International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

RELIABLE FAULT TOLERANT MULTI-CORE SYSTEM: A SURVEY
Usha Jadhav?, Dr. P. Malathi?

LAssistant Professsor, Dept. of Electronics and Telecommunication Engg. DYPCOE, Akurdi
Pune, India
2Professor, Dept. of Electronics and Telecommunication Engg. DYPCOE, Akurdi Pune, India

Abstract

ARM Processor is a core used in 100’s of billion of real-time Embedded System which contain
Electronics with less area overhead, low power consumption, reduced cost and portable with high
computation. To carry the user experience in the home, and office over the car such embedded
solution based on multi-core platforms are used in diverse application domain like aerospace,
industrial automotive, Smartphone, Tablets, Medical, Audio Video player to provide fail safe
operation with consumer comfortability. This paper focuses on survey of various faults tolerant
techniques for ensuring low overhead to protect processor and program execution flow which
improves the reliability of the system. Hardware implemented fault tolerant techniques inevitably add
resource overhead while Software implemented fault tolerant technique add runtime overhead. The
future scope of this paper provides a trade-off between resource overhead and runtime overhead to
improve fault coverage.

Keywords: real-time Embedded System, Fault, Fault tolerant techniques, multi core

I. INTRODUCTION

Intel have turned to multi core processor based on 10nm process node [2] which covers strong
commercial demands in market for high performance computing and safety critical application using
Graphics Processing Units [1]. Reliability is a major concern for such real time high performance
computing devices due to the use of submicron technologies. It has increased the sensitivity to
radiation induced transient faults [3]. These transient on chip faults [6] arises from various sources
like high energy particle impact, radiation intensive space environment, total ionizing dose
accumulation and aging of chip die. This leads to generation of Single Event Upsets (SEUS).

In order to satisfy real time constraints with safety critical system, one approach is to address
hardware faults and other is to tackle with software faults. Hardware faults [7] can occur due to
smaller size of functional units, aggressive lowering of operating voltages, SEUs caused by radiation
intensive operating environment. Many techniques used to achieve fault tolerance in hardware by
replicating or adding hardware units like by adding redundancy in sensors and in processors used in
system and applies voting algorithms. But it incurs increase in area, power consumption, performance
degradation and high design and manufacturing cost. Software faults can occur due to occasional
deadline misses while communicating with register and memory. Techniques implemented in
software are able to increase the reliability by insertion of extra instructions using Dual Modular
Redundancy (DMR) and Triple Modular Redundancy (TMR) [4] in the program code to detect errors
in both data flow and control flow. This leads to increase in runtime overhead.

Organization of the Paper: The rest of this paper is organized as follows. Section Il shows Multi-core
System background with necessary system requirements for fail safe operation to achieve higher
reliability. In Section I1l, the Fault Tolerant techniques in multi-core system are discussed. In Section
IV, we present Reliability Estimation of Fault tolerance Techniques in Software. Comparative
assessments of Fault Tolerant Techniques in Software are discussed in Section V. Finally, we
conclude the paper in Section VI by providing conclusion and future scope of research.

1250
ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

Il. MULTI CORE SYSTEM BACKGROUND WITH IT’S REQUIREMENT

Multicore systems are used with diverse range of applications like aerospace, Automotive, Network,
Digital Signal processing (DSP), High performance Computing (HPC) and Graphics processing Unit
(GPU). Increasing hardware and software complexity of such applications have challenges in
reliability with increasing soft errors through reading data either from main memory or register file.
Main memory is accessible for the content of register in high level programming. But the register file
is critical resource for knowing the chance of error in register to propagate to output and it is the
parameter used to measure the reliability of the system. Thus the use of GPU over traditional CPU
supports for active threads to fetch the input data [1]. GPU register file is the fastest type of memory
on GPU and Selective fault tolerant techniques using Single error correction double error detection
(SECDED)[1] helps in getting probability for multi bit upset in register file which is higher than in
cache and main memory.

