
International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1250
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

RELIABLE FAULT TOLERANT MULTI-CORE SYSTEM: A SURVEY

Usha Jadhav1, Dr. P. Malathi2

1Assistant Professsor, Dept. of Electronics and Telecommunication Engg. DYPCOE, Akurdi

Pune, India
2Professor, Dept. of Electronics and Telecommunication Engg. DYPCOE, Akurdi Pune, India

Abstract

ARM Processor is a core used in 100’s of billion of real-time Embedded System which contain

Electronics with less area overhead, low power consumption, reduced cost and portable with high

computation. To carry the user experience in the home, and office over the car such embedded

solution based on multi-core platforms are used in diverse application domain like aerospace,

industrial automotive, Smartphone, Tablets, Medical, Audio Video player to provide fail safe

operation with consumer comfortability. This paper focuses on survey of various faults tolerant

techniques for ensuring low overhead to protect processor and program execution flow which

improves the reliability of the system. Hardware implemented fault tolerant techniques inevitably add

resource overhead while Software implemented fault tolerant technique add runtime overhead. The

future scope of this paper provides a trade-off between resource overhead and runtime overhead to

improve fault coverage.

Keywords: real-time Embedded System, Fault, Fault tolerant techniques, multi core

I. INTRODUCTION

Intel have turned to multi core processor based on 10nm process node [2] which covers strong

commercial demands in market for high performance computing and safety critical application using

Graphics Processing Units [1]. Reliability is a major concern for such real time high performance

computing devices due to the use of submicron technologies. It has increased the sensitivity to

radiation induced transient faults [3]. These transient on chip faults [6] arises from various sources

like high energy particle impact, radiation intensive space environment, total ionizing dose

accumulation and aging of chip die. This leads to generation of Single Event Upsets (SEUs).

In order to satisfy real time constraints with safety critical system, one approach is to address

hardware faults and other is to tackle with software faults. Hardware faults [7] can occur due to

smaller size of functional units, aggressive lowering of operating voltages, SEUs caused by radiation

intensive operating environment. Many techniques used to achieve fault tolerance in hardware by

replicating or adding hardware units like by adding redundancy in sensors and in processors used in

system and applies voting algorithms. But it incurs increase in area, power consumption, performance

degradation and high design and manufacturing cost. Software faults can occur due to occasional

deadline misses while communicating with register and memory. Techniques implemented in

software are able to increase the reliability by insertion of extra instructions using Dual Modular

Redundancy (DMR) and Triple Modular Redundancy (TMR) [4] in the program code to detect errors

in both data flow and control flow. This leads to increase in runtime overhead.

 Organization of the Paper: The rest of this paper is organized as follows. Section II shows Multi-core

System background with necessary system requirements for fail safe operation to achieve higher

reliability. In Section III, the Fault Tolerant techniques in multi-core system are discussed. In Section

IV, we present Reliability Estimation of Fault tolerance Techniques in Software. Comparative

assessments of Fault Tolerant Techniques in Software are discussed in Section V. Finally, we

conclude the paper in Section VI by providing conclusion and future scope of research.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1251
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

II. MULTI CORE SYSTEM BACKGROUND WITH IT’S REQUIREMENT

Multicore systems are used with diverse range of applications like aerospace, Automotive, Network,

Digital Signal processing (DSP), High performance Computing (HPC) and Graphics processing Unit

(GPU). Increasing hardware and software complexity of such applications have challenges in

reliability with increasing soft errors through reading data either from main memory or register file.

Main memory is accessible for the content of register in high level programming. But the register file

is critical resource for knowing the chance of error in register to propagate to output and it is the

parameter used to measure the reliability of the system. Thus the use of GPU over traditional CPU

supports for active threads to fetch the input data [1]. GPU register file is the fastest type of memory

on GPU and Selective fault tolerant techniques using Single error correction double error detection

(SECDED)[1] helps in getting probability for multi bit upset in register file which is higher than in

cache and main memory.

