
International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1366

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Enhanced Artificial Bee Colony Algorithm for Load Balancing in

Cloud Computing Environment

Kshama S B1 *, Dr. Shobha K R2

1,2Dept. of Electronics and Telecommunication, Ramaiah Institute of Technology
1kshamasb08@gmail.com, 2shobha_shankar@msrit.edu

Abstract

IT companies are moving their business from traditional computing to cloud computing

to leverage the benefits like reduced infrastructure cost, business agility, etc. This change

has led to an increase in the number of cloud-based service users worldwide from 2.4

billion in 2013 to 3.6 billion in 2018. By the end of 2020, this number will be double of

2013 users. The increased number of users, in turn, has increased the number of accesses

done to web servers. Increased number of dynamic requests can create problems like

reduced system performance, system break down, inefficient utilization of resources, etc.;

All these problems can be avoided by distributing the workload among all resources using

the load balancer. In this paper, a bio-inspired load balancing algorithm named Artificial

Bee Colony is enhanced and compared with the basic ABC algorithm. The enhancement

is done by merging ABC with Capacity Based Load Balancing algorithm. The

experiments are carried out in the CloudSim simulator as well as real cloud environment

using Amazon Web Services (AWS) platform. The significance of the results is tested by

using statistical tests. The performance of the proposed algorithm is analyzed for make

span, throughput, response time and the average waiting time.

Keywords: Cloud computing, Bio-inspired, Artificial Bee Colony, Capacity Based

Load Balancing, Virtual Machines, Cloudlets, Utilization Capacity

1. Introduction

Cloud computing is an emerging technology in which users can use the third

party owned or private shared pool of configurable computing resources to store,

process, and manage their data remotely. Cloud computing has many advantages

over traditional computing like fulltime availability, low cost, scalability, flexibility,

automated updates on software, security, mobility, increased collaboration, disaster

recovery, etc. To get these benefits, slowly, the IT companies are moving their

business elements to the cloud. According to the 2018 International Data Group

(IDG) cloud computing study [36], 73% of organizations have a portion of their

computing infrastructure or at least one application already in the cloud, and 17%

have planned to do so within one year. 38% of respondents have shared that the IT

department is hesitant to migrate 100% to the cloud platform. Currently,

organizations are utilizing a mix of cloud delivery models in which the average

environment is 53% non-cloud, 16% Infrastructure-as-a-Service (IaaS), 23%

Software-as-a-Service (SaaS) and 9% Platform-as-a-Service (PaaS). The gradual

increase in cloud adoption has made a massive increase in the number of cloud-

based service users. Due to this increased number of cloud users, a computing

resource may get plenty of user requests at any point of time, resulting in difficulty

of handling resources. If this situation is not handled efficiently, it may also result

in the system break down. The sinking feeling of the server being down or not

accessible may lead to the service provider losing potential customers. The load

balancer plays a vital role in balancing this massive amount of workload effectively.

mailto:kshamasb08@gmail.com
mailto:shobha_shankar@msrit.edu

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1367

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

It provides system firmness, improved performance, and protection against system

failures.

The cloud load balancing is an optimization technique that distributes workload

and computing resources efficiently in a cloud computing environment. In addition

to the proper distribution of workload, the load balancer provides the advantages

like better performance, handle sudden traffic burst, flexibility and elasticity to the

cloud environment.

The load balancer uses an efficient scheduling algorithm to distribute workload

among the resources to provide all the above advantages to the system. The

enterprises can achieve high-performance levels at a potentially lower cost with the

help of Cloud load balancer than traditional on-premises load balancing technology.

The resources in the cloud computing environment may be physical hosts or Virtual

Machines (VMs). The workload is distributed by load balancer either among

physical hosts or virtual machines.

The load balancing algorithms are classified into two kinds based on the system

state: static and dynamic [1] [26]. The static load balancing is the approach in

which load distribution decisions are made at the compile-time aiming to minimize

communication delays. The load distribution decisions are made based on prior

information about the system like memory, processing power, and performance

before the commencement of execution. Hence, these static load balancing

algorithms are easy to implement and have less overhead. But the disadvantage of

these algorithms is that the algorithms are not flexible, i.e., the allocation decisions

cannot be changed during the execution. Once the execution starts, the tasks are

executed using the allocated resources. It is only suitable for the system that has low

variation in the load. Whereas, dynamic load balancing approaches make allocation

decisions based on the current status of the system. In such algorithms, allocation

decisions are made during execution time. Hence, they are challenging to

implement. These algorithms continuously monitor the load, and in the case of

imbalance, the load is redistributed among all available resources. This causes an

extra overhead in dynamic algorithms. Albeit with more overhead, as allocation

decisions can be changed during execution time, these algorithms are more flexible.

Due to this flexibility, dynamic load balancing is better suited for the system that

has more variation in the load. When the cloud computing environment is

considered, there is a high variation in the system load. Hence, dynamic load

balancing is best suitable for the cloud computing environment.

The cloud load balancing algorithms are broadly classified into many categories

[8]. Among these categories, we have considered the natural Phenomena-based load

balancing algorithm. In this paper, a bio-inspired Artificial Bee Colony (ABC)

algorithm is enhanced by merging with the Capacity Based Load Balancing (CBLB)

algorithm. CBLB [23] is our concept, proposed in the category of general load

balancing. Here, we have tried to combine algorithms of two different categories

and utilize the advantages of both algorithms. For performance analysis of these

algorithms, parameters like make span, response time, throughput, and average

waiting time are considered.

 The following sections are organized as follows. Some of the bio-inspired

methods that are applied for load balancing in cloud computing are discussed in

section 2. Section 3 explains the proposed enhanced ABC algorithm. The

implementation details and experimental results are discussed in section 4. The

conclusion of the paper is specified in section 5.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1368

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

2. Related Work

Nature/bio-inspired algorithms are inspired by the behavior of animals or birds to

accomplish a task efficiently. They are mainly used to address highly complex

problems [2]. Some of the popular bio-inspired algorithms are applied in many

cloud computing problems like energy optimization, load balancing, task

scheduling, cost optimization, etc., [28].

