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Abstract 

IT companies are moving their business from traditional computing to cloud computing 

to leverage the benefits like reduced infrastructure cost, business agility, etc. This change 

has led to an increase in the number of cloud-based service users worldwide from 2.4 

billion in 2013 to 3.6 billion in 2018. By the end of 2020, this number will be double of 

2013 users. The increased number of users, in turn, has increased the number of accesses 

done to web servers. Increased number of dynamic requests can create problems like 

reduced system performance, system break down, inefficient utilization of resources, etc.; 

All these problems can be avoided by distributing the workload among all resources using 

the load balancer. In this paper, a bio-inspired load balancing algorithm named Artificial 

Bee Colony is enhanced and compared with the basic ABC algorithm. The enhancement 

is done by merging ABC with Capacity Based Load Balancing algorithm. The 

experiments are carried out in the CloudSim simulator as well as real cloud environment 

using Amazon Web Services (AWS) platform. The significance of the results is tested by 

using statistical tests. The performance of the proposed algorithm is analyzed for make 

span, throughput, response time and the average waiting time.  
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1. Introduction 

Cloud computing is an emerging technology in which users can use the third 

party owned or private shared pool of configurable computing resources to store, 

process, and manage their data remotely. Cloud computing has many advantages 

over traditional computing like fulltime availability, low cost, scalability, flexibility, 

automated updates on software, security, mobility, increased collaboration, disaster 

recovery, etc. To get these benefits, slowly, the IT companies are moving their 

business elements to the cloud. According to the 2018 International Data Group 

(IDG) cloud computing study [36], 73% of organizations have a portion of their 

computing infrastructure or at least one application already in the cloud, and 17% 

have planned to do so within one year. 38% of respondents have shared that the IT 

department is hesitant to migrate 100% to the cloud platform. Currently, 

organizations are utilizing a mix of cloud delivery models in which the average 

environment is 53% non-cloud, 16% Infrastructure-as-a-Service (IaaS), 23% 

Software-as-a-Service (SaaS) and 9% Platform-as-a-Service (PaaS). The gradual 

increase in cloud adoption has made a massive increase in the number of cloud-

based service users. Due to this increased number of cloud users, a computing 

resource may get plenty of user requests at any point of time, resulting in difficulty 

of handling resources. If this situation is not handled efficiently, it may also result 

in the system break down. The sinking feeling of the server being down or not 

accessible may lead to the service provider losing potential customers.  The load 

balancer plays a vital role in balancing this massive amount of workload effectively. 
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It provides system firmness, improved performance, and protection against system 

failures.   

The cloud load balancing is an optimization technique that distributes workload 

and computing resources efficiently in a cloud computing environment. In addition 

to the proper distribution of workload, the load balancer provides the advantages 

like better performance, handle sudden traffic burst, flexibility and elasticity to the 

cloud environment. 

The load balancer uses an efficient scheduling algorithm to distribute workload 

among the resources to provide all the above advantages to the system. The 

enterprises can achieve high-performance levels at a potentially lower cost with the 

help of Cloud load balancer than traditional on-premises load balancing technology. 

The resources in the cloud computing environment may be physical hosts or Virtual 

Machines (VMs). The workload is distributed by load balancer either among 

physical hosts or virtual machines. 

The load balancing algorithms are classified into two kinds based on the system 

state: static and dynamic [1] [26].  The static load balancing is the approach in 

which load distribution decisions are made at the compile-time aiming to minimize 

communication delays. The load distribution decisions are made based on prior 

information about the system like memory, processing power, and performance 

before the commencement of execution. Hence, these static load balancing 

algorithms are easy to implement and have less overhead. But the disadvantage of 

these algorithms is that the algorithms are not flexible, i.e., the allocation decisions 

cannot be changed during the execution. Once the execution starts, the tasks are 

executed using the allocated resources. It is only suitable for the system that has low 

variation in the load. Whereas, dynamic load balancing approaches make allocation 

decisions based on the current status of the system.  In such algorithms, allocation 

decisions are made during execution time. Hence, they are challenging to 

implement. These algorithms continuously monitor the load, and in the case of 

imbalance, the load is redistributed among all available resources. This causes an 

extra overhead in dynamic algorithms. Albeit with more overhead, as allocation 

decisions can be changed during execution time, these algorithms are more flexible. 

Due to this flexibility, dynamic load balancing is better suited for the system that 

has more variation in the load. When the cloud computing environment is 

considered, there is a high variation in the system load. Hence, dynamic load 

balancing is best suitable for the cloud computing environment.   

The cloud load balancing algorithms are broadly classified into many categories 

[8]. Among these categories, we have considered the natural Phenomena-based load 

balancing algorithm. In this paper, a bio-inspired Artificial Bee Colony (ABC) 

algorithm is enhanced by merging with the Capacity Based Load Balancing (CBLB) 

algorithm. CBLB [23] is our concept, proposed in the category of general load 

balancing. Here, we have tried to combine algorithms of two different categories 

and utilize the advantages of both algorithms. For performance analysis of these 

algorithms, parameters like make span, response time, throughput, and average 

waiting time are considered.  