Major challenge in multi core system is to conduct a large number of fault injection campaigns in

reasonable time, to provide detailed observation in presence of faults and identify relationship

between application profiling and specific platforms parameters in large data set [2]. Thus the use of

Virtual platform frameworks using machine learning approach solves the problem. Soft errors may

lead the processor to incorrectly execute an application or enter in the loop and never finish the

execution [3]. The Software Implemented Hardware Fault Tolerant Techniques (SIHFT) is applied to

assembly code executed by ARM processors. Online monitoring and checking of software control

flow to detect run time deviations from control flow graph is critical in resource constrained

embedded system’s reliability [4]. Worst Case Execution Time (WCET)-Aware Control Flow

Checking based on Super Nodes (WACFC-SN) [4] which makes program partially resilient to control

flow errors while keeping the program WCET below a given upper bound.

Parallel applications using OpenMP and Pthreads running on top of Linux operating system for

multicore need to be protected against soft errors for high reliability compared to sequential bare

metal ones[5]. In such case operating system itself is a source of error. Traditional fault tolerance

methods like Triple Modular Redundancy (TMR) and Conditional Dual Modular Redundancy

(CDMR) protects only the application and do not protects Linux OS. The Fault tolerance method to

the operating system to evaluate the time overheads is very critical task in multicore platform.

Today with the use of smart phones while driving a car can manage for fail safe operation with all

risks in maximum reaction time of up to 500ms. Multi core support works with Linux, Mac OS and

Virtual Machines. To design a highly reliable multi core system:

- Synchronization protocols and data flow dependencies [8] during parallelism and multi-threading

need to be considered.

- Concurrent access to shared data must be considered explicitly when addressing system safety [8]

- Multi core soft error evaluation by using realistic Linux kernel, instruction set architectures (ISAs)

and standard parallelization libraries, considering several benchmarks [2]

-Hardware-software co-design to meet hard real time constraints [7]

-Beam radiation experiment and fault injection campaigns at hardware and software level [1]

III. FAULT TOLERANT TECHNIQUES IN MULTI-CORE SYSTEM

The increasing hardware and software complexity of multi core system requirement gives two

different approaches of fault detection and mitigation as fault tolerant techniques at hardware and

software level. Hardware based fault tolerant techniques have direct access to hardware resources by

replicating or adding hardware module. While Software based fault tolerant techniques protects the

processor against soft errors by adding instruction redundancy in the register file and improves the

reliability. N-Version Programming is used by adding the N-modular redundancy scheme to provide

tolerance against Hardware faults while Recovery Block (RB) scheme is used to provide tolerance

against software faults which minimizes the total system cost by providing reliability of the real-time

optimized individual module. Hardware based fault tolerant techniques are not applicable to

commercial-off-the-shelf (COTS) processor but Software based fault tolerant techniques are

applicable to COTS as they are reconfigurable. Hardware based fault tolerant techniques increases

area overhead, Power consumption, and performance degradation with high cost. Whereas Software

implemented fault tolerant technique requires more processing time and increases energy

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1252
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

consumption since more instructions are executed. In software implemented fault tolerant technique

increases reliability compared to hardware because of program uses more memory addresses instead

of registers.

There are three classes of SW implemented fault tolerant techniques: Naïve Duplication, Selective

Duplication and Algorithmic based Fault Tolerance (ABFT) [1]. In Naive duplication whole program

code is duplicated while in selective duplication method program is divided into basic blocks and only

selected blocks are duplicated which results in performance but reduced reliability. ABFT is limited to

specific group of applications like High Performance Computing.

Reliability of Multi core system: Transient software faults in multicore system are detected and

mitigated either by using fault masking or fault removal. Fault masking sends no effect on program

output or does not use corrupted data. While fault removal uses forward error and backward error

recovery algorithms based on state condition and improve the reliability of the system. There are two

ways to evaluate the reliability of a system. First approach is using beam radiation experiment which

provides more realistic at the cost of limited visibility while the second approach is using fault

injection campaigns which provides more visibility with realistic result. Fault Injection campaign at

RTL level is used for simple circuits while software level is used for system.