The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO), and Artificial Bee Colony (ABC) are the most adapted bio-

inspired algorithms in cloud computing applications. These are adapted in many

cloud computing applications and modified to get better results. GA with Local

Search optimization (GA-LS) [5] is an example of a modified GA used in cloud

computing for monitoring and scheduling of virtual machines. The main objective of

the algorithm is to reduce memory usage and energy consumption during VM

scheduling. This is achieved by using the local search-a heuristic method in the

cross over operation of GA. The New GA (N-GA) [3] is another example of

improved GA, which is used for task scheduling in a cloud computing environment.

The GA is improved by adopting the elitism technique (a small portion of the fittest

candidates is copied to the next generation without change) during initialization,

employing the Heterogeneous Earliest Finish Time (HEFT) method during subtask

initialization, and the method proposed by [34] during mutation operation. The

algorithm has a better performance for make span and execution time, but has some

logical problems like reachability, fairness, and deadlock.

The PSO algorithm is a population-based stochastic optimization technique,

inspired by the movement of organisms in a bird flock or fish school. The improved

PSO [9] is used for task scheduling in a cloud computing environment based on

adaptive weight. It has shown better resource utilization and task completion time.

The ACO algorithm is inspired by the actions of ant colony, initially proposed to

search for an optimal path in a graph. Later, it is diversified to solve many complex

problems. The primary ACO has a lack of rapid adaptability, which increases

execution time and decreases convergence time. This problem is overcome by

MACO [27]. This is achieved by feeding a higher number of tasks to fast processing

VMs and a smaller number of tasks to slow processing VMs.

The ABC algorithm is inspired by the intelligent foraging behavior of honeybee

swarm, proposed for numerical optimization [16]. Later, it has been proposed for

numeric function optimization and constrained optimization problems [4] [17][18]

and proved that the performance of ABC is better than the other population-based

algorithms [19][17]. Further, the performance of ABC is analyzed for multi-

dimensional and multi-model numeric problems and it has shown improved

performance compared to Differential Evaluation (DE) Algorithm, Evolutionary

Algorithm (EA) and PSO [19] for those problems. The ABC is further modified for

constrained optimization problems [20], and applied in different fields to solve

complex problems [21] as well as for load balancing in a cloud computing

environment.

The basic ABC model consists of three types of populations: Employee, Onlooker

and Scout bees. In the algorithm, initially scout bees are sent to initial food sources.

The selected scout bees become the employee bees, and they go to food sources and

determine the nectar amount. This information is shared with onlooker bees through

wangle dance. Based on this information, the onlooker bees calculate the probability

value of the sources. Then onlooker bees are sent to the best probability value food

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1369

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

sources. If the selected food source is empty, the bee is abandoned and it becomes a

scout bee. The abandoned scout bee searches for a new food source randomly. The

process is repeated until the requirements are met.

The major drawback of the basic ABC algorithm is that it can handle only light

loaded nodes efficiently and is not capable of handling newly arrived requests

efficiently, which may lead to system imbalance. This problem is overcome by the

improved ABC [15]. In this algorithm, the iterative process is introduced at each

node in the system to improve efficiency. Similarly, ABC is modified as an

Interaction ABC algorithm (IABC) for better load balancing in the cloud computing

environment [14] by ensuring the system balance for each selection. During the

initial stage of task allocation, VMs are chosen randomly for tasks. If this selection

keeps the system balanced, then the task distribution is done according to the

selection. Else, the iteration formulation is used to search an efficient VM. The

performance of IABC is better than ABC in case of a varying number of cloudlets

with a constant number of VMs, varying number of VMs with a constant number of

cloudlets, and a varying number of both VMs and cloudlets. In all three situations,

the IABC's performance is better for all best, worst and average cases.

During the migration process of load balancing, delay in the execution of the high

priority tasks may result in a response delay. In such cases, the priorities of tasks

need to be considered with load balancing. The Honey Bee Behavior Inspired Load

Balancing (HBB-LB) algorithm [7] is an ABC based algorithm that considers

priorities of migrated tasks during execution. This algorithm has less task migration

compared to dynamic load balancing algorithm and is having better performance

than the Weighted Round Robin, First-in-First-out and dynamic load balancing

algorithms with respect to execution time, make span and degree of imbalance. Even

though the priorities of tasks are considered after migration, there may be a response

delay due to the migration process in HBB-LB. This problem is overcome in the

Modified bee colony algorithm [29] by considering the low priority tasks during the

migration process. It has given a better performance for make span, and the number

of tasks migration is reduced compared to the basic ABC.

The ABC algorithm is enhanced to Improved Efficient ABC (IE-ABC) algorithm

[24] to provide Quality of Service (QOS). The QoS is provided by assigning a

dedicated employee bee to a data center to update the information and by taking

allocation decision based on the load of the VM. This elude the search for the best

fitness value and reduce the completion time, cost and task migration. This

algorithm has given a better performance than GA, ACO and ABC algorithms. One

more enhanced ABC algorithm is the Discrete Artificial Bee Colony (DABC) [35]

algorithm, which uses the discrete operators, namely flip, swap and slide. The steps

are added in all the three stages of the ABC algorithm to reduce make span time and

increase resource utilization. The algorithm has given better performance for make

span and average resource utilization ratio.

The above-discussed algorithms are concerned for independent jobs. But the jobs

received in the cloud may be dependent or independent. Workflow scheduling is one

of the critical issues in cloud computing in which a set of jobs are dependent on

each another. This issue is addressed in the ABC based workflow scheduling [10]

algorithm. The algorithm's main objective is to reduce the waiting time of the user.

It also considers the live migration process. In the algorithm, initially, the ranks of

the jobs are defined by workflow scheduling using jobs' burst time. Then the

minimum make span of all available queues is estimated. The queues with minimum

make span are appended, and the queues with maximum make span are discarded.

After scheduling, the ABC algorithm is used for the live migration process. In the

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1370

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

algorithm, during workflow scheduling, the evaluation of the best-effort queue has

resulted in the reduction of make span and execution cost. The algorithm has also

achieved higher efficiency, better utilization, and less energy consumption. In the

similar way, other nature-inspired algorithms are also used for workflow scheduling

in cloud computing environment [30].

Along with GA, ACO, PSO and ABC algorithms, few other bio-inspired

algorithms are also adapted for load balancing. A Flower Pollination-based

scheduling (FPAS) [13] is used for task scheduling in a cloud computing

environment. The tasks are considered as pollens, and VMs are considered as

flowers. The local pollination and global pollinations are calculated by using fitness

functions to get better solutions. The algorithm is having better performance than

Round Robin, FCFS and GA algorithms for make span.