Major challenge in multi core system is to conduct a large number of fault injection campaigns in
reasonable time, to provide detailed observation in presence of faults and identify relationship
between application profiling and specific platforms parameters in large data set [2]. Thus the use of
Virtual platform frameworks using machine learning approach solves the problem. Soft errors may
lead the processor to incorrectly execute an application or enter in the loop and never finish the
execution [3]. The Software Implemented Hardware Fault Tolerant Techniques (SIHFT) is applied to
assembly code executed by ARM processors. Online monitoring and checking of software control
flow to detect run time deviations from control flow graph is critical in resource constrained
embedded system’s reliability [4]. Worst Case Execution Time (WCET)-Aware Control Flow
Checking based on Super Nodes (WACFC-SN) [4] which makes program partially resilient to control
flow errors while keeping the program WCET below a given upper bound.

Parallel applications using OpenMP and Pthreads running on top of Linux operating system for
multicore need to be protected against soft errors for high reliability compared to sequential bare
metal ones[5]. In such case operating system itself is a source of error. Traditional fault tolerance
methods like Triple Modular Redundancy (TMR) and Conditional Dual Modular Redundancy
(CDMR) protects only the application and do not protects Linux OS. The Fault tolerance method to
the operating system to evaluate the time overheads is very critical task in multicore platform.

Today with the use of smart phones while driving a car can manage for fail safe operation with all
risks in maximum reaction time of up to 500ms. Multi core support works with Linux, Mac OS and
Virtual Machines. To design a highly reliable multi core system:

- Synchronization protocols and data flow dependencies [8] during parallelism and multi-threading
need to be considered.

- Concurrent access to shared data must be considered explicitly when addressing system safety [8]

- Multi core soft error evaluation by using realistic Linux kernel, instruction set architectures (ISAS)
and standard parallelization libraries, considering several benchmarks [2]

-Hardware-software co-design to meet hard real time constraints [7]

-Beam radiation experiment and fault injection campaigns at hardware and software level [1]

. FAULT TOLERANT TECHNIQUES IN MULTI-CORE SYSTEM
The increasing hardware and software complexity of multi core system requirement gives two
different approaches of fault detection and mitigation as fault tolerant techniques at hardware and
software level. Hardware based fault tolerant techniques have direct access to hardware resources by
replicating or adding hardware module. While Software based fault tolerant techniques protects the
processor against soft errors by adding instruction redundancy in the register file and improves the
reliability. N-Version Programming is used by adding the N-modular redundancy scheme to provide
tolerance against Hardware faults while Recovery Block (RB) scheme is used to provide tolerance
against software faults which minimizes the total system cost by providing reliability of the real-time
optimized individual module. Hardware based fault tolerant techniques are not applicable to
commercial-off-the-shelf (COTS) processor but Software based fault tolerant techniques are
applicable to COTS as they are reconfigurable. Hardware based fault tolerant techniques increases
area overhead, Power consumption, and performance degradation with high cost. Whereas Software
implemented fault tolerant technique requires more processing time and increases energy
1251
ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

consumption since more instructions are executed. In software implemented fault tolerant technique
increases reliability compared to hardware because of program uses more memory addresses instead
of registers.

There are three classes of SW implemented fault tolerant techniques: Naive Duplication, Selective
Duplication and Algorithmic based Fault Tolerance (ABFT) [1]. In Naive duplication whole program
code is duplicated while in selective duplication method program is divided into basic blocks and only
selected blocks are duplicated which results in performance but reduced reliability. ABFT is limited to
specific group of applications like High Performance Computing.

Reliability of Multi core system: Transient software faults in multicore system are detected and
mitigated either by using fault masking or fault removal. Fault masking sends no effect on program
output or does not use corrupted data. While fault removal uses forward error and backward error
recovery algorithms based on state condition and improve the reliability of the system. There are two
ways to evaluate the reliability of a system. First approach is using beam radiation experiment which
provides more realistic at the cost of limited visibility while the second approach is using fault
injection campaigns which provides more visibility with realistic result. Fault Injection campaign at
RTL level is used for simple circuits while software level is used for system.