IV. RELIABILITY ESTIMATION OF FAULT TOLERANCE TECHNIQUES IN

SOFTWARE

Software only fault tolerant techniques are more effective and efficient as they have been used at

different abstraction level from high level C++ code to low level assembly code. Also it provides

flexibility in program execution environment for real time application where legacy binary code and

redundant code can co-exist depending on the required level of reliability imposed by instruction-,

thread-, process- and virtual machine. In safety critical systems such as automotive, aerospace and

industrial control, it is important to guarantee a system’s real time constraints which provide strong

demand for reliability and fault tolerance. The need for reliability and fault tolerance arises to protect

the processors against soft errors. It may affect the data flow in register or memory and program flow

execution. Thus data flow in register and memory is protected through Data flow techniques and

Execution flow is controlled through control flow technique. The comparison between Data flow and

control flow techniques is given in Table I.

There are various data flow and control flow fault tolerant techniques used to provide reliability in an

Embedded system like Error Detection by Duplicated Instructions (EDDI) [3] called Variables (VAR)

technique as data flow technique and Control Flow Checking (CFC) technique [4],

[7], Software Implemented Hardware Fault Tolerant (SIHFT) [3] technique, Triple Modular

Redundancy (TMR) technique, Conditional Double Modular Redundancy (CDMR) [5] technique,

Software-only Error Detection Technique using Assertions (SETA)[3], Selective Fault Tolerant

technique and Machine learning techniques as control flow technique to detect soft errors.

TABLE I

COMPARISON BETWEEN DATA FLOW AND CONTROL FLOW TECHNIQUE

Data flow technique Control flow technique

Data flow is exercised where data is passed

through program and what transformations are

carried out in a system on data.

Control flow is exercised about the workflow of

the task to be executed in a particular order.

This technique is represented using data flow

graph.

This technique is represented using control flow

graph.

Protects the data flow register and memory. Ensures the correctness of execution flow.

Data flow technique uses Registers and are

replicated.

Control flow technique divides the code in to

basic blocks.

Checkers are inserted A unique signature is assigned to each basic

block.

All these techniques aim to achieve a trade-off between performance and/or resource overheads in

terms of runtime overhead/Execution time overhead and fault detection coverage and memory

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1253
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

footprint. The rum time overhead is measured using Worst Case Execution Time (WCET),

Architectural Vulnerability Factor (AVF) and Mean Work to Failure (MWTF) metric.

Worst Case Execution Time is the maximum length of the time taken by the computational unit to

execute a task, thread or process on specific hardware platform. WCET addresses system level

multitasking issues and real time mixed criticality schedulability analysis. In multi core platform,

other tasks in the system will impact the WCET of a given task if they share cache, memory lines and

other hardware features.

Architectural Vulnerability Factor allows evaluating the probability of a low level corruption to

propagate to the output. It is a measure of micro architectural structure’s susceptibility to transient

faults.

The MWTF is defined by equation (1) [3].

 Amount of work completed

MWTF = --- (1)

 Number of errors encountered

MWTF = (raw error rate X AVF X execution time)-1

Faults can originate from hardware or software. Majority of software faults are transient in nature.

Error detection is possible using various fault tolerant techniques. A fault can be masked or cause an

error. If error is generated, it can be detected or undetected. Fault Coverage is calculated by the

equation (2) [3].

 Edetected + Fmasked Eundetected

Fcoverage = ---------------------- = 1 - ------------ (2)

 Ftotal Ftotal

Where: Fcoverage is the Fault Coverage.

Edetected is the number of errors detected.

Fmasked is the number of correct executions.

Eundetected is the number of undetected errors.

Ftotal is the number of executions.

In the data flow technique, if the aim is to detect the errors, registers are duplicated and when

correction is included, registers are triplicate. Thus, error correction presents higher overheads than

error detection. Various data flow techniques uses more than one checking rule as checkers. If more

checkers are included in one technique, more reliability is achieved.

Algorithm 1 shows the steps for software-implemented fault tolerant Data flow technique.

Algorithm 1

Software-implemented fault tolerant Data flow technique

1. Assign every register used by the program a spare register as replica.

2. Duplicate the instructions which perform write operations on registers or memory excluding

branch instruction.