 The following sections are organized as follows. Some of the bio-inspired 

methods that are applied for load balancing in cloud computing are discussed in 

section 2. Section 3 explains the proposed enhanced ABC algorithm. The 

implementation details and experimental results are discussed in section 4. The 

conclusion of the paper is specified in section 5.  
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2. Related Work 

Nature/bio-inspired algorithms are inspired by the behavior of animals or birds to 

accomplish a task efficiently. They are mainly used to address highly complex 

problems [2]. Some of the popular bio-inspired algorithms are applied in many 

cloud computing problems like energy optimization, load balancing, task 

scheduling, cost optimization, etc., [28].  

The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and Artificial Bee Colony (ABC) are the most adapted bio-

inspired algorithms in cloud computing applications. These are adapted in many 

cloud computing applications and modified to get better results. GA with Local 

Search optimization (GA-LS) [5] is an example of a modified GA used in cloud 

computing for monitoring and scheduling of virtual machines. The main objective of 

the algorithm is to reduce memory usage and energy consumption during VM 

scheduling. This is achieved by using the local search-a heuristic method in the 

cross over operation of GA.  The New GA (N-GA) [3] is another example of 

improved GA, which is used for task scheduling in a cloud computing environment. 

The GA is improved by adopting the elitism technique (a small portion of the fittest 

candidates is copied to the next generation without change) during initialization, 

employing the Heterogeneous Earliest Finish Time (HEFT) method during subtask 

initialization, and the method proposed by [34] during mutation operation. The 

algorithm has a better performance for make span and execution time, but has some 

logical problems like reachability, fairness, and deadlock. 

The PSO algorithm is a population-based stochastic optimization technique, 

inspired by the movement of organisms in a bird flock or fish school. The improved 

PSO [9] is used for task scheduling in a cloud computing environment based on 

adaptive weight. It has shown better resource utilization and task completion time. 

The ACO algorithm is inspired by the actions of ant colony, initially proposed to 

search for an optimal path in a graph. Later, it is diversified to solve many complex 

problems. The primary ACO has a lack of rapid adaptability, which increases 

execution time and decreases convergence time. This problem is overcome by 

MACO [27]. This is achieved by feeding a higher number of tasks to fast processing 

VMs and a smaller number of tasks to slow processing VMs. 

The ABC algorithm is inspired by the intelligent foraging behavior of honeybee 

swarm, proposed for numerical optimization [16]. Later, it has been proposed for 

numeric function optimization and constrained optimization problems [4] [17][18] 

and proved that the performance of ABC is better than the other population-based 

algorithms [19][17]. Further, the performance of ABC is analyzed for multi-

dimensional and multi-model numeric problems and it has shown improved 

performance compared to Differential Evaluation (DE) Algorithm, Evolutionary 

Algorithm (EA) and PSO [19] for those problems.  The ABC is further modified for 

constrained optimization problems [20], and applied in different fields to solve 

complex problems [21] as well as for load balancing in a cloud computing 

environment.   

The basic ABC model consists of three types of populations: Employee, Onlooker 

and Scout bees. In the algorithm, initially scout bees are sent to initial food sources. 

The selected scout bees become the employee bees, and they go to food sources and 

determine the nectar amount. This information is shared with onlooker bees through 

wangle dance. Based on this information, the onlooker bees calculate the probability 

value of the sources. Then onlooker bees are sent to the best probability value food 



International Journal of Future Generation Communication and Networking 

Vol. 13, No. 1, (2020), pp. 1366-1384 
 

  1369 

 

 

 

ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2020 SERSC 

 

sources. If the selected food source is empty, the bee is abandoned and it becomes a 

scout bee. The abandoned scout bee searches for a new food source randomly. The 

process is repeated until the requirements are met.    

The major drawback of the basic ABC algorithm is that it can handle only light 

loaded nodes efficiently and is not capable of handling newly arrived requests 

efficiently, which may lead to system imbalance. This problem is overcome by the 

improved ABC [15]. In this algorithm, the iterative process is introduced at each 

node in the system to improve efficiency. Similarly, ABC is modified as an 

Interaction ABC algorithm (IABC) for better load balancing in the cloud computing 

environment [14] by ensuring the system balance for each selection. During the 

initial stage of task allocation, VMs are chosen randomly for tasks. If this selection 

keeps the system balanced, then the task distribution is done according to the 

selection. Else, the iteration formulation is used to search an efficient VM. The 

performance of IABC is better than ABC in case of a varying number of cloudlets 

with a constant number of VMs, varying number of VMs with a constant number of 

cloudlets, and a varying number of both VMs and cloudlets. In all three situations, 

the IABC's performance is better for all best, worst and average cases.  

During the migration process of load balancing, delay in the execution of the high 

priority tasks may result in a response delay. In such cases, the priorities of tasks 

need to be considered with load balancing. The Honey Bee Behavior Inspired Load 

Balancing (HBB-LB) algorithm [7] is an ABC based algorithm that considers 

priorities of migrated tasks during execution. This algorithm has less task migration 

compared to dynamic load balancing algorithm and is having better performance 

than the Weighted Round Robin, First-in-First-out and dynamic load balancing 

algorithms with respect to execution time, make span and degree of imbalance. Even 

though the priorities of tasks are considered after migration, there may be a response 

delay due to the migration process in HBB-LB.  This problem is overcome in the 

Modified bee colony algorithm [29] by considering the low priority tasks during the 

migration process. It has given a better performance for make span, and the number 

of tasks migration is reduced compared to the basic ABC.  

