The ICPT proposed in this paper is a novel idea for fault tolerant workflow scheduling in

the cloud. The system calculates the mean time between failure and the mean down time of the

virtual machines used in executing a workflow. This reduces the frequency of check pointing

interval by 33% and contributes for considerable savings in the cost. Also it increases the system

availability by storing the check pointed image in a system that has more availability. The

effectiveness of ICPT is proved by comparing it with the optimal check pointing technique.

Hence it is recommended to apply ICPT when scheduling workflows in the cloud.

References

1. D. Poola, M.A. Salehi, K. Ramamohanarao, R. Buyya, “A taxonomy and survey of

fault-tolerant workflow management systems in cloud and distributed computing

environments. In Software Architecture for Big Data and the Cloud”, Elsevier,

Amsterdam, The Netherlands, 2017, pp. 285–320.

2. Ghosh, S, Melhem, R, Mossé, D, “Fault-tolerance through scheduling of a periodic tasks

in hard real-time multiprocessor systems”, IEEE Transactions on Parallel and Distributed

Systems, 1997, no. 8, 272–284.

3. Zhu, M.M, Cao, F, Wu, C.Q, “High-throughput scientific workflow scheduling under

deadline constraint in clouds”, Journal of Communication, 2014, no. 9, 312–321.

4. Mohamad, B. Bandan, , S. Bhattacharjee, D. K, Pradhan, J. Mathew, “Adaptive Check

point Interval Algorithm considering Task Deadline and Lifetime Reliability for Real-

Time System”, Procedia Computer Science, 2015, vol. 70, pp. 821-828.

5. L. Zhongjin, Y. Jiacheng, H Haiyang, J. Chen, Hu.H, Ge. J and V. Chang , “Fault-

Tolerant Scheduling for Scientific Workflow with Task Replication Method in Cloud”,

In Proceedings of the 3rd International Conference on Internet of Things, Big Data and

Security, 2018, pp. 95-104.

6. S.K. Jayadivya, S.J.Nirmala, M.S. Bhanu, “Fault tolerant workflow scheduling based on

replication and resubmission of tasks in Cloud Computing”, International Journal on

Computer Science and Engineering, 2012, vol. 4, pp. 996-1004.

7. H. Li, Canon, L.C, Casanova, H, Robert. Y, and Fr ´ed´ eric Vivien, “Check pointing

Workflows for Fail-Stop Errors”, IEEE Transactions on Computers, 2018, pp.1-16.

8. N. Wu , D. Zuo and Z. Zhang, “Dynamic Fault-Tolerant Workflow Scheduling with

Hybrid Spatial-Temporal Re-Execution in Clouds”, 2019, Vol. 10, no. 169, pp. 1-18.

9. L. Anghel, D. Alexandrescu, M. Nicolaidis, “Evaluation of a soft error tolerance

technique based on time and/or space redundancy. In Proceedings of the 13th

Symposium on Integrated Circuits and Systems Design”, Manaus, Brazil, 18–24

September 2000; pp. 237–242.

10. S. Hwang, C. Kesselman, “Grid workflow: A flexible failure handling framework for the

grid”, In Proceedings of the 12th IEEE International Symposium on High Performance

Distributed Computing, Seattle, WA, USA, 22–24 June 2003, pp. 126–137.

11. Y. Gao, S.K. Gupta, Y. Wang, M. Pedram, “An energy-aware fault tolerant scheduling

framework for soft error resilient cloud computing systems”, In Proceedings of the

Conference on Design, Automation & Test in Europe. European Design and Automation

Association, Dresden, Germany, 24–28 March 2014, p. 94.

International Journal of Advanced Science and Technology
Vol. 29, No. 7s, (2020), pp. 1242-1251

1251 ISSN: 2005-4238 IJAST

Copyright ⓒ 2020 SERSC

12. H. Chen, F.Z.Wang, N.Helian, “Entropy4Cloud: Using Entropy-Based Complexity to

Optimize Cloud Service Resource Management”. IEEE Transaction. Intel. 2018, 2, 13–

24.

13. E.N. Alkhanak, S.P.Lee, R.Rezaei, R.M.Parizi, “Cost optimization approaches for

scientific workflow scheduling in cloud and grid computing: A review”, classifications,

and open issues”, J. Syst. Softw. 2016, 113, 1–26.

14. J.P. Walters, and V. Chaudhary, “Application-Level Check pointing Techniques for

Parallel Programs”, ICDCIT 2006, pp. 221-234.

15. K.F. Wong and M. Franklin, “Check pointing in Distributed Computing Systems,

Journal of Parallel And Distributed Computing”, 1996, vol. 35, pp. 67–75

16. K. Kanagaraj, and S.Swamynathan, “Structure aware resource estimation for effective

scheduling and execution of data intensive workflows in cloud”. Future Generation

Computer Systems, 2018, 79, 878–891.

17. G. Manimaran, C.S.R. Murthy, “A fault-tolerant dynamic scheduling algorithm for

multiprocessor real-time systems and its analysis”. IEEE Trans. Parallel Distrib. Syst.

1998, 9, 1137–1152.

18. M. Masdari, , S.ValiKardan, Z.Shahi, S.I. Azar, “Towards workflow scheduling in cloud

computing: A comprehensive analysis”, J. Netw. Comput. Appl. 2016, 66, 64–82.

19. C. Lin, S.Lu, “Scheduling scientific workflows elastically for cloud computing”. In

Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing,

Washington, DC, USA, 4–9 July 2011; pp. 746–747.

20. T.Herault, Y. Robert, A.Bouteiller, D.Arnold, K.B. Ferreira, G.Bosilca, J. Dongarra,

“Optimal Cooperative Check pointing for Shared High-Performance Computing

Platforms” , Research Report, 2017, pp. 1-15.