The Multi-Objective Cuckoo Search Optimization (MOCSO) [25] is one more

bio-inspired algorithm based on Cuckoo Search Optimization. It is used for resource

scheduling in a cloud environment. The Cuckoo Search Optimization is inspired by

the obligate brood parasitism of some cuckoo species. The basic CSO has three

rules. Among these rules, two rules are modified in MOSCO to integrate the

requirements of multi-objective. It has shown better performance than multi-

objective ACO, GA and PSO algorithms. The Bat algorithm is another bio-inspired,

meta-heuristic algorithm for global optimization, which is inspired by the

echolocation behavior of microbats. It is adapted for workflow scheduling in cloud

computing environment [31] to minimize the transmission and computation cost

incurred during execution. The bat algorithm has exhibited a high convergence rate

and balanced load distribution. It has taken less iteration than PSO and Cat Swarm

Optimization (CSO) (the algorithm generated by observing the behavior of cats).

The execution time of this algorithm is lesser than the PSO algorithm.

To get more benefits of bio-inspired algorithms for cloud computing applications,

few researchers have combined two or more bio-inspired algorithms or a bio-

inspired algorithm with other category load balancing algorithms. Heuristic ABC

(HABC) [22] is an algorithm, in which ABC is combined with the heuristic

algorithms like First Come First Serve (FCFS), Largest Job First (LJF) and Shortest

Job First (SJF) and performance is compared with each other. The heuristic LJF

algorithm (ABC_LJF) has shown better performance than ABC and other two

heuristic ABC algorithms. The Modified Particle Swarm Optimization (MPSO) and

Modified Cat Swarm Optimization (MCSO) algorithms are together used for task

allocation and resource allocation & management [32]. The Modified ACO (MACO)

and Modified Bee Colony Optimization (MBCO) algorithms are used together for

load balancing [33], whereas basic ABC and ACO are combined as Hybrid Artificial

Bee and Ant Colony Optimization (H_BAC) [11] algorithm. In all the hybrid

approaches, the algorithms have shown the better performance than the basic

algorithms.

3. Proposed Enhanced Artificial Bee Colony Algorithm (ABC_CBLB)

In the previous section, we have discussed many population-based algorithms that

are applied for load balancing in a cloud computing environment. [6] has proved

that ABC algorithm provides better performance compared to other algorithms. This

algorithm is used for load balancing in the cloud computing environment to allocate

cloudlets to resources. The mapping of ABC parameters with the cloud environment

is as shown in Table I.

We have tried to enhance the performance of the ABC algorithm by merging it

with our previously proposed CBLB algorithm. CBLB is the algorithm that works

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1371

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

based on the utilization of VMs. During allocation of cloudlets, the algorithm

arranges VMs in the increasing order of their utilization in an array. This

arrangement provides the less utilized and unutilized VMs at the first few positions

and the highly utilized VMs at the later positions. This reduces the time required to

search for the best suitable VM during allocation. One more advantage of this

algorithm is that the cloudlets are allocated first to the VMs, which are idle for a

longer time than the others. This improves resource utilization. To take these

advantages in the ABC and to improve the performance of the algorithm, we have

merged it with the CBLB algorithm.

Table I. Mapping of ABC algorithm parameters with a cloud environment

Honey beehive Cloud environment

Honeybee Cloudlet

Food Source VM

Employee bees Cloudlets allocated to VMs at the beginning

Onlooker bees Cloudlets allocated based on prior allocation condition

Scout bee Cloudlet removed from overloaded VM and allocated to another

VM randomly

The CBLB algorithm is used in the ABC for selecting the best-fitted food sources

during allocation. Initially, all the available food sources (VMs) are initialized as

per the CBLB algorithm. In the CBLB, a group size of 11 is considered. Each group

holds the VMs with utilization capacity (UC) range 0-9%, 10-19% … 90-99%,

100% respectively. In the ABC algorithm, during the employee bee's stage, the food

sources are selected randomly. But in the ABC_CBLB, the food sources are selected

from the array. Whenever the food sources are selected by employee bees from the

array, the fitness of the bees are checked and are allocated to them. Once the

allocation is done, based on their UC, the food sources are moved to the respective

groups by the CBLB algorithm.

In the beginning, as all the food sources are available completely, the possibilities

of employee bees to be allocated to the selected food sources are more. But in the

case of onlooker bees, the food sources are selected based on the information

provided by employee bees, and fitness calculated. If no fitness is found that

selection is rejected, and those bees become scout bees. Again, a new food source is

selected, and fitness is checked for allocation. This process is repeated until all bees

fit into any of the food sources. In the onlooker bees’ stage, if the selected food

source is already utilized more, the possibility of a new bee fitting into it is very

less. This increases the rejection rate. Whenever the rejection rate is high, the time

taken for allocation is also more. This affects the overall processing time. Here, we

have tried to reduce the processing time by reducing the rejection rate. This is

accomplished by making the onlooker bees select the less utilized food sources first

and increase the probability of bees to fit into the first few selected sources.

Once the employee bees are allocated, the onlooker bees select the food sources

for processing. During this selection process, the food sources are chosen by

onlooker bees based on the CBLB algorithm, and fitness of the selected bees are

checked. The onlooker bees with fitness values less than or equal to 1 are allocated

to the selected food sources. The rest are rejected, and they become scout bees. The

scout bees select the food sources from the array. The search for food sources is

done from the beginning of the array. Once the selection is made, the fitness of the

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1372

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

bee is checked for the allocation. If no fitness is found, the process is repeated by

scout bees until it fits into a food source.

In the onlooker bees’ stage, the CBLB algorithm returns the less or not utilized

VMs first. Hence, the probability of getting a fitness of less than or equal to 1 for

onlooker bees are more. This reduces the number of scout bees, and most of the bees

are allocated during the onlooker bees’ stage itself. This reduces the time to select a

new food source and to calculate fitness for the allocation. This speed up the

allocation process and reduces the processing time. In the CBLB algorithm, in each

group, the food sources are kept in a list in the order in which they arrive in the

group. The newly arrived food source in the group is kept at the end of the list.

During the selection process, they are selected based on a first-in-first-out basis. It

avoids the selection of the same food source again and again.