The ABC algorithm is enhanced to Improved Efficient ABC (IE-ABC) algorithm 

[24] to provide Quality of Service (QOS). The QoS is provided by assigning a 

dedicated employee bee to a data center to update the information and by taking 

allocation decision based on the load of the VM. This elude the search for the best 

fitness value and reduce the completion time, cost and task migration. This 

algorithm has given a better performance than GA, ACO and ABC algorithms. One 

more enhanced ABC algorithm is the Discrete Artificial  Bee Colony (DABC) [35] 

algorithm, which uses the discrete operators, namely flip, swap and slide. The steps 

are added in all the three stages of the ABC algorithm to reduce make span time and 

increase resource utilization. The algorithm has given better performance for make 

span and average resource utilization ratio.  

The above-discussed algorithms are concerned for independent jobs. But the jobs 

received in the cloud may be dependent or independent. Workflow scheduling is one 

of the critical issues in cloud computing in which a set of jobs are dependent on 

each another. This issue is addressed in the ABC based workflow scheduling [10] 

algorithm. The algorithm's main objective is to reduce the waiting time of the user. 

It also considers the live migration process. In the algorithm, initially, the ranks of 

the jobs are defined by workflow scheduling using jobs' burst time. Then the 

minimum make span of all available queues is estimated. The queues with minimum 

make span are appended, and the queues with maximum make span are discarded. 

After scheduling, the ABC algorithm is used for the live migration process. In the 
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algorithm, during workflow scheduling, the evaluation of the best-effort queue has 

resulted in the reduction of make span and execution cost. The algorithm has also 

achieved higher efficiency, better utilization, and less energy consumption. In the 

similar way, other nature-inspired algorithms are also used for workflow scheduling 

in cloud computing environment [30]. 

Along with GA, ACO, PSO and ABC algorithms, few other bio-inspired 

algorithms are also adapted for load balancing. A Flower Pollination-based 

scheduling (FPAS) [13] is used for task scheduling in a cloud computing 

environment. The tasks are considered as pollens, and VMs are considered as 

flowers. The local pollination and global pollinations are calculated by using fitness 

functions to get better solutions. The algorithm is having better performance than 

Round Robin, FCFS and GA algorithms for make span. 

The Multi-Objective Cuckoo Search Optimization (MOCSO) [25] is one more 

bio-inspired algorithm based on Cuckoo Search Optimization. It is used for resource 

scheduling in a cloud environment. The Cuckoo Search Optimization is inspired by 

the obligate brood parasitism of some cuckoo species. The basic CSO has three 

rules. Among these rules, two rules are modified in MOSCO to integrate the 

requirements of multi-objective. It has shown better performance than multi-

objective ACO, GA and PSO algorithms. The Bat algorithm is another bio-inspired, 

meta-heuristic algorithm for global optimization, which is inspired by the 

echolocation behavior of microbats. It is adapted for workflow scheduling in cloud 

computing environment [31] to minimize the transmission and computation cost 

incurred during execution. The bat algorithm has exhibited a high convergence rate 

and balanced load distribution. It has taken less iteration than PSO and Cat Swarm 

Optimization (CSO) (the algorithm generated by observing the behavior of cats). 

The execution time of this algorithm is lesser than the PSO algorithm.  

To get more benefits of bio-inspired algorithms for cloud computing applications, 

few researchers have combined two or more bio-inspired algorithms or a bio-

inspired algorithm with other category load balancing algorithms. Heuristic ABC 

(HABC) [22] is an algorithm, in which ABC is combined with the heuristic 

algorithms like First Come First Serve (FCFS), Largest Job First (LJF) and Shortest 

Job First (SJF) and performance is compared with each other. The heuristic LJF 

algorithm (ABC_LJF) has shown better performance than ABC and other two 

heuristic ABC algorithms. The Modified Particle Swarm Optimization (MPSO) and 

Modified Cat Swarm Optimization (MCSO) algorithms are together used for task 

allocation and resource allocation & management [32]. The Modified ACO (MACO) 

and Modified Bee Colony Optimization (MBCO) algorithms are used together for 

load balancing [33], whereas basic ABC and ACO are combined as Hybrid Artificial 

Bee and Ant Colony Optimization (H_BAC) [11] algorithm. In all the hybrid 

approaches, the algorithms have shown the better performance than the basic 

algorithms. 

 

3. Proposed Enhanced Artificial Bee Colony Algorithm (ABC_CBLB) 

In the previous section, we have discussed many population-based algorithms that 

are applied for load balancing in a cloud computing environment.  [6] has proved 

that ABC algorithm provides better performance compared to other algorithms. This 

algorithm is used for load balancing in the cloud computing environment to allocate 

cloudlets to resources. The mapping of ABC parameters with the cloud environment 

is as shown in Table I. 

