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Abstract 

This paper deals with the problem of multispectral image compression. In particular, we 

propose to substitute the built-in JPEG 2000 wavelet transform by an adequate 

multiresolution analysis that we devise within the Lifting-Scheme framework. We compare the 

proposed method to the classical wavelet transform within both multi-2D and full-3D 

compression strategies. The two strategies are combined with a PCA decorrelation stage to 

optimize their performance. For a consistent evaluation, we use a framework gathering four 

families of metrics including the largely used PSNR. Good results have been obtained 

showing the appropriateness of the proposed approach especially for images with large 

dimensions. 

 

Keywords: Adaptive multiresolution analysis, Multispectrales image compression, SPIHT, 

3D SPIHT, Comparison framework. 

 

1. Introduction 

Multispectral images are widely used in geoscience and remote sensing. Their use in other 

applications field like medical imagery, quality control in industry, meteorology, and exact 

color measurements are increasing. A multispectral image is generated by collecting dozens, 

so-called image-bands, where each one is a monochromatic image centered on a particular 

wavelength of the electromagnetic spectrum. As a result, uncompressed multispectral images 

are very large, with a single image potentially occupying hundreds of megabytes. 

Compression is thus necessary to facilitate both the storage and the transmission. 

One of the most efficient compression method for monochrome images is the 

JPEG 2000 [1−5]. However, its extension to multispectral images needs to be adapted and 

yields to different methods. These methods depend on the manner of which one considers the 

multispectral cube: 

− each image band of the multispectral image is considered separately (2D wavelets + 2D 

SPIHT), 

− the whole cube is considered as input (3D wavelets + 3D SPIHT). 

The contribution of this paper consists in substituting the built-in JPEG 2000 wavelet 

transform by an adaptive multiresolution analysis that we develop within the Lifting-Scheme 

framework. We will compare this approach with the standard version of JPEG 2000 within 

the previous presented strategies. 

In the next section we will develop the theory of the proposed multiresolution analysis. 

Then we describe the data, experiments and results before discussing them in the third 

section. We concluded in the last section. 
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2. Proposed multiresolution analysis 

We propose to substitute the wavelet transform by building an adequate 

multiresolution analysis adapted to the image compression aim. We build our 

multiresolution analysis within the lifting-scheme framework which allows to produce 

easily second generation multiresolution analyses [6,7]. Indeed, the advantage of such 

framework is that the inverse transform is explicitly defined and its value is exactly 

computed, whatever are the applied filters. We limit here the demonstration and 

illustration to the case of a scheme built on a couple of filters, one for prediction and 

one for update. The idea we aim to exploit consist in adapting the predict filter for each 

stage of the analysis in that way we minimize the energy hold by the detail signal and 

reduce more again the non-zero elements after the quantization stage. However, we risk 

in doing so to lose the error propagation control during the inverse transform. Indeed, 

ideal compression requires building perfect orthogonal transforms. But when we 

generate adaptive filters we cannot guarantee the orthogonality condition nor to be near. 

In order to reduce such a problem effect, we add a term expressing the constraint of 

near-orthogonality that we resolve using an optimization under constraints method. 

We recall that we work within a scheme with one predict filler f  and one update 

filter g . The linear operator corresponding to the scale change and its inverse could be 

written as [8,9]: 
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Where A is the approximation signal, D  the details signal, O  and E  the odd and 

even signals, a  and b  normalization coefficients (that we can consider positive), I  the 

identity matrix, and f  and g  are assimilated to their form of Toeplitz matrices. 

The non-orthogonality condition of a linear operator T  could be written worthily as 

following: 

ITTε −= *

1 , 
1*

2

−−= TTε , ( ) cεN k ≤  (2) 

Where N  is a matrix norm and 
*
 represents the conjugate of the transpose operation. 

In the case of a filter with real values, the 
*
 is the convolution filtering. Let us also 

notice that the product of two filters is commutative due to the commutativity of the 

convolution product. 

One important mathematical property we will exploit is the equivalence between all 

norms in finite dimension. This is our case since the number of samples is finite. Hence 

we will define and use a norm that ensures simplification of calculus in (2). First, 

equation (1) could easily be simplified as in [8,9] by putting ab 1= . Then after 

forward simplification of calculus in (2), it appears that we can make non-diagonal 

elements in 2ε  equal to zero when considering 
2* afg = . 
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We switch now to the definition 1ε  of non-orthogonality for calculus commodity. We 

inject b  and g  in 1ε  of equation (2) and we obtain a result proportional to: 
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By replacing T  by 
1−T , we obtain a result proportional to: 
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The coefficient of proportionality is a common constant of value 
21 a  meaning that 

it will not be involved in optimization. 