Pseudo code of ABC_CBLB algorithm:

Input: Array (0-10), VMs (v0, v1...vm-1), Cloudlets (c0, c1 ... cn-1)

Output: Cloudlets allocated to VMs

1. Initialize the zeroth position of the array with a list of all VMs.

2. Allocate employee bees to VMs in the array and update the fitness values of

employee bees by using fitness function:

Where,

fitnessj=fitness of VMj

cloudlet lengthji= Length of cloudlet allocated to VM

capacity of VM =processing capacity of VMj

The processing capacity of VMj is calculated by using the formula:

Where,

num_of_pesj= Number of processing elements of VMj

MIPSj=Million Instruction Per Second of VMj

BWj=Bandwidth of VMj

3. Move the positions of allocated VMs based on fitness values.

4. The best food sources are selected by the onlooker bees by calculating the

fitness. The fitness is calculated by adding the length of cloudlet to be allocated

to the total number of cloudlet length of VM:

5. Allocate the best selected VMs to the onlookers. Move the positions of

allocated VMs in the array based on their fitness values.

6. Select the food source for abandoned bees from the array. If the allocation is

done, then move the positions of VMs based on fitness values.

7. Repeat step 2 until all the cloudlets are allocated.

The above pseudo-code contains two fitness functions. The first fitness function

is to calculate the fitness after allocation, and another fitness function is to calculate

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1373

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

the fitness before allocation. In the proposed algorithm, M number of VMs, N

number of cloudlets and a single-dimensional array of size 11 are taken as inputs.

As an output the cloudlets are allocated to VMs in an efficient way.

4. Implementation and Experimental Results

The implementations are initially carried out in CloudSim 3.0.3 simulator [12],

which provides a framework for the cloud environment. The algorithms are

implemented using Java. The performance of the ABC_CBLB is compared with the

ABC w.r.t four performance metrics make span, average response time, average

waiting time and throughput. Then the significance of the results is tested by

statistical analysis. Further, the performance of the algorithm is checked on real

time cloud platform, Amazon Web Services (AWS).

4.1. Implementation of ABC_CBLB in CloudSim simulator

In the simulator, the proposed algorithm’s performance is compared with the

basic ABC. The parameter setup for the experiment is given in Table II. To check

the performance of the algorithms in homogeneous and heterogeneous

environments, the experiments are carried out in both the environments. For the

homogeneous environment, the MIPS are kept at 5000 for all the VMs, whereas for

heterogeneous environment, the MIPS of VMs are varied in the range 1000-5000.

Table 2. Parameter setup for ABC_CBLB implementation

Datacentre (DC)

parameters

MIPS 6000

No. of hosts 5

Host RAM (MB) 10240

Host storage (MB) 1000000

Band Width (MBPS) 20000

VM parameters Image size (MB) 10000

Memory (MB) 512

Bandwidth (MBPS) 10000

No. of processing

elements

2

VM monitor Xen

Cloudlet

Parameters

File Size (Bytes) 300

Output Size (Bytes) 300

No. of pes 1

Case 1: Homogeneous Environment

To check the adoptability of our ABC_CBLB algorithm for dynamic cloud

environment, the experiment is repeated for the different number of cloudlets, i.e.,

100,200..., 1500 by keeping the cloudlet length (Number of instructions of a request

to be processed in CPU) range constant. In addition to this, to check the

performance of the algorithm for varying (small/large) length requests, the

experiment is conducted for different cloudlet length ranges, i.e., 500-1500, 500-

5500 and 500-10500. By varying the number of requests and the cloudlet length

range, the performance of the algorithm is observed for all the four performance

parameters. The results of several iterations are averaged and tabulated for better

accuracy. These experiments are carried out using the parameter values indicated in

Table II.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1374

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Figure 1 shows the performance analysis of the algorithm for variable load and

different cloudlet length ranges w.r.t. average make span. In this case, the number of

datacentres, no. of VMs and MIPS of VMs are 10, 60 and 5000 respectively. The

figure contains the graphs plotted for average make span against the number of

cloudlets (requests) for three cloudlet length ranges, respectively. The results have

shown that the ABC_CBLB has taken less time to process the set of submitted jobs

than the ABC for all the cloudlet length ranges. This shows that the proposed

algorithm handles dynamic requests more efficiently than the ABC.

During the performance analysis of the make span parameter, in addition to the

dynamic load, experiment is carried out to test the effect of varied number of

datacentres on the performance of ABC_CBLB. The readings are taken for the

number of datacentres 10, 20 and 30. The number of VMs and MIPS considered are

60 and 5000 respectively. The results for different datacentres are shown in Figure

2. The graphs are plotted for the total processing time of the set of jobs against the

number of cloudlets. The graphs indicated that the proposed algorithm has lesser

make span compared to ABC. This proves that the algorithm supports the scalability

of infrastructure.

Figure 1. Makespan for cloudlet lengths ranges 500-1500, 500-5500 & 500-
11000 respectively for the homogeneous environment

Figure 2. Make span for the number datacentres (DC) 10, 20 and 30 in
homogeneous environment

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1375

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Figure 3. Make span for different
number of VMs

Figure 4. Make span for varied
capability of VMs

In the cloud environment, a huge number of requests is received during peak

hours. In this situation, the number of VMs is increased to handle these requests

efficiently. During non-peak hours, only a few numbers of VMs can handle the

incoming requests efficiently. Consequently, the number of VMs is reduced for non-

peak hours. Hence, to check the performance of the algorithm for varied number of

VMs, the experiment is repeated for different number of VMs, i.e., 10, 20 … 100.

All the VMs’ MIPS are set to 5000. The number of datacentres considered is 10.

Figure 3 shows the plot for the number of VMs against make span. The number of

cloudlets considered here are 100, 800 and 1500. The graphs clearly denote that the

ABC_CBLB has lesser make span than the ABC for fewer VMs. When the number

of VMs is increased, both the algorithms have the same make span for 100

cloudlets. But for the cloudlets 800 and 1500, the make span of the ABC_CBLB is

very much lesser than the ABC. In the graphs, we can clearly notice that the make

span of the ABC_CBLB for 1500 cloudlets is even lesser than the make span of the

ABC for 800 cloudlets. During both peak and non-peak hours, the ABC_CBLB has

given less make span. This indicates that the ABC_CBLB is capable of handling

requests in a scalable infrastructure more efficiently than the ABC.