We have tried to enhance the performance of the ABC algorithm by merging it 

with our previously proposed CBLB algorithm.  CBLB is the algorithm that works 
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based on the utilization of VMs. During allocation of cloudlets, the algorithm 

arranges VMs in the increasing order of their utilization in an array. This 

arrangement provides the less utilized and unutilized VMs at the first few positions 

and the highly utilized VMs at the later positions. This reduces the time required to 

search for the best suitable VM during allocation. One more advantage of this 

algorithm is that the cloudlets are allocated first to the VMs, which are idle for a 

longer time than the others. This improves resource utilization.  To take these 

advantages in the ABC and to improve the performance of the algorithm, we have 

merged it with the CBLB algorithm. 

Table I.  Mapping of ABC algorithm parameters with a cloud environment 

 

Honey beehive Cloud environment 

Honeybee Cloudlet 

Food Source VM 

Employee bees Cloudlets allocated to VMs at the beginning 

Onlooker bees Cloudlets allocated based on prior allocation condition 

Scout bee Cloudlet removed from overloaded VM and allocated to another 

VM randomly 

 

The CBLB algorithm is used in the ABC for selecting the best-fitted food sources 

during allocation. Initially, all the available food sources (VMs) are initialized as 

per the CBLB algorithm. In the CBLB, a group size of 11 is considered. Each group 

holds the VMs with utilization capacity (UC) range 0-9%, 10-19% … 90-99%, 

100% respectively. In the ABC algorithm, during the employee bee's stage, the food 

sources are selected randomly. But in the ABC_CBLB, the food sources are selected 

from the array. Whenever the food sources are selected by employee bees from the 

array, the fitness of the bees are checked and are allocated to them. Once the 

allocation is done, based on their UC, the food sources are moved to the respective 

groups by the CBLB algorithm.  

In the beginning, as all the food sources are available completely, the possibilities 

of employee bees to be allocated to the selected food sources are more. But in the 

case of onlooker bees, the food sources are selected based on the information 

provided by employee bees, and fitness calculated. If no fitness is found that 

selection is rejected, and those bees become scout bees. Again, a new food source is 

selected, and fitness is checked for allocation. This process is repeated until all bees 

fit into any of the food sources. In the onlooker bees’ stage, if the selected food 

source is already utilized more, the possibility of a new bee fitting into it is very 

less. This increases the rejection rate. Whenever the rejection rate is high, the time 

taken for allocation is also more. This affects the overall processing time. Here, we 

have tried to reduce the processing time by reducing the rejection rate. This is 

accomplished by making the onlooker bees select the less utilized food sources first 

and increase the probability of bees to fit into the first few selected sources. 

Once the employee bees are allocated, the onlooker bees select the food sources 

for processing. During this selection process, the food sources are chosen by 

onlooker bees based on the CBLB algorithm, and fitness of the selected bees are 

checked. The onlooker bees with fitness values less than or equal to 1 are allocated 

to the selected food sources. The rest are rejected, and they become scout bees. The 

scout bees select the food sources from the array. The search for food sources is 

done from the beginning of the array. Once the selection is made, the fitness of the 
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bee is checked for the allocation. If no fitness is found, the process is repeated by 

scout bees until it fits into a food source. 

In the onlooker bees’ stage, the CBLB algorithm returns the less or not utilized 

VMs first. Hence, the probability of getting a fitness of less than or equal to 1 for 

onlooker bees are more. This reduces the number of scout bees, and most of the bees 

are allocated during the onlooker bees’ stage itself. This reduces the time to select a 

new food source and to calculate fitness for the allocation. This speed up the 

allocation process and reduces the processing time. In the CBLB algorithm, in each 

group, the food sources are kept in a list in the order in which they arrive in the 

group. The newly arrived food source in the group is kept at the end of the list. 

During the selection process, they are selected based on a first-in-first-out basis. It 

avoids the selection of the same food source again and again. 

 

Pseudo code of ABC_CBLB algorithm: 

 

Input:     Array (0-10), VMs (v0, v1...vm-1), Cloudlets (c0, c1 ... cn-1) 

Output:  Cloudlets allocated to VMs 

 

1. Initialize the zeroth position of the array with a list of all VMs.  

2. Allocate employee bees to VMs in the array and update the fitness values of 

employee bees by using fitness function: 

 
Where, 

fitnessj=fitness of VMj 

cloudlet lengthji= Length of cloudlet allocated to VM 

capacity of VM =processing capacity of VMj 

The processing capacity of VMj is calculated by using the formula: 

 

 
Where, 

num_of_pesj= Number of processing elements of VMj 

MIPSj=Million Instruction Per Second of VMj 

BWj=Bandwidth of VMj 

 

3. Move the positions of allocated VMs based on fitness values. 

4. The best food sources are selected by the onlooker bees by calculating the 

fitness. The fitness is calculated by adding the length of cloudlet to be allocated 

to the total number of cloudlet length of VM: 

 
5. Allocate the best selected VMs to the onlookers. Move the positions of 

allocated VMs in the array based on their fitness values. 

6. Select the food source for abandoned bees from the array. If the allocation is 

done, then move the positions of VMs based on fitness values. 

7. Repeat step 2 until all the cloudlets are allocated. 

The above pseudo-code contains two fitness functions. The first fitness function 

is to calculate the fitness after allocation, and another fitness function is to calculate 



International Journal of Future Generation Communication and Networking 

Vol. 13, No. 1, (2020), pp. 1366-1384 
 

  1373 

 

 

 

ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2020 SERSC 

 

the fitness before allocation. In the proposed algorithm, M number of VMs,  N 

number of cloudlets and a single-dimensional array of size 11 are taken as inputs. 