IV. RELIABILITY ESTIMATION OF FAULT TOLERANCE TECHNIQUES IN
SOFTWARE
Software only fault tolerant techniques are more effective and efficient as they have been used at
different abstraction level from high level C++ code to low level assembly code. Also it provides
flexibility in program execution environment for real time application where legacy binary code and
redundant code can co-exist depending on the required level of reliability imposed by instruction-,
thread-, process- and virtual machine. In safety critical systems such as automotive, aerospace and
industrial control, it is important to guarantee a system’s real time constraints which provide strong
demand for reliability and fault tolerance. The need for reliability and fault tolerance arises to protect
the processors against soft errors. It may affect the data flow in register or memory and program flow
execution. Thus data flow in register and memory is protected through Data flow techniques and
Execution flow is controlled through control flow technique. The comparison between Data flow and
control flow techniques is given in Table I.
There are various data flow and control flow fault tolerant techniques used to provide reliability in an
Embedded system like Error Detection by Duplicated Instructions (EDDI) [3] called Variables (VAR)
technique as data flow technique and Control Flow Checking (CFC) technique [4],
[7], Software Implemented Hardware Fault Tolerant (SIHFT) [3] technique, Triple Modular
Redundancy (TMR) technique, Conditional Double Modular Redundancy (CDMR) [5] technique,
Software-only Error Detection Technique using Assertions (SETA)[3], Selective Fault Tolerant
technique and Machine learning techniques as control flow technique to detect soft errors.

TABLE |

COMPARISON BETWEEN DATA FLOW AND CONTROL FLOW TECHNIQUE

Data flow technique Control flow technique

Data flow is exercised where data is passed Control flow is exercised about the workflow of

through program and what transformations are the task to be executed in a particular order.

carried out in a system on data.

This technique is represented using data flow This technique is represented using control flow

graph. graph.

Protects the data flow register and memory. Ensures the correctness of execution flow.

Data flow technique uses Registers and are Control flow technique divides the code in to

replicated. basic blocks.

Checkers are inserted A unique signature is assigned to each basic
block.

All these techniques aim to achieve a trade-off between performance and/or resource overheads in
terms of runtime overhead/Execution time overhead and fault detection coverage and memory

1252
ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

footprint. The rum time overhead is measured using Worst Case Execution Time (WCET),
Architectural Vulnerability Factor (AVF) and Mean Work to Failure (MWTF) metric.

Worst Case Execution Time is the maximum length of the time taken by the computational unit to
execute a task, thread or process on specific hardware platform. WCET addresses system level
multitasking issues and real time mixed criticality schedulability analysis. In multi core platform,
other tasks in the system will impact the WCET of a given task if they share cache, memory lines and
other hardware features.

Architectural Vulnerability Factor allows evaluating the probability of a low level corruption to
propagate to the output. It is a measure of micro architectural structure’s susceptibility to transient
faults.

The MWTF is defined by equation (1) [3].

Amount of work completed
MWTF = - (1)

Number of errors encountered
MWTF = (raw error rate X AVF X execution time)*
Faults can originate from hardware or software. Majority of software faults are transient in nature.
Error detection is possible using various fault tolerant techniques. A fault can be masked or cause an
error. If error is generated, it can be detected or undetected. Fault Coverage is calculated by the
equation (2) [3].

Edetected + Fmasked Eundetected

Feoverage = =1- o (2)
Ftotal Ftotal

Where: Feoverage IS the Fault Coverage.
Edetected IS the number of errors detected.
Fmasked IS the number of correct executions.
Eundetected 1S the number of undetected errors.
Frotal is the number of executions.

In the data flow technique, if the aim is to detect the errors, registers are duplicated and when
correction is included, registers are triplicate. Thus, error correction presents higher overheads than
error detection. Various data flow techniques uses more than one checking rule as checkers. If more
checkers are included in one technique, more reliability is achieved.
Algorithm 1 shows the steps for software-implemented fault tolerant Data flow technique.
Algorithm 1
Software-implemented fault tolerant Data flow technique
Assign every register used by the program a spare register as replica.
2. Duplicate the instructions which perform write operations on registers or memory excluding
branch instruction.
3. Replicate all instructions that operate on the replicated data.
4. Perform consistency check using checkers between the original register data and their replicas
data using compare instruction.
5. If mismatch is detected the program branches to an error detection subroutine which flags an
error to the host.