Now we consider N  as the operator norm subordinate to the norm of Euclidean 

vector. In other words, for an operator A : 
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Where ( )Mρ  represents the spectral ray of the matrix M , equivalent to the largest 

eigenvalue in absolute value. 

From equations (4) and (5) one can remark that we can reason either on T  or 
1−T . 

We can understand this intuitively as that the error propagates in the same way in direct 

and inverse sense. 

By using the inequality of the product for the norm (6) in (4) and (5), we can 

evaluate independently the terms constituting the product. 

The first term is completely determined by: 

( )Iaff 12* −−  (7) 

let us remark that (7) is symmetric and we can reason on its eigenvalues. We can 

obtain the upper-bound for (6) applied to (7): 

( )( ) ( ) ( )( ) ( )( )1min,1maxmax 2*2* −−−− affSaffS pp  (8) 

pS  corresponding to the spectrum. 

We consider now the second term of the product. After simplification using symbolic 

notations (Matlab symbolic toolbox), we can obtain, when we let 
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( )( ) ( ) ( )( ) ( )( )1min,1maxmax 2*2*

max −−−−= affSaffSz pp , an upper-bound for the 

second term as: 
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Leading to the following upper-bounding for the product of the two terms: 
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By identifying this upper-bound with the constraint c  in equation (2), we obtain: 
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the second term being equivalent to ac  for its low values when c  tends to 
+0 . 

For a constant value of a  and if we rename c  as ac  in equation (11) we obtain: 

cz <max  (12) 

we find that all calculations are eventually determined by the spectrum of 

( )( )Iaff 12* −− . 

Beside, the norm mentioned in equation (6) is reduced to the spectral ray when the 

matrix is symmetric in one hand and the equivalence of norms in finite dimension 

allows us to use another norm N  to be upper-bounded in (2) in the other hand. 

Therefore, we can use as a norm N  the sum of the absolute values of the matrix 

coefficients, applied here to ( )( )Iaff 12* −− . 

We can now express the minimization under constraints for a filter having a support 

of length $n$ centered in the ( )thn 2  coefficient as: 
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Where τ  is the translation operator, i  and k  the indices of both signals and filter 

coefficients f , and λ  a Lagrange coefficient. 

The first term represents the prediction error (energy of the difference between Even 

( E ) and Odd (O ) signals after filtering) and the second term represents the constraint 

expressing the upper-bounding of the norm. 
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In practice for the orthogonality constraint, we have determined empirically the 

parameters values: 



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

 −=
n

c
1

1*25.1 , 
n

a
5

1−= . 

The size of the dictionary containing the filters increases proportionally to the 

number of scales and the length of the filters' supports. Which is why we limit 

experimentations only to short support filters ( 2=n  and 4=n ). Furthermore, before 

storing each adaptive filter coefficients, we subtract from it an average fixed-values 

filter with the same length in such way to reduce its coefficients amplitudes. 

Afterwards, we use the maximal amplitude (negative or positive) that we encode in 

2 bytes. 

 

3. Experiments and results 
 

3.1. Data and experiments 

We conduct the experiments on 32 bands of the AVIRIS Cuprite multispectral images with 

spatial dimensions of 64*64, 128*128 and 256*256 pixels, coded in 16 bits integer. We aim 

to compare the performance of the proposed adaptive approach with the classical compression 

regarding different compression bitrates when using different spatial dimensions of images. 

In order to optimize the multispectral image compression, a PCA (KLT) decorrelation step 

is used following spectral dimension. As a result, we obtain a new multi-band image in the 

transform domain in which the spectral correlation is reduced. We then applied the 

compression methods to the transformed image. 

Two compression strategies are used in this article, Multi-2D and Full 3D. For 2D 

approach, each eigenimage from PCA is compressed separately. Afterwards, a 2D Set 

Partitioning In Hierarchical Trees (SPIHT) coding [10] is applied on each band of the 

wavelets transform results to achieve compression. Because of PCA, the resulting image has 

decreasing energy bands. In order to take this fact into account, it is preferable to weight each 

band. As weights, we use the energy ( ) XYyxIE
yx λ∑=

,

2
, , where λI  is the image band 

at the λ  wavelength, X  and Y  are its dimensions, and x  and y  are the position of a pixel 

in the band. Depending on energy band, we allocate proportional number of bits for the 

output of the SPIHT algorithm. 