As an output the cloudlets are allocated to VMs in an efficient way. 

 

4.  Implementation and Experimental Results 

The implementations are initially carried out in CloudSim 3.0.3 simulator [12], 

which provides a framework for the cloud environment. The algorithms are 

implemented using Java. The performance of the ABC_CBLB is compared with the 

ABC w.r.t four performance metrics make span, average response time, average 

waiting time and throughput. Then the significance of the results is tested by 

statistical analysis. Further, the performance of the algorithm is checked on real 

time cloud platform, Amazon Web Services (AWS).  

 

4.1. Implementation of ABC_CBLB in CloudSim simulator 

 

In the simulator, the proposed algorithm’s performance is compared with the 

basic ABC. The parameter setup for the experiment is given in Table II. To check 

the performance of the algorithms in homogeneous and heterogeneous 

environments, the experiments are carried out in both the environments. For the 

homogeneous environment, the MIPS are kept at 5000 for all the VMs, whereas for 

heterogeneous environment, the MIPS of VMs are varied in the range 1000-5000. 

Table 2.  Parameter setup for ABC_CBLB implementation 

Datacentre (DC) 

parameters 

MIPS 6000 

No. of hosts 5 

Host RAM (MB) 10240 

Host storage (MB) 1000000 

Band Width (MBPS) 20000 

VM parameters Image size (MB) 10000 

Memory (MB) 512 

Bandwidth (MBPS) 10000 

No. of processing 

elements  

2 

VM monitor Xen 

Cloudlet 

Parameters 

File Size (Bytes) 300 

Output Size (Bytes) 300 

No. of pes 1 

 

Case 1: Homogeneous Environment 

To check the adoptability of our ABC_CBLB algorithm for dynamic cloud 

environment, the experiment is repeated for the different number of cloudlets, i.e., 

100,200..., 1500 by keeping the cloudlet length (Number of instructions of a request 

to be processed in CPU) range constant. In addition to this, to check the 

performance of the algorithm for varying (small/large) length requests, the 

experiment is conducted for different cloudlet length ranges, i.e., 500-1500, 500-

5500 and 500-10500. By varying the number of requests and the cloudlet length 

range, the performance of the algorithm is observed for all the four performance 

parameters. The results of several iterations are averaged and tabulated for better 

accuracy. These experiments are carried out using the parameter values indicated in 

Table II. 
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Figure 1 shows the performance analysis of the algorithm for variable load and 

different cloudlet length ranges w.r.t. average make span. In this case, the number of 

datacentres, no. of VMs and MIPS of VMs are 10, 60 and 5000 respectively. The 

figure contains the graphs plotted for average make span against the number of 

cloudlets (requests) for three cloudlet length ranges, respectively. The results have 

shown that the ABC_CBLB has taken less time to process the set of submitted jobs  

than the ABC for all the cloudlet length ranges. This shows that the proposed 

algorithm handles dynamic requests more efficiently than the ABC. 

During the performance analysis of the make span parameter, in addition to the 

dynamic load, experiment is carried out to test the effect of varied number of 

datacentres on the performance of ABC_CBLB. The readings are taken for the 

number of datacentres 10, 20 and 30. The number of VMs and MIPS considered are 

60 and 5000 respectively. The results for different datacentres are shown in Figure 

2. The graphs are plotted for the total processing time of the set of jobs against the 

number of cloudlets.  The graphs indicated that the proposed algorithm has lesser 

make span compared to ABC. This proves that the algorithm supports the scalability 

of infrastructure. 

 

  

Figure 1. Makespan for cloudlet lengths ranges 500-1500, 500-5500 & 500-
11000 respectively for the homogeneous environment 

  

 

Figure 2. Make span for the number datacentres (DC) 10, 20 and 30 in 
homogeneous environment 
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Figure 3. Make span for different 
number of VMs 

Figure 4. Make span for varied 
capability of VMs 

 

In the cloud environment, a huge number of requests is received during peak 

hours. In this situation, the number of VMs is increased to handle these requests 

efficiently. During non-peak hours, only a few numbers of VMs can handle the 

incoming requests efficiently. Consequently, the number of VMs is reduced for non-

peak hours. Hence, to check the performance of the algorithm for varied number of  

VMs, the experiment is repeated for different number of VMs, i.e., 10, 20 … 100. 

All the VMs’ MIPS are set to 5000. The number of datacentres considered is 10. 

Figure 3 shows the plot for the number of VMs against make span. The number of 

cloudlets considered here are 100, 800 and 1500. The graphs clearly denote that the 

ABC_CBLB has lesser make span than the ABC for fewer VMs. When the number 

of VMs is increased, both the algorithms have the same make span for 100 

cloudlets. But for the cloudlets 800 and 1500, the make span of the ABC_CBLB is 

very much lesser than the ABC. In the graphs, we can clearly notice that the make 

span of the ABC_CBLB for 1500 cloudlets is even lesser than the make span of the 

ABC for 800 cloudlets. During both peak and non-peak hours, the ABC_CBLB has 

given less make span. This indicates that the ABC_CBLB is capable of handling 

requests in a scalable infrastructure more efficiently than the ABC.  