=

Control flow checking uses a signature to detect control flow errors in processors or program. There
are basically two types control flow techniques as Hardware-only control flow technique and
Software-only control flow techniques. Hardware-only control flow technique uses extra signature
and makes use of the watchdog helps in the error detection with extra power as watchdog do not
access the cache memories available on chip to processor. This technique concerned with error
detection rate, but not about the overheads they cause.
Control flow techniques are designed to protect the program flow against incorrect jumps using
signature. The signature is concerned with a global register at the beginning of basic block. A basic
block consists of instructions executed in sequence. Verify the signature register contains the expected
1253
ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

value or not by inserting checkers in the code. If it does not, it means program flow was incorrectly
followed and an error is reported.

Algorithm 2 shows the steps for software-implemented fault tolerant control flow technique.
Algorithm 2
Software-implemented fault tolerant Control flow technique
1. Divide the code into Basic Blocks (BB).
2. Assign entry and exit signature at the beginning and end of each Basic block.
3. Perform some transformation or insert additional checking code as Instrumentation code at
the beginning and end of each basic block.
4. Atruntime, as control flow passes through basic blocks, the instrumentation code with bitwise
AND/XOR operation computes the signature.
5. Compare run time signature with the pre-computed expected signature.
6. If mismatch is detected, the error handler is invoked.
In order to automatically apply the software implemented technique to various case study application,
various papers used a tool like HPTC [1], OVPsim-FIM [2], [3], [5] gem5-FIM [2] and QEMU etc. as
fault injection frameworks. Methodology flow for Software-implemented Fault tolerance technique’s
flow is shown in Fig. 1.

Source Code
c/c++

|

Compiler Front

end

JiL

Transformations

JiL

Compiler Back

end

J

Object Code

I

OVPsim/ QEMU Fault Injection

4

Report

Fig. 1 Software-implemented Fault tolerance technique’s flow

In the first step, the source code for the target architecture is compiled using front end in the absence
of fault and generates Intermediate Representation (IR). Apply some transformations based on
redundancy requirements and generate hardened IR using appropriate fault tolerance technique.
Hardened IR is given to the compiler back end to generate object code. Generate a fault list based on
fault injection campaign. Simulate the targeted application using OVPsim or QEMU and inject faults
at run time based on fault list. This evaluates fault tolerant techniques’ ability to protect the processor
against soft error with low overhead and program execution flow which improves reliability of the
system.

1254
ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

V. COMPARATIVE ASSESSMENT OF FAULT TOLERANCE TECHNIQUES IN
SOFTWARE
Various authors experienced the different types of faults as listed in table Il-column 3 with case
studies like visual odometry which is used to determine vehicle position and orientation by analyzing
series of images using machine learning algorithm, use of selective fault tolerance technique to detect
faults in GPU register file at both Hardware and software level and tested ARM processor using
radiation and fault injection to estimate the reliability using data flow and control flow techniques.
Omission faults are originated when action not performed by human but when it should be. Silent
Data Corruption (SDC) [1] is when the program output is incorrect. This SDC is harmful as it is
undetected. Detected Unrecoverable Error (DUE) [1] occurs when the application crashes or the
system hangs. DUE gives performance degradation and data loss. Vanished (V) fault as no fault traces
are left means faults are masked at processor level and do not propagate to memory with application
produces correct output and internal memory state’s is correct. While Output Not Affected (ONA) [2]
in which faults propagate to application memory state’s and final result of computation will be within
the acceptable error margin and the application ends within the number of iterations executed in
golden run. Output Mismatch (OMM) [2] fault in which the application aborts without any error
indication and resulting memory is affected. An Unexpected Termination (UT) [2] faults indicate the
error with application terminates abruptly. Hang in which application does not finish needs
preemptive scheduling. UNACE [5] means Unnecessary for Architecturally Correct Execution in
which the program completes its execution and produces an expected output. Exceptions are not
applicable for bare metal applications because of the absence of an operating system to catch them.
Some of the simulators see the exceptions as segmentation faults, halting the simulation and reporting
the problem.
In order to find out the soft error assessment of various fault tolerant techniques, various researchers
used different benchmarks like NASA Advanced Supercomputing (NAS) parallel benchmark to
render the performance evaluation including various applications implemented in OpenMP and MPI.
OpenMP stands for Open Multiprocessing and MPI stands for Message Passing Interface. OpenMP
uses shared memory parallelism while MPI is a way to program on distributed memory devices.
OpenMP relies on loop parallelization using for-while loop and it is a thread based parallelism. While
MPI Application Programming Interfaces (API)’s are both process and thread based approach.
OpenMP and MPI provides Linux OS and parallelization libraries impacts various applications like
bit count, matrix multiplication, Quicksort, vector sum given in table Il according to the types of
faults occur. Table Il shows the summary of various fault tolerant techniques with types of faults,
Benchmarks used by researchers, performance parameter measured and platform used for fault
detection.
The various simulation platforms are used to reduce human analysis time required to understand the
effect of fault injection as OVPsim-FIM, gem5-FIM and analysis tool such as pandas dataframe with
different libraries to assess soft error realibility.