3. Replicate all instructions that operate on the replicated data.

4. Perform consistency check using checkers between the original register data and their replicas

data using compare instruction.

5. If mismatch is detected the program branches to an error detection subroutine which flags an

error to the host.

Control flow checking uses a signature to detect control flow errors in processors or program. There

are basically two types control flow techniques as Hardware-only control flow technique and

Software-only control flow techniques. Hardware-only control flow technique uses extra signature

and makes use of the watchdog helps in the error detection with extra power as watchdog do not

access the cache memories available on chip to processor. This technique concerned with error

detection rate, but not about the overheads they cause.

Control flow techniques are designed to protect the program flow against incorrect jumps using

signature. The signature is concerned with a global register at the beginning of basic block. A basic

block consists of instructions executed in sequence. Verify the signature register contains the expected

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1254
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

value or not by inserting checkers in the code. If it does not, it means program flow was incorrectly

followed and an error is reported.

Algorithm 2 shows the steps for software-implemented fault tolerant control flow technique.

Algorithm 2

Software-implemented fault tolerant Control flow technique

1. Divide the code into Basic Blocks (BB).

2. Assign entry and exit signature at the beginning and end of each Basic block.

3. Perform some transformation or insert additional checking code as Instrumentation code at

the beginning and end of each basic block.

4. At runtime, as control flow passes through basic blocks, the instrumentation code with bitwise

AND/XOR operation computes the signature.

5. Compare run time signature with the pre-computed expected signature.

6. If mismatch is detected, the error handler is invoked.

In order to automatically apply the software implemented technique to various case study application,

various papers used a tool like HPTC [1], OVPsim-FIM [2], [3], [5] gem5-FIM [2] and QEMU etc. as

fault injection frameworks. Methodology flow for Software-implemented Fault tolerance technique’s

flow is shown in Fig. 1.

Fig. 1 Software-implemented Fault tolerance technique’s flow

In the first step, the source code for the target architecture is compiled using front end in the absence

of fault and generates Intermediate Representation (IR). Apply some transformations based on

redundancy requirements and generate hardened IR using appropriate fault tolerance technique.

Hardened IR is given to the compiler back end to generate object code. Generate a fault list based on

fault injection campaign. Simulate the targeted application using OVPsim or QEMU and inject faults

at run time based on fault list. This evaluates fault tolerant techniques’ ability to protect the processor

against soft error with low overhead and program execution flow which improves reliability of the

system.

Source Code

c/c++

Compiler Front

end

I

R
Transformations

I

R
Compiler Back

end

Object Code

OVPsim/ QEMU

Fault Injection

Report

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1255
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

V. COMPARATIVE ASSESSMENT OF FAULT TOLERANCE TECHNIQUES IN

SOFTWARE

Various authors experienced the different types of faults as listed in table II-column 3 with case

studies like visual odometry which is used to determine vehicle position and orientation by analyzing

series of images using machine learning algorithm, use of selective fault tolerance technique to detect

faults in GPU register file at both Hardware and software level and tested ARM processor using

radiation and fault injection to estimate the reliability using data flow and control flow techniques.

Omission faults are originated when action not performed by human but when it should be. Silent

Data Corruption (SDC) [1] is when the program output is incorrect. This SDC is harmful as it is

undetected. Detected Unrecoverable Error (DUE) [1] occurs when the application crashes or the

system hangs. DUE gives performance degradation and data loss. Vanished (V) fault as no fault traces

are left means faults are masked at processor level and do not propagate to memory with application

produces correct output and internal memory state’s is correct. While Output Not Affected (ONA) [2]

in which faults propagate to application memory state’s and final result of computation will be within

the acceptable error margin and the application ends within the number of iterations executed in

golden run. Output Mismatch (OMM) [2] fault in which the application aborts without any error

indication and resulting memory is affected. An Unexpected Termination (UT) [2] faults indicate the

error with application terminates abruptly. Hang in which application does not finish needs

preemptive scheduling. UNACE [5] means Unnecessary for Architecturally Correct Execution in

which the program completes its execution and produces an expected output. Exceptions are not

applicable for bare metal applications because of the absence of an operating system to catch them.