 

  

Figure 5. Average response time for a fixed range of cloudlet lengths 500-
1500, 500-5500 & 500-10500 in homogeneous environment 
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The performance of the algorithm is checked for different capacity VMs as well. 

For this, the readings are taken for the VMs with MIPS 1000, 2000 … 5000. The no. 

of VMs and datacentres considered are 60 and 10 respectively. The graphs are 

plotted for MIPS against make span in Figure 4. The number of cloudlets for which 

the graphs are plotted are 100, 800 and 1500. The graphs indicate that the 

ABC_CBLB algorithm gives almost the same make span as that of ABC for the low 

capacity VMs, but as the capacity increases, the performance of ABC_CBLB is 

better than that of ABC. This clearly shows that the algorithm is suitable for both 

low capacity as well as high capacity cloud environments. 

The results for average response time, average waiting time and throughput are 

shown in Figure 5,6,7, respectively. The readings are taken with the same 

parameter’s setup as in Figure 1. The graphs are plotted for average response time, 

average waiting time and throughput against the number of requests. The graphs in 

Figure 5 and 6 show a similar kind of performance of both the algorithms with 

respect to average response time and average waiting time. The ABC_CBLB has 

shown improved performance than the ABC for small cloudlet length range. But 

there is a minor improvement in the performance for increased cloudlet length 

range. When throughput is considered, the ABC_CBLB has processed many 

cloudlets per second than the ABC for all three cloudlet length ranges. The 

increased cloudlet length range has not affected the performance of the algorithm. 

  

   

Figure 6. Average waiting time for a fixed range of cloudlet lengths 500-1500, 
500-5500 & 500-11000in homogeneous environment 

   

 

 

 

Figure 7. Average throughput for a fixed range of cloudlet lengths 500-1500, 500-
5500 & 500-11000in homogeneous environment 
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Case 2: Heterogeneous Environment 

 Like the homogeneous environment, the experiments are carried out for the 

heterogeneous environment also. Fig. 8 shows the graphs for the average make span 

in a heterogeneous environment.  Here also the performance of the algorithm is 

checked for dynamic load and increased cloudlet length ranges. When the load is 

increased, the ABC_CBLB algorithm has given a better performance than the ABC. 

The make span of the ABC_CBLB algorithm is very much lesser than the ABC. 

When the cloudlet length range is increased, there is a large variation in the 

performance of the ABC algorithm, whereas the ABC_CBLB algorithm has given a 

stable performance for the increased ranges of cloudlet length. These results 

indicate that the ABC_CBLB algorithm is capable of handling dynamic requests in 

the heterogeneous environment compared to basic ABC algorithm. It has maintained 

the stability for both light loads as well as heavy loads requests. 

The results of average response time and the average waiting time are plotted in 

Fig. 9 and 10, respectively. The performance of the algorithm in a heterogeneous 

environment is same as the homogeneous environment for these parameters. It has 

given better performance for a small range of cloudlet length. But the improvement 

in the performance of the ABC_CBLB algorithm is in small-scale for the increased  

   

Figure 8. Average Make span for a fixed range of cloudlet lengths 500-1500, 500-
5500 & 500-11000 respectively in heterogeneous environment 

 

 

 

 

 

 

 
 

Figure 9. Average response time for a fixed range of cloudlet lengths 500-
1500, 500-5500 & 500-11000 for the heterogeneous environment 
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range of cloudlet lengths.  Fig. 11 graphs plotted for average throughput against the 

number of cloudlets. The graphs clearly indicate the better performance of the 

ABC_CBLB algorithm than the ABC for light and average load requests. But there 

is a drastic variation in the performance of the ABC algorithm for the heavy load 

requests. For the heavy load requests, the ABC_CBLB algorithm has given a stable 

performance. In the heterogeneous environment also, the ABC_CBLB algorithm has 

given a better and stable throughput.  

When the results of the algorithms are observed, for the parameters average make 

span and average throughput, there is a high variation in the performance of the 

ABC for heavy load requests in the heterogeneous environment. The algorithm is 

not able to maintain stability for the heavy load requests. But the ABC_CBLB 

algorithm has given a better and stable performance than the ABC in both 

heterogeneous and homogeneous cloud environments. This shows the suitability of 

the ABC_CBLB algorithm is for both the environments. 

 

4.2. Statistical Analysis of the performance of the ABC_CBLB and ABC algorithm 
 

In the previous section, the graphical representations of the results have shown 

better performance of ABC_CBLB compared to basic ABC. In this section, the 

significance of the obtained result is tested using statistical test. The results obtained 

   

Figure 10. Average waiting time for a fixed range of cloudlet lengths 500-1500, 
500-5500 & 500-11000 for the heterogeneous environment 

 

 

 

Figure 11. Average throughput for a fixed range of cloudlet lengths 500-
1500, 500-5500 & 500-11000 for the heterogeneous environment 
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under the same condition with different methods can be compared by the statistical 

tests like F-test, T-test, and ANOVA. Here, we have considered F-test for the 

analysis. The mean, standard deviation, variance and F-values are calculated for the 

results discussed in the previous section for the parameters make span, average 

response time and average waiting time for the cloudlet length range 500-1500 

(Case 1), 500-5500 (Case 2) and 500-11000 (Case 3). As the value of throughput is 

dependent on the value of make span, the statistical values are not calculated for this 

parameter. The number of samples considered are 15. Hence, the degree of freedom 

is (14,14). The standard tabular values for the degree of freedom (14,14) is 1.94 for 

the significance level α=0.10. The calculated F-values are compared this value. 