Figure 5. Average response time for a fixed range of cloudlet lengths 500-
1500, 500-5500 & 500-10500 in homogeneous environment

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1376

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

The performance of the algorithm is checked for different capacity VMs as well.

For this, the readings are taken for the VMs with MIPS 1000, 2000 … 5000. The no.

of VMs and datacentres considered are 60 and 10 respectively. The graphs are

plotted for MIPS against make span in Figure 4. The number of cloudlets for which

the graphs are plotted are 100, 800 and 1500. The graphs indicate that the

ABC_CBLB algorithm gives almost the same make span as that of ABC for the low

capacity VMs, but as the capacity increases, the performance of ABC_CBLB is

better than that of ABC. This clearly shows that the algorithm is suitable for both

low capacity as well as high capacity cloud environments.

The results for average response time, average waiting time and throughput are

shown in Figure 5,6,7, respectively. The readings are taken with the same

parameter’s setup as in Figure 1. The graphs are plotted for average response time,

average waiting time and throughput against the number of requests. The graphs in

Figure 5 and 6 show a similar kind of performance of both the algorithms with

respect to average response time and average waiting time. The ABC_CBLB has

shown improved performance than the ABC for small cloudlet length range. But

there is a minor improvement in the performance for increased cloudlet length

range. When throughput is considered, the ABC_CBLB has processed many

cloudlets per second than the ABC for all three cloudlet length ranges. The

increased cloudlet length range has not affected the performance of the algorithm.

Figure 6. Average waiting time for a fixed range of cloudlet lengths 500-1500,
500-5500 & 500-11000in homogeneous environment

Figure 7. Average throughput for a fixed range of cloudlet lengths 500-1500, 500-
5500 & 500-11000in homogeneous environment

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1377

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Case 2: Heterogeneous Environment

 Like the homogeneous environment, the experiments are carried out for the

heterogeneous environment also. Fig. 8 shows the graphs for the average make span

in a heterogeneous environment. Here also the performance of the algorithm is

checked for dynamic load and increased cloudlet length ranges. When the load is

increased, the ABC_CBLB algorithm has given a better performance than the ABC.

The make span of the ABC_CBLB algorithm is very much lesser than the ABC.

When the cloudlet length range is increased, there is a large variation in the

performance of the ABC algorithm, whereas the ABC_CBLB algorithm has given a

stable performance for the increased ranges of cloudlet length. These results

indicate that the ABC_CBLB algorithm is capable of handling dynamic requests in

the heterogeneous environment compared to basic ABC algorithm. It has maintained

the stability for both light loads as well as heavy loads requests.

The results of average response time and the average waiting time are plotted in

Fig. 9 and 10, respectively. The performance of the algorithm in a heterogeneous

environment is same as the homogeneous environment for these parameters. It has

given better performance for a small range of cloudlet length. But the improvement

in the performance of the ABC_CBLB algorithm is in small-scale for the increased

Figure 8. Average Make span for a fixed range of cloudlet lengths 500-1500, 500-
5500 & 500-11000 respectively in heterogeneous environment

Figure 9. Average response time for a fixed range of cloudlet lengths 500-
1500, 500-5500 & 500-11000 for the heterogeneous environment

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1378

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

range of cloudlet lengths. Fig. 11 graphs plotted for average throughput against the

number of cloudlets. The graphs clearly indicate the better performance of the

ABC_CBLB algorithm than the ABC for light and average load requests. But there

is a drastic variation in the performance of the ABC algorithm for the heavy load

requests. For the heavy load requests, the ABC_CBLB algorithm has given a stable

performance. In the heterogeneous environment also, the ABC_CBLB algorithm has

given a better and stable throughput.

When the results of the algorithms are observed, for the parameters average make

span and average throughput, there is a high variation in the performance of the

ABC for heavy load requests in the heterogeneous environment. The algorithm is

not able to maintain stability for the heavy load requests. But the ABC_CBLB

algorithm has given a better and stable performance than the ABC in both

heterogeneous and homogeneous cloud environments. This shows the suitability of

the ABC_CBLB algorithm is for both the environments.

4.2. Statistical Analysis of the performance of the ABC_CBLB and ABC algorithm

In the previous section, the graphical representations of the results have shown

better performance of ABC_CBLB compared to basic ABC. In this section, the

significance of the obtained result is tested using statistical test. The results obtained

Figure 10. Average waiting time for a fixed range of cloudlet lengths 500-1500,
500-5500 & 500-11000 for the heterogeneous environment

Figure 11. Average throughput for a fixed range of cloudlet lengths 500-
1500, 500-5500 & 500-11000 for the heterogeneous environment

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1379

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

under the same condition with different methods can be compared by the statistical

tests like F-test, T-test, and ANOVA. Here, we have considered F-test for the

analysis. The mean, standard deviation, variance and F-values are calculated for the

results discussed in the previous section for the parameters make span, average

response time and average waiting time for the cloudlet length range 500-1500

(Case 1), 500-5500 (Case 2) and 500-11000 (Case 3). As the value of throughput is

dependent on the value of make span, the statistical values are not calculated for this

parameter. The number of samples considered are 15. Hence, the degree of freedom

is (14,14). The standard tabular values for the degree of freedom (14,14) is 1.94 for

the significance level α=0.10. The calculated F-values are compared this value.

The calculated values for the results of the homogeneous environment are shown

in Table III. In the table, we can observe that the mean values of the ABC_CBLB

are lesser than the ABC for all three parameters and all cloudlet length ranges.

When the standard deviation (SD) and variance are considered, the values of the

ABC are greater than the ABC_CBLB for average make span. The F-values

obtained for this parameter for cases 1, 2 and 3 are 2.276341, 1.462884, and

1.386884, respectively. The calculated value for case 1 is higher than this tabular

value, which shows that both the algorithms have taken different time to process a

set of jobs. The lesser deviation, lesser variance and lesser mean value of

ABC_CBLB indicate that the algorithm has taken lesser processing time than the

ABC algorithm. In cases 2 and 3, the calculated values are lesser than the tabulated

value, i.e., the hypotheses are accepted. This indicates that both the algorithms have

given a similar kind of results for these cases. Nonetheless, when the deviation and

variance are considered, there is a less deviation and variance in the ABC_CBLB.