Some of the simulators see the exceptions as segmentation faults, halting the simulation and reporting

the problem.

In order to find out the soft error assessment of various fault tolerant techniques, various researchers

used different benchmarks like NASA Advanced Supercomputing (NAS) parallel benchmark to

render the performance evaluation including various applications implemented in OpenMP and MPI.

OpenMP stands for Open Multiprocessing and MPI stands for Message Passing Interface. OpenMP

uses shared memory parallelism while MPI is a way to program on distributed memory devices.

OpenMP relies on loop parallelization using for-while loop and it is a thread based parallelism. While

MPI Application Programming Interfaces (API)’s are both process and thread based approach.

OpenMP and MPI provides Linux OS and parallelization libraries impacts various applications like

bit count, matrix multiplication, Quicksort, vector sum given in table II according to the types of

faults occur. Table II shows the summary of various fault tolerant techniques with types of faults,

Benchmarks used by researchers, performance parameter measured and platform used for fault

detection.

The various simulation platforms are used to reduce human analysis time required to understand the

effect of fault injection as OVPsim-FIM, gem5-FIM and analysis tool such as pandas dataframe with

different libraries to assess soft error realibility.

TABLE II

COMPARATIVE ASSESSMENT OF VARIOUS FAULT TOLERANT TECHNIQUES

Re

f

No

.

Fault Tolerant

Techniques

Types of

Faults

Benchmark Performance

Parameter

Platform Used

[1] Beam Radiation

Experiment(Hardwar

e FTT)

SDC, DUE HOTSPOT,NW,

QuickSort

FIT Fault Injection

Compaign:

SASSIFI, HPTC

[1] Fault Injection

Compaign (Software

FTT)

SDC, DUE HOTSPOT,NW,

QuickSort

SDC AVF/DUE AVF

Vs Register

Fault Injection

Compaign:

SASSIFI, HPTC

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1256
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

[1] HARDWARE-

IMPLEMENTED

SELECTIVE

HARDENING

SDC, DUE HOTSPOT,NW,

QuickSort

Fault coverage Vs

Overhead (register

Qty-area)

Fault Injection

Compaign:

SASSIFI, HPTC

[1] SOFTWARE-

IMPLEMENTED

SELECTIVE

HARDENING

EDDI/VAR (register

duplication and

replication of

Instruction)

SDC, DUE HOTSPOT,NW,

QuickSort

Fault coverage Vs

Overhead (register

Qty-runtime

execution)

Fault Injection

Compaign:

SASSIFI, HPTC

[2] Supervised and

Unsupervised

machine learning

techniques

Vanish, ONA,

OMM, UT,

Hang

NAS benchmark

implemented in

openMP and MPI

KITTI

Benchmark for

Case study on

Visual Odometry

Algorithm

-Soft error score Vs

Branches/ memory

Insruction/Conditional

Reg. Writes/Cache

Hits

Fault Injection

Compaign:

OVPsim-FIM,

gem5-FIM,

Analysis tool:

Python, Pandas

Dataframe

Libraries:

matplotlib,

numpy,scipy

[3] SIHFT

1. VAR-Data Flow

Technique

2. SETA-Control

Flow Technique

3. Combined SETA

with VAR

SEU test, bit

flip in reg

matrix

multiplication

(MM), quicksort

(QS) and Tower

of Hanoi (TH)

execution time,

memory footprint,

fault coverage, and

Mean Work to Failure

Fault Injection

Compaign:

OVPSim-FIM

ARM-Cortex A9

Processor

[4] ILP formulation is

used to select WCEP

in WACFC-SN

algorithm

bit flip in reg Mälardalen

WCET

benchmark suite:

FIR, insertsort,

matmult

fault detection ratios

for the benchmark

programs WACFC-SN

and WACFC-BB

Freescale

PowerPC 5554

processor, LLVM

compiler

[5] TMR and CDMR bit flip in reg,

SDC,

HANG,UNAC

E, Exceptions

OpenMP,

Pthreads

Bit count, matrix

multiplication,

vector sum

% of Error[SDC,

HANG,UNACE,

Exceptions(segmentati

on fault, unidentified)]

Vs sequential (Bare

Metal, Linux), Parallel

(OpenMP, Pthread),

speed Up

% of UNACE on three

application

Performance overhead

of Bare metal, Linux

sequential, Linux

Parallel

OVPSim, ARM

Cortex-A9

[6] TMR, DMR dynamic on-

chip

component

relocation

regardless of

fault type

Video application Reduction in resource

overhead using Xilinx

Microblaze.