The calculated values for the results of the homogeneous environment are shown 

in Table III. In the table, we can observe that the mean values of the ABC_CBLB 

are lesser than the ABC for all three parameters and all cloudlet length ranges. 

When the standard deviation (SD) and variance are considered, the values of the 

ABC are greater than the ABC_CBLB for average make span. The F-values 

obtained for this parameter for cases 1, 2 and 3 are 2.276341, 1.462884, and 

1.386884, respectively. The calculated value for case 1 is higher than this tabular 

value, which shows that both the algorithms have taken different time to process a 

set of jobs. The lesser deviation, lesser variance and lesser mean value of 

ABC_CBLB indicate that the algorithm has taken lesser processing time than the 

ABC algorithm. In cases 2 and 3, the calculated values are lesser than the tabulated 

value, i.e., the hypotheses are accepted. This indicates that both the algorithms have 

given a similar kind of results for these cases. Nonetheless, when the deviation and 

variance are considered, there is a less deviation and variance in the ABC_CBLB. 

When the parameters average response time and average waiting time are 

considered, in all three cases, the SD and the variance are almost similar for both 

the algorithms. In some places, the values of the ABC_CBLB are greater than the 

ABC which is imperceptible. For these parameters, the F-values are also lesser than 

the tabular value. This means that both the algorithms have given the same 

performance for the parameter’s average response time and the average waiting 

time.  

Like homogeneous environment, F-values are calculated for the heterogeneous 

environment and are shown in Table IV. For all three cases in all the parameters, the 

ABC_CBLB has given less mean value than the ABC. Except few values, all the SD 

and variance values of the ABC_CBLB are lesser than the ABC. Whereas, the F-

value of make span in case 1 is greater than the tabular value and other F-values are 

lesser than that. This shows performance difference only in case of case 1 of make 

span. Even though similar performance is obtained for remaining cases, the SD and 

variance are lesser than the ABC. But the difference in values in case of average 

response time and average waiting time are very less. This shows the minor 

variation in the performance of the algorithms for these two parameters.  

When the results of the homogeneous and heterogeneous environments are 

observed, the algorithms have given a similar kind of performance for the 

parameters average response time and average waiting time. This shows that the 

enhancement of the ABC algorithm has not affected the response time of the 

requests. In the algorithm, the movement of VMs among the groups has not made 

requests to wait for a longer time in the queue. But the algorithm has taken lesser 

processing time than the ABC. In case of 2 and 3, the algorithm has shown less 

deviation and variance than the basic algorithm. This shows that it is capable of 

handling dynamic requests more efficiently than the basic ABC algorithm. 
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4.3. Implementation of the proposed algorithm in the AWS cloud platform 

 

The proposed algorithm is implemented in the Eclipse Java Integrated 

development environment (IDE) with the AWS tool kit to test the performance of 

the proposed algorithm in a real cloud environment. Here, we have considered the 

web requests for the experiment. The web application is developed by using a spring 

Table 3.  F-Test Values for Homogeneous Environment (VM MIPS=5000) 

Parameters Cloudlet 

Length 

Algorithm 

Name 

Mean Standard 

deviation 

Variance Calculated 

F value 

Make span 500-1500 ABC 3.927505 1.514663 2.294203 2.276341 

ABC_CBLB 2.128156 1.003916 1.007847 

500-5500 ABC 7.82692 3.416005 11.66909 1.462884 

ABC_CBLB 5.746862 2.824318 7.976772 

500-10500 ABC 13.59826 5.865327 34.40206 1.386884 

ABC_CBLB 10.23895 4.980491 24.80529 

Average  

Response  

Time 

500-1500 ABC 1.258929 0.473683 0.224376 1.005825 

ABC_CBLB 0.983706 0.472309 0.223076 

500-5500 ABC 2.639035 1.196784 1.432291 1.005477 

ABC_CBLB 2.472648 1.200057 1.440137 

500-10500 ABC 4.634702 2.139996 4.579581 1.024444 

ABC_CBLB 4.375323 2.114311 4.470311 

Average  

Waiting  

Time 

500-1500 ABC 1.002686 0.473516 0.224217 1.005121 

ABC_CBLB 0.727179 0.472308 0.223075 

500-5500 ABC 1.166616 1.198149 1.435562 1.006147 

ABC_CBLB 1.820762 1.201826 1.444386 

500-10500 ABC 3.481655 2.149536 4.620504 1.023818 

ABC_CBLB 3.481655 2.124386 4.513014 

Table 4.  F-Test Values for Heterogeneous Environment (VM MIPS=1000-5000) 