When the parameters average response time and average waiting time are

considered, in all three cases, the SD and the variance are almost similar for both

the algorithms. In some places, the values of the ABC_CBLB are greater than the

ABC which is imperceptible. For these parameters, the F-values are also lesser than

the tabular value. This means that both the algorithms have given the same

performance for the parameter’s average response time and the average waiting

time.

Like homogeneous environment, F-values are calculated for the heterogeneous

environment and are shown in Table IV. For all three cases in all the parameters, the

ABC_CBLB has given less mean value than the ABC. Except few values, all the SD

and variance values of the ABC_CBLB are lesser than the ABC. Whereas, the F-

value of make span in case 1 is greater than the tabular value and other F-values are

lesser than that. This shows performance difference only in case of case 1 of make

span. Even though similar performance is obtained for remaining cases, the SD and

variance are lesser than the ABC. But the difference in values in case of average

response time and average waiting time are very less. This shows the minor

variation in the performance of the algorithms for these two parameters.

When the results of the homogeneous and heterogeneous environments are

observed, the algorithms have given a similar kind of performance for the

parameters average response time and average waiting time. This shows that the

enhancement of the ABC algorithm has not affected the response time of the

requests. In the algorithm, the movement of VMs among the groups has not made

requests to wait for a longer time in the queue. But the algorithm has taken lesser

processing time than the ABC. In case of 2 and 3, the algorithm has shown less

deviation and variance than the basic algorithm. This shows that it is capable of

handling dynamic requests more efficiently than the basic ABC algorithm.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1380

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

4.3. Implementation of the proposed algorithm in the AWS cloud platform

The proposed algorithm is implemented in the Eclipse Java Integrated

development environment (IDE) with the AWS tool kit to test the performance of

the proposed algorithm in a real cloud environment. Here, we have considered the

web requests for the experiment. The web application is developed by using a spring

Table 3. F-Test Values for Homogeneous Environment (VM MIPS=5000)

Parameters Cloudlet

Length

Algorithm

Name

Mean Standard

deviation

Variance Calculated

F value

Make span 500-1500 ABC 3.927505 1.514663 2.294203 2.276341

ABC_CBLB 2.128156 1.003916 1.007847

500-5500 ABC 7.82692 3.416005 11.66909 1.462884

ABC_CBLB 5.746862 2.824318 7.976772

500-10500 ABC 13.59826 5.865327 34.40206 1.386884

ABC_CBLB 10.23895 4.980491 24.80529

Average

Response

Time

500-1500 ABC 1.258929 0.473683 0.224376 1.005825

ABC_CBLB 0.983706 0.472309 0.223076

500-5500 ABC 2.639035 1.196784 1.432291 1.005477

ABC_CBLB 2.472648 1.200057 1.440137

500-10500 ABC 4.634702 2.139996 4.579581 1.024444

ABC_CBLB 4.375323 2.114311 4.470311

Average

Waiting

Time

500-1500 ABC 1.002686 0.473516 0.224217 1.005121

ABC_CBLB 0.727179 0.472308 0.223075

500-5500 ABC 1.166616 1.198149 1.435562 1.006147

ABC_CBLB 1.820762 1.201826 1.444386

500-10500 ABC 3.481655 2.149536 4.620504 1.023818

ABC_CBLB 3.481655 2.124386 4.513014

Table 4. F-Test Values for Heterogeneous Environment (VM MIPS=1000-5000)

Parameters Cloudlet

Length

Algorithm

Name

Mean Standard

deviation

Variance Calculated

F value

Average

Make span

500-

1500

ABC 11.97946 5.309866 28.19468 2.294534

ABC_CBLB 7.075167 3.50539 12.28776

500-

5500

ABC 31.39651 15.01459 225.4379 1.433616

ABC_CBLB 24.01594 12.53999 157.2512

500-

10500

ABC 50.87821 25.49239 649.8617 1.13813

ABC_CBLB 46.55542 23.89541 570.9907

Average

Response

Time

500-

1500

ABC 2.512255 1.075122 1.155888 1.290222

ABC_CBLB 1.99297 0.946511 0.895883

500-

5500

ABC 6.352804 2.883833 8.316493 1.050196

ABC_CBLB 5.865782 2.955326 8.733949

500-

10500

ABC 11.23527 5.316811 28.26848 1.088583

ABC_CBLB 10.8958 5.547305 30.77259

Average

Waiting

Time

500-

1500

ABC 1.942774 1.061872 1.127573 1.248909

ABC_CBLB 1.450029 0.950182 0.902846

500-

5500

ABC 4.763419 2.897295 8.394319 1.020376

ABC_CBLB 4.300205 2.926663 8.565359

500-

10500

ABC 8.610822 5.322055 28.32427 1.063806

ABC_CBLB 8.000174 5.489219 30.13152

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1381

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

boot framework. The Elastic Compute Cloud (EC2) instances are considered to run

the web application to process web requests (REST queries). One more EC2

instance is considered to run a load balancing application. Initially, a request is sent

to an instance which runs the load balancing application. That request contains the

number of requests to be generated. Upon receiving the request, the application

running in the load balancing server generates the specified number of requests.

These request lengths are in the range 400-3650. The requests are distributed among

all the available EC2 instances according to the load balancing algorithm. During

the experiment, the readings are taken by running the load balancing application for

the proposed ABC_CBLB and the ABC algorithms separately. The changes in the

performance are observed by increasing the load of 100 requests every time to check

the efficiency of the algorithms for heavy load. Initially, a load of 100 requests is

considered, and the experiment is repeated until 3400 requests.

Figure 12-15 shows the graphs plotted w.r.t the number of requests for make

span, average response time, average waiting time and throughput respectively. In

these graphs, we can observe the better performance of ABC_CBLB algorithm for

make span and throughput. The ABC_CBLB algorithm has given almost the same

performance as ABC for average response time and average waiting time. When the

simulation results and real environment results are compared, similar results are

obtained from both the environments. The request length range in the AWS

environment lies between the small and moderate cloudlet length ranges. In the

simulator environment for that cloudlet length range, the proposed algorithm

ABC_CBLB has given a better performance than the ABC algorithm (Figure 1 & 4).