The 3D approach consists in considering the whole multispectral image cube as an input 

for a full 3D decomposition. To achieve compression a 3D SPIHT [11] is then applied. 

 

3.2. Compression evaluation frameworks 

When lossy compression methods are used, quality measurements are necessary to 

evaluate performance. In the case of ordinary 2D images, a metric has often to reflect the 

visual perception of a human observer. This is not the case for multispectral images, which 

are used for classification or spectral color reproduction. Which is why instead of evaluating 

compression performances according to one metric or one type of metric, we use four metrics 

(PSNR, spectral fidelity (Fλ), universal image quality index (UIQI) and K-means 

classification driven metric) belonging to four families to evaluate performance as described 

in [12]. The aim of the proposed compression evaluation framework is to measure the 
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performance of the compression strategies rather than quantifying distortions and noises 

produced during the compression process. Christophe et al. have studied and quantified such 

distortions in [13]. 

 

3.3. Results and discussion 

 

We compare the adaptive multiresolution proposed approach to the classical JPEG 2000 

wavelets within two compression strategies (Multi-2D and Full 3D). We thus obtain four 

compression methods: Multi-2D (M2D), multiresolution Multi-2D (MR-M2D), Full 3D 

(F3D) and multiresolution Full 3D (MR-F3D) methods. We discuss separately methods 

belonging to the same strategy regarding different metrics. Figure 1 depicts the results in 

terms of PSNR and UIQI while the figure 2 gives compact representation containing all 

metrics for the bitrate of 1 bpp. 

For the Multi-2D methods: 

− In terms of PSNR and spectral fidelity, M2D method gives better results than MR-M2D 

method except for 64*64 where this trend is inverted. The point of inversion is ≈0.7 bpp 

for PSNR, and ≈0.5 bpp for spectral fidelity. 

− In terms of UIQI, M2D method gives worse results than MR-M2D. This metric is more 

based on structural distortion than error sensitivity. 

− In terms of K-means, M2D and MR-M2D methods give quite similar results. Small 

differences can be noted for 128*128 image size where M2D method have slightly better 

results than MR-M2D method for bitrate values upper than 0.25 bpp. This trend is inverted 

for 256*256 image size. 

 

For the Full 3D methods: 

− For all images’ sizes and for the majority of metrics MR-F3D gives quite better results 

than F3D. This difference of results are particularly high for small bitrates and increase 

with image's spatial dimensions. 

− F3D method outperforms the MR-F3D only in terms of K-means for 256*256 image 

size for bitrate values upper or equal at 0.5 bpp. 

 

Within the Full 3D strategy, the proposed approach outperforms the classical one in almost 

all cases. We can highlight the fact that the goodness of results increases for small bitrates 

with the spatial dimensions of images: MR-F3D method has at least ≈0.5 dB higher than F3D 

method and at most ≈8 dB . For high bitrates (≈1 bpp) results become very close between the 

two methods. 

Within the Multi-2D strategy, the M2D method performs slightly better than the MR-M2D. 

We can explain this by the fact that the multiresolution analysis creates a dictionary for each 

band of the image, leaving less bits for the SPIHT streams. The unique case in which MR-

M2D outperforms M2D is in terms of UIQI, permitting to say that proposed method creates 

less structural distortions. 

 

4. Conclusion 
 

Vol. 12, No. 2, 2019



International JournalInternational JournalInternational JournalInternational Journal    of Future Generation Communication and Netwof Future Generation Communication and Netwof Future Generation Communication and Netwof Future Generation Communication and Networkingorkingorkingorking    

    

    

7 

 

In this work we introduced a new multiresolution analysis for multispectral image 

compression. This analysis was implemented within two compression methods: Multi-

2D and Full 3D methods, and compared with the classical JPEG 2000. 

The experiments showed the proposed approach is more appropriate for multispectral 

image compression especially within the Full 3D strategy for images with large spatial 

dimensions. 
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(a) 

(b) 

Fig. 1. Results of compression for Cuprite image of size 26*256 in terms of (a) PSNR and (b) 

UIQI. 
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(a) 

(b) 

Fig. 2. Results of (a) M2D and (b) F3D strategies on Cuprite image for spatial dimension of 

64*64, 128*128 and 256*256 pixels in terms of PSNR, Spectral fidelity, UIQI and K-means. 
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