Parameters Cloudlet 

Length  

Algorithm 

Name 

Mean Standard 

deviation 

Variance Calculated 

F value 

Average 

Make span 

500-

1500 

ABC 11.97946 5.309866 28.19468 2.294534 

ABC_CBLB 7.075167 3.50539 12.28776 

500-

5500 

ABC 31.39651 15.01459 225.4379 1.433616 

ABC_CBLB 24.01594 12.53999 157.2512 

500-

10500 

ABC 50.87821 25.49239 649.8617 1.13813 

ABC_CBLB 46.55542 23.89541 570.9907 

Average 

Response 

Time 

500-

1500 

ABC 2.512255 1.075122 1.155888 1.290222 

ABC_CBLB 1.99297 0.946511 0.895883 

500-

5500 

ABC 6.352804 2.883833 8.316493 1.050196 

ABC_CBLB 5.865782 2.955326 8.733949 

500-

10500 

ABC 11.23527 5.316811 28.26848 1.088583 

ABC_CBLB 10.8958 5.547305 30.77259 

Average 

Waiting 

Time 

500-

1500 

ABC 1.942774 1.061872 1.127573 1.248909 

ABC_CBLB 1.450029 0.950182 0.902846 

500-

5500 

ABC 4.763419 2.897295 8.394319 1.020376 

ABC_CBLB 4.300205 2.926663 8.565359 

500-

10500 

ABC 8.610822 5.322055 28.32427 1.063806 

ABC_CBLB 8.000174 5.489219 30.13152 
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boot framework. The Elastic Compute Cloud (EC2) instances are considered to run 

the web application to process web requests (REST queries). One more EC2 

instance is considered to run a load balancing application. Initially, a request is sent 

to an instance which runs the load balancing application. That request contains the 

number of requests to be generated. Upon receiving the request, the application 

running in the load balancing server generates the specified number of requests. 

These request lengths are in the range 400-3650. The requests are distributed among 

all the available EC2 instances according to the load balancing algorithm. During 

the experiment, the readings are taken by running the load balancing application for 

the proposed ABC_CBLB and the ABC algorithms separately. The changes in the 

performance are observed by increasing the load of 100 requests every time to check 

the efficiency of the algorithms for heavy load. Initially, a load of 100 requests is 

considered, and the experiment is repeated until 3400 requests. 

Figure 12-15 shows the graphs plotted w.r.t the number of requests for make 

span, average response time, average waiting time and throughput respectively. In 

these graphs, we can observe the better performance of ABC_CBLB algorithm for 

make span and throughput. The ABC_CBLB algorithm has given almost the same 

performance as ABC for average response time and average waiting time. When the 

simulation results and real environment results are compared, similar results are 

obtained from both the environments. The request length range in the AWS 

environment lies between the small and moderate cloudlet length ranges. In the 

simulator environment for that cloudlet length range, the proposed algorithm 

ABC_CBLB has given a better performance than the ABC algorithm (Figure 1 & 4). 

Figure 12. No of requests v/s 
Make span 

    Figure 13. No of requests 
v/s Average Response Time 

Figure 14. No of requests v/s 
Average Waiting Time Figure 15. No of requests 

v/s Throughput 
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In the AWS environment also the ABC_CBLB algorithm has given a better 

performance than the ABC (Figure 12& 15). In the simulation environment, there is 

a very slight improvement in the performance of the ABC_CBLB algorithm with 

respect to average response time and average waiting time. The same kind of 

behavior can be noticed in the AWS environment also. When the overall 

performance of the ABC_CBLB algorithm is considered, it has given better 

performance for smaller range dynamic requests and a slight improvement in the 

performance for the longer-range dynamic requests. However, there is no 

deterioration in the performance of the algorithm compared to ABC. 

 

5. Conclusion 

An enhancement of the Artificial Bee Colony algorithm is done in this work by 

merging the ABC algorithm with Capacity Based Load Balancing algorithm. 

Experiments were carried out to compare the performance of ABC_CBLB algorithm 

with the basic ABC algorithm in the simulator environment as well as the real cloud 

environment (AWS platform). The significance of these results is tested by the 

statistical F-test.  

The performance of the algorithm is tested for both homogeneous and 

heterogeneous environments. The ABC_CBLB and ABC algorithms have shown a 

similar kind of performance in both environments. Initially, the total time taken by 

both the algorithms to process a set of submitted jobs is analyzed for dynamic 

number of cloudlets with small, moderate, and higher range of cloudlet length. 

ABC_CBLB algorithm has taken lesser time than the ABC algorithm to process 

small and moderate range cloudlet length requests, and both the algorithms have 

taken almost the same time to process longer-range cloudlet length requests. The 

variation in the performance of the algorithms is also tested by increasing the 

number of datacenters, the number of VMs and the capacity of VMs. In these cases, 

also the ABC_CBLB algorithm has given a better performance than the ABC. The 

performance of the proposed algorithm has been checked for the parameters make 

span, average waiting time, average response time and throughput. The graphs show 

improvement in the performance of the ABC_CBLB algorithm for these parameters. 

In the statistical test, ABC_CBLB shows improved performance for make span and 

same performance with respect to average response time and average waiting time 

but with improved stability. This indicates that the movement of VMs among the 

UC groups has no impact on the response and waiting time of the cloudlets. But in 

the case of throughput, the ABC_CBLB algorithm has shown increase in processing 

number requests per second compared to ABC algorithm. Hence, ABC_CBLB 

supports dynamic infrastructure, dynamic loads as well as homogenous and 

heterogeneous capabilities of VMs. 
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