Figure 12. No of requests v/s
Make span

 Figure 13. No of requests
v/s Average Response Time

Figure 14. No of requests v/s
Average Waiting Time Figure 15. No of requests

v/s Throughput

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1382

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

In the AWS environment also the ABC_CBLB algorithm has given a better

performance than the ABC (Figure 12& 15). In the simulation environment, there is

a very slight improvement in the performance of the ABC_CBLB algorithm with

respect to average response time and average waiting time. The same kind of

behavior can be noticed in the AWS environment also. When the overall

performance of the ABC_CBLB algorithm is considered, it has given better

performance for smaller range dynamic requests and a slight improvement in the

performance for the longer-range dynamic requests. However, there is no

deterioration in the performance of the algorithm compared to ABC.

5. Conclusion

An enhancement of the Artificial Bee Colony algorithm is done in this work by

merging the ABC algorithm with Capacity Based Load Balancing algorithm.

Experiments were carried out to compare the performance of ABC_CBLB algorithm

with the basic ABC algorithm in the simulator environment as well as the real cloud

environment (AWS platform). The significance of these results is tested by the

statistical F-test.

The performance of the algorithm is tested for both homogeneous and

heterogeneous environments. The ABC_CBLB and ABC algorithms have shown a

similar kind of performance in both environments. Initially, the total time taken by

both the algorithms to process a set of submitted jobs is analyzed for dynamic

number of cloudlets with small, moderate, and higher range of cloudlet length.

ABC_CBLB algorithm has taken lesser time than the ABC algorithm to process

small and moderate range cloudlet length requests, and both the algorithms have

taken almost the same time to process longer-range cloudlet length requests. The

variation in the performance of the algorithms is also tested by increasing the

number of datacenters, the number of VMs and the capacity of VMs. In these cases,

also the ABC_CBLB algorithm has given a better performance than the ABC. The

performance of the proposed algorithm has been checked for the parameters make

span, average waiting time, average response time and throughput. The graphs show

improvement in the performance of the ABC_CBLB algorithm for these parameters.

In the statistical test, ABC_CBLB shows improved performance for make span and

same performance with respect to average response time and average waiting time

but with improved stability. This indicates that the movement of VMs among the

UC groups has no impact on the response and waiting time of the cloudlets. But in

the case of throughput, the ABC_CBLB algorithm has shown increase in processing

number requests per second compared to ABC algorithm. Hence, ABC_CBLB

supports dynamic infrastructure, dynamic loads as well as homogenous and

heterogeneous capabilities of VMs.

References

[1]. Alireza Sadeghi Milani, Nima Jafari Navimipour, “Load balancing mechanisms and techniques in the

cloud environments: Systematic literature review and future trends”, Journal of Network and Computer

Applications, vol. 71, pp. 86–98 (2016).

[2]. Arpan Kumar Kar, “Bio-Inspired Computing – A Review of Algorithms and Scope of Applications”,

Expert Systems with Application, DOI: 10.1016/j.eswa.2016.04.018 (2016).

[3]. Bahman Keshanchi, Alireza Souri, Nima Jafari Navimipour, “An improved genetic algorithm for task

scheduling in the cloud environments using the priority queues: formal verification, simulation, and

statistical testing”, The Journal of Systems & Software, (2016).

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1383

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

[4]. Basturk, B. and Karaboga, D. “An artificial bee colony (ABC) algorithm for numeric function

optimization”, Proceeding of the IEEE Swarm Intelligence Symposium, Indianapolis, USA, pp.12–14,

IEEE, (2016)

[5]. Basu S., Kannayaram G., Ramasubbareddy S., Venkatasubbaiah C., “Improved Genetic Algorithm for

Monitoring of Virtual Machines in Cloud Environment”, Smart Intelligent Computing and Application,

Smart Innovation, Systems and Technologies, vol 105. pp.319-326, Springer, Singapore (2019).

[6]. Dervis Karaboga, BahriyeAkay, “A comparative study of Artificial Bee Colony algorithm”, Journal

Applied Mathematics and Computation Volume 214 Issue 1, August, pp. 108-132, (2009).

[7]. Dhinesh Babu, P. Venkata Krishna, ‘Honey bee behavior inspired load balancing of tasks in cloud

computing environments’, Applied Soft Computing, Vol. 13, Issue 5, pp. 2292-2303, (2013).

[8]. Einollah Jafarnejad Ghomi, Amir Masoud Rahmani and Nooruldeen Nasih Qader, “Load-balancing

Algorithms in Cloud Computing: A Survey”, Journal of Network and Computer Applications, vol. 88

Issue C, pp. 50-71, (2017).

[9]. Fei Luo, Ye Yuan, Weichao Ding, Haifeng Lu,‘An Improved Particle Swarm Optimization Algorithm

Based on Adaptive Weight for Task Scheduling in Cloud Computing’, CSAE '18, October 22–24, 2018,

Hohhot, China, (2018)

[10]. Gagandeep Kaur, Manoj Agnihotri, ‘Artificial Bee Colony Based Live Migration Technique for Cloud

Data Centers’, Proceedings of the International Conference on Intelligent Sustainable Systems (ICISS

2017).

[11]. Gamal M., Rizk R., Mahdi H., Elhady B., ‘Bio-inspired Load Balancing Algorithm in Cloud

Computing’, Proceedings of the International Conference on Advanced Intelligent Systems and

Informatics 2017. Advances in Intelligent Systems and Computing, vol 639. pp. 579-589, Springer,

Cham, (2018).

[12]. Goyal, T., Singh, A., Agrawal, A., ‘Cloudsim: simulator for cloud computing infrastructure and

modeling’, Procedia Eng. 38, 3566–3572, (2012).

[13]. Jaspinder Kaur, Brahmaleen Kaur Sidhu, ‘New Flower Pollination based Task Scheduling Algorithm in

Cloud Environment’, 4th IEEE International Conference on Signal Processing, Computing and Control,

Sep 21-23, 2017, Solan, India, (2017).

[14]. Jeng-Shyang Pan, Haibin Wang, Hongnan Zhao, and Linlin Tang, “Interaction Artificial Bee Colony

Based Load Balance Method in Cloud Computing”, Genetic and Evolutionary Computing, Advances in

Intelligent Systems and Computing Vol. 329, Springer, (2015).

[15]. Jing Yao, Ju-hou He (2012), ‘Load balancing strategy of cloud computing based on artificial bee

algorithm’, 8th International Conference on Computing Technology and Information Management

(NCM and ICNIT), pp. 185-189, (2012).

[16]. Karaboga, Dervis (2005), 'An Idea Based on Honey Bee Swarm for Numerical Optimization', Technical

Report-TR06, October 2005, Erciyes University, (2005).