Xilinx Kintex-7

FPGA platform

International Journal of Future Generation Communication and Networking

Vol. 13, No. 1, (2020), pp. 1250-1257

1257
ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

[7] PCFC based on ILP

formulation

bit flip in reg,

Exit from end

to main, abort,

bus error, seg.

fault, exit from

error handler

Malardalen

WCET

Benchmark: Cnt,

FIR, FDCT,

matmult

Trade off between

WECT and fault-

detection coverage

LLVM

VI. CONCLUSION AND FUTURE SCOPE

This paper examined that running real time application in multi core platform are susceptible to errors

and more challenging for fail safe operation especially in automotive, driverless car, aerospace, smart

phones and many more. This paper surveyed the various faults tolerant techniques with types of

faults, benchmarks available, performance parameter and platform used for ensuring low overhead to

protect processor and program execution flow which improves the reliability of the system. Also

given the software based assessment flow which reduces the cost of the system and improves the

efficiency in terms of fault coverage per overhead than hardware based fault tolerant techniques. In

future, to demonstrate the applicability in realistic environment use of reinforced learning algorithm,

combine data flow with control flow technique to improve fault coverage, fault tolerant technique

can apply to low level assembly language and extend fault tolerant method to OS and evaluate time

overhead in multi-core platform.

REFERENCES

[1] M. Goncalves, F. Fernandes, I. Lamb, P. Rech and J. R. Azambuja, "Selective Fault Tolerance

for Register Files of Graphics Processing Units," in IEEE Transactions on Nuclear Science, vol.

66, no. 7, pp. 1449-1456, July 2019.

[2] F. R. da Rosa, R. Garibotti, L. Ost and R. Reis, "Using Machine Learning Techniques to

Evaluate Multicore Soft Error Reliability," in IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 66, no. 6, pp. 2151-2164, June 2019.

[3] E. Chielle et al., "Reliability on ARM Processors Against Soft Errors Through SIHFT

Techniques," in IEEE Transactions on Nuclear Science, vol.63, no.4, pp.2208-2216, Aug.2016.

[4] M. Zhang, Z. Gu, H. Li and N. Zheng, "WCET-Aware Control Flow Checking With Super-

Nodes for Resource-Constrained Embedded Systems," in IEEE Access, vol. 6, pp. 42394-42406,

2018.

[5] G. S. Rodrigues, F. Rosa, Á. B. de Oliveira, F. L. Kastensmidt, L. Ost and R. Reis, "Analyzing

the Impact of Fault-Tolerance Methods in ARM Processors Under Soft Errors Running Linux

and Parallelization APIs," in IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2196-

2203, Aug. 2017.

[6] V. Dumitriu, L. Kirischian and V. Kirischian, "Run-Time Recovery Mechanism for Transient

and Permanent Hardware Faults Based on Distributed, Self-Organized Dynamic Partially

Reconfigurable Systems," in IEEE Transactions on Computers, vol. 65, no. 9, pp. 2835-2847, 1

Sept. 2016.

[7] Z. Gu, C. Wang, M. Zhang and Z. Wu, "WCET-Aware Partial Control-Flow Checking for

Resource-Constrained Real-Time Embedded Systems," in IEEE Transactions on Industrial

Electronics, vol. 61, no. 10, pp. 5652-5661, Oct. 2014.

[8] Lukas Osinski, Tobias Langer, Ralph Mader, Jürgen Mottok. Challenges and Opportunities with

Multi-Core Embedded Platform - A Spotlight on Real-Time and Dependability Concepts. ERTS

2018, Jan 2018, Toulouse, France.