TABLE I
COMPARATIVE ASSESSMENT OF VARIOUS FAULT TOLERANT TECHNIQUES

Re | Fault Tolerant Types of Benchmark Performance Platform Used

f Techniques Faults Parameter

No

[1] | Beam Radiation SDC, DUE HOTSPOT,NW, FIT Fault Injection
Experiment(Hardwar QuickSort Compaign:
e FTT) SASSIFI, HPTC

[1] | Fault Injection SDC, DUE HOTSPOT,NW, | SDC AVF/DUE AVF | Fault Injection
Compaign (Software QuickSort Vs Register Compaign:
FTT) SASSIFI, HPTC

1255

ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

[1] | HARDWARE- SDC, DUE HOTSPOT,NW, | Fault coverage Vs Fault Injection
IMPLEMENTED QuickSort Overhead (register Compaign:
SELECTIVE Qty-area) SASSIFI, HPTC
HARDENING

[1] | SOFTWARE- SDC, DUE HOTSPOT,NW, | Fault coverage Vs Fault Injection
IMPLEMENTED QuickSort Overhead (register Compaign:
SELECTIVE Qty-runtime SASSIFI, HPTC
HARDENING execution)

EDDI/VAR (register
duplication and
replication of
Instruction)

[2] | Supervised and Vanish, ONA, | NAS benchmark | -Soft error score Vs Fault Injection
Unsupervised OMM, UT, implemented in Branches/ memory Compaign:
machine learning Hang openMP and MPI | Insruction/Conditional | OVPsim-FIM,
techniques KITTI Reg. Writes/Cache gem5-FIM,

Benchmark for Hits Analysis tool:
Case study on Python, Pandas
Visual Odometry Dataframe
Algorithm Libraries:
matplotlib,
numpy,scipy

[3] | SIHFT SEU test, bit matrix execution time, Fault Injection
1. VAR-Data Flow flip in reg multiplication memory footprint, Compaign:
Technique (MM), quicksort | fault coverage, and OVPSim-FIM
2. SETA-Control (QS) and Tower Mean Work to Failure | ARM-Cortex A9
Flow Technique of Hanoi (TH) Processor
3. Combined SETA
with VAR

[4] | ILP formulation is bit flip in reg Mélardalen fault detection ratios Freescale
used to select WCEP WCET for the benchmark PowerPC 5554
in WACFC-SN benchmark suite: | programs WACFC-SN | processor, LLVM
algorithm FIR, insertsort, and WACFC-BB compiler

matmult

[5] | TMR and CDMR bit flip inreg, | OpenMP, % of Error[SDC, OVPSim, ARM

SDC, Pthreads HANG,UNACE, Cortex-A9
HANG,UNAC | Bit count, matrix | Exceptions(segmentati
E, Exceptions | multiplication, on fault, unidentified)]
vector sum Vs sequential (Bare
Metal, Linux), Parallel
(OpenMP, Pthread),
speed Up
% of UNACE on three
application
Performance overhead
of Bare metal, Linux
sequential, Linux
Parallel
[6] | TMR, DMR dynamic on- Video application | Reduction in resource | Xilinx Kintex-7
chip overhead using Xilinx | FPGA platform
component Microblaze.
relocation
regardless of
fault type

ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

1256

International Journal of Future Generation Communication and Networking
Vol. 13, No. 1, (2020), pp. 1250-1257

[7] | PCFC basedon ILP | bitflipinreg, | Malardalen Trade off between LLVM
formulation Exit fromend | WCET WECT and fault-
to main, abort, | Benchmark: Cnt, | detection coverage
bus error, seg. | FIR, FDCT,
fault, exit from | matmult
error handler

VI. CONCLUSION AND FUTURE SCOPE

This paper examined that running real time application in multi core platform are susceptible to errors
and more challenging for fail safe operation especially in automotive, driverless car, aerospace, smart
phones and many more. This paper surveyed the various faults tolerant techniques with types of
faults, benchmarks available, performance parameter and platform used for ensuring low overhead to
protect processor and program execution flow which improves the reliability of the system. Also
given the software based assessment flow which reduces the cost of the system and improves the
efficiency in terms of fault coverage per overhead than hardware based fault tolerant techniques. In
future, to demonstrate the applicability in realistic environment use of reinforced learning algorithm,
combine data flow with control flow technique to improve fault coverage, fault tolerant technique
can apply to low level assembly language and extend fault tolerant method to OS and evaluate time
overhead in multi-core platform.

REFERENCES

[1] M. Goncalves, F. Fernandes, I. Lamb, P. Rech and J. R. Azambuja, "Selective Fault Tolerance
for Register Files of Graphics Processing Units," in IEEE Transactions on Nuclear Science, vol.
66, no. 7, pp. 1449-1456, July 2019.

[2] F. R. da Rosa, R. Garibotti, L. Ost and R. Reis, "Using Machine Learning Techniques to
Evaluate Multicore Soft Error Reliability,”" in IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 66, no. 6, pp. 2151-2164, June 2019.

[3] E. Chielleet al., "Reliability on ARM Processors Against Soft Errors Through SIHFT
Techniques,” in IEEE Transactions on Nuclear Science, vol.63, no.4, pp.2208-2216, Aug.2016.

[4] M. Zhang, Z. Gu, H. Li and N. Zheng, "WCET-Aware Control Flow Checking With Super-
Nodes for Resource-Constrained Embedded Systems,” in IEEE Access, vol. 6, pp. 42394-42406,
2018.

[5] G. S. Rodrigues, F. Rosa, A. B. de Oliveira, F. L. Kastensmidt, L. Ost and R. Reis, "Analyzing
the Impact of Fault-Tolerance Methods in ARM Processors Under Soft Errors Running Linux
and Parallelization APIs," in IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2196-
2203, Aug. 2017.

[6] V. Dumitriu, L. Kirischian and V. Kirischian, "Run-Time Recovery Mechanism for Transient
and Permanent Hardware Faults Based on Distributed, Self-Organized Dynamic Partially
Reconfigurable Systems,” in IEEE Transactions on Computers, vol. 65, no. 9, pp. 2835-2847, 1
Sept. 2016.

[71 Z. Gu, C. Wang, M. Zhang and Z. Wu, "WCET-Aware Partial Control-Flow Checking for
Resource-Constrained Real-Time Embedded Systems,” in IEEE Transactions on Industrial
Electronics, vol. 61, no. 10, pp. 5652-5661, Oct. 2014.

[8] Lukas Osinski, Tobias Langer, Ralph Mader, Jirgen Mottok. Challenges and Opportunities with
Multi-Core Embedded Platform - A Spotlight on Real-Time and Dependability Concepts. ERTS
2018, Jan 2018, Toulouse, France.

1257
ISSN: 2233-7857 IJFGCN
Copyright (© 2020 SERSC