[17]. Karaboga, D. and Basturk, B. (2007) 'A powerful and efficient algorithm for numeric function

optimization: artificial bee colony (ABC) algorithm', Journal of Global Optimization, Vol. 39, pp.459–

471, (2007).

[18]. Karaboga, D. and Basturk, B. (2007) 'Artificial bee colony (ABC) optimization algorithm for solving

constrained optimization problems', in lecture notes in ArtificialIntelligence, Vol. 4529, pp.789–798,

Springer-Verlag, Berlin, (2007).

[19]. Karaboga, D. and Basturk, B. (2008) 'On the performance of artificial bee colony (ABC) algorithm',

Applied SoftComputing, Vol. 8, pp.687–697, (2008).

[20]. Karaboga, D. and Akay, B. (2011) 'A modified artificial bee colony (ABC) algorithm for constrained

optimization problems', Applied Soft Computing, Vol. 11, pp.3021–3031, (2011).

[21]. Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014) ‘A comprehensive survey: artificial

bee colony (ABC)algorithm and applications’, Artificial Intelligence Review, Vol. 42, No. 1, pp.21–57,

(2014).

[22]. Kimpan, W., Kruekaew, B. (2016) ‘Heuristic task scheduling with artificial bee colony algorithm for

virtual machines’,8th International Conference on Soft Computing and Intelligent Systems and 2016

17th International Symposium on Advanced Intelligent Systems, pp. 281-286, (2016)

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1384

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

[23]. Kshama S.B., Shobha K.R. (2018) ‘A Novel Load Balancing Algorithm Based on the Capacity of the

Virtual Machines’, Advances in Computing and Data Sciences. ICACDS 2018. Communications in

Computer and Information Science, vol 905, pp. 185-195, Springer, Singapore, (2018).

[24]. M. Roshni Thanka, P. Uma Maheswari, E. Bijolin Edwin (2017), “An improved efficient: Artificial Bee

Colony algorithm for security and QoS aware scheduling in cloud computing environment”, Cluster

Computing, Springer, (2017).

[25]. Madni, S.H.H., Latiff, M.S.A., Ali, J. et al. (2018), ’Multi-Objective-Oriented Cuckoo Search

Optimization-Based Resource Scheduling Algorithm for Clouds’, Arab J Sci Eng, pp 1-18, (2018).

[26]. Mishra, S. K., et al., (2018) ‘Load balancing in cloud computing: A big picture’, Journal of King Saud

University - Computer and Information Sciences, Vol. X, No. Y4, pp.000–000, (2018).

[27]. Narendrababu Reddy G., Phani Kumar S., ‘Modified Ant Colony Optimization Algorithm for Task

Scheduling in Cloud Computing Systems’, Smart Intelligent Computing and Applications, Smart

Innovation, Systems and Technologies, vol 104. pp 357-365 Springer, Singapore, (2019).

[28]. Nayak J., Naik B., Jena A.K., Barik R.K., Das H., “Nature Inspired Optimizations in Cloud Computing:

Applications and Challenges”, Cloud Computing for Optimization: Foundations, Applications, and

Challenges, Studies in Big Data, vol 39. Springer, Cham, (2018)

[29]. Ramesh Babu K.R., Samuel P, “Enhanced Bee Colony Algorithm for Efficient Load Balancing and

Scheduling in Cloud”, Innovations in Bio-Inspired Computing and Applications, Advances in Intelligent

Systems and Computing, vol 424. Springer, Cham, (2016).

[30]. Richa Jain, Neelam Sharma, Pankaj Jain, ‘A Systematic Analysis of Nature Inspired Workflow

Scheduling Algorithm in Heterogeneous Cloud Environment’, 2017 International Conference on

Intelligent Communication and Computational Techniques (ICCT) Manipal University Jaipur, (2017).

[31]. Sagnika S., Bilgaiyan S., Mishra B.S.P., ‘Workflow Scheduling in Cloud Computing Environment

Using Bat Algorithm’, Proceedings of First International Conference on Smart System, Innovations and

Computing. Smart Innovation, Systems and Technologies, Vol.79. pp 149-163 Springer, Singapore,

(2018).

[32]. Shridhar Domanal, Ram Mohana Reddy Guddeti, and Rajkumar Buyya (2017), ’A Hybrid Bio-Inspired

Algorithm for Scheduling and Resource Management in Cloud Environment’, IEEE Transactions on

Services Computing, pp. 1-14, (2017).

[33]. Tripathi A., Shukla S., Arora D, ‘A Hybrid Optimization Approach for Load Balancing in Cloud

Computing’, Advances in Computer and Computational Sciences, Advances in Intelligent Systems and

Computing, vol 554, pp 197-206, Springer, Singapore, (2018).

[34]. Xu, Y., Li K., Hu J, Li K., 'A genetic algorithm for task scheduling on heterogeneous computing

systems using multiple priority queues', Information Sciences, 270(0): pp. 255- 287, (2014).

[35]. Neha Thakkar, Rajender Nath, “Discrete Artificial Bee Colony Algorithm for Load Balancing in Cloud

Computing Environment”, International Journal of P2P Network Trends and Technology (IJPTT), vol. 8

Issue-6, (2018)

[36]. Research Report (14 August 2018). https://www.idg.com/tools-for-marketers/2018-cloud-

computing-survey/

https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1366-1384

 1385

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Authors

Mrs. Kshama S B, completed her M Tech in Computer Science

and Engineering in the year 2013 from Bangalore Institute of

Technology (BIT), Bangalore, under Visvesvaraya Technological

University (VTU). She is currently pursuing her Ph.D. under VTU, in

the department of TCE, RIT, Bengaluru. Her research interest is

cloud computing, software engineering. She has presented her

research papers in several international conferences and Journals.

Dr. K. R. Shobha, received her M.E. degree in Digital

Communication Engg from Bengaluru University, Karnataka, India,

and Ph.D. from Visvesvaraya Technological University. She is

currently working as an Associate Professor in the Department of

Telecommunication Engineering, Ramaiah Institute of Technology,

Bengaluru. Her research areas include Mobile Adhoc Networks, IoT

and Cloud Computing. She has more than 25 Papers publications to

her credit. She is a Senior IEEE Member serving as execom member

of WIE and IEEE Communication Society, Bengaluru Section. She is

also an active member IETE, ISoc and IAENG

