Some Standard Results on Triple Connected Total Perfect Domination of Fuzzy Graph

P. Kathavarayan¹, T.Gunasekar^{2*}, and K.Elavarasan³

 ³Research Scholar,^{2,3}Department of Mathematics, Vel Tech RangarajanDr.Sagunthala R&D Institute of Science and Technology, Chennai – 62, Tamil Nadu, India.
¹Chennai Institute of Technology, Kundrathur, Chennai - 600069, Tamil Nadu, India Email: ¹kathuray@gmail.com, ²tguna84@gmail.com and ³elavarasank2@gmail.com
²Corresponding Author

Abstract

In the present paper, we initiated the idea of a strong triple connected total perfect dominating set (\dot{S}) , weak triple connected total perfect dominating set (\dot{W}) of a fuzzy graph. The new kinds of properties are initiated for \dot{S} , \dot{W} of a fuzzy graph. Our result leads that the \dot{S} , \dot{W} dominating number with examples are obtained.

Keywords: Fuzzy graph, Total perfect domination. *Mathematics Subject Classification:* 05C72, 05C17

1. Introduction

In 1965, the concept of a fuzzy set was introduced by Zadeh [15] as a way of representing uncertainty and vagueness. In 1975, Rosenfeld [11] introduced the notion of a fuzzy graph and several fuzzy analogs of graph theoretical concepts such as paths, cycles, and connectedness. In 1998, A. Somasundaram and S. Somasundaram [14] begun the concept of domination in fuzzy graphs. The concept of perfect domination, total domination was introduced by Cockayne et al [2]. Revathi et al [10] initiated the concept of connected total perfect domination, strong and weak perfect domination in a fuzzy graph. Triple connected domination number introduced by G. Mahadevan, Selvam [3]. The purpose of the present paper is to initiate the new idea of a strong and weak triple connected total perfect dominating set and number of a fuzzy graph. Also, we prove some results with example diagrammatically.

2. Preliminaries

The fuzzy set of a base set or reference set V is specified by its function of membership σ , where $\sigma : V \rightarrow [0,1]$ assigning to each $u \in V$ the degree or grade to which u belongs to σ . There are two fuzzy sets σ and τ of a set V, then the set σ is called a fuzzy subset of τ , if $\sigma(u) \leq \tau(u)$ each $u \in V$. A graph $G = (\sigma, \mu)$ is called a fuzzy graph, if there exist a set of functions of membership $\sigma: V \rightarrow [0,1]$ and $\mu: V \times V \rightarrow [0,1]$ such that $\mu(u, v) \leq \sigma(u) \land \sigma(v)$ for all $u, v \in V$. If $\tau(u) \leq \sigma(u)$ where $u \in V$ and $\rho(u, v) \leq \mu(u, v)$ for every $u, v \in V$, then $H = (\tau, \rho)$ is called a fuzzy sub graph of G. If $\tau(u) = \sigma(u)$ where $u \in V$ and $\rho(u, v) \leq \mu(u, v)$ each $u, v \in V$, then H is called a fuzzy spanning sub graph of G. Orderp $= \sum_{u \in V} \sigma(u)$ and size $q = \sum_{(u,v) \in E} \mu(u, v)$. If $\mu^{\infty}(u, v) \leq \mu(u, v)$ for every $u, v \in V$, then arc (u, v) is called a strong arc. Where $\mu^{\infty}(u, v)$ be the strongest path strength and the vertex u is said to be a strong neighbor to v, otherwise it is called weak

arc. The vertex u is called a isolated in G if $\mu(u, v) = 0$ every $v \neq u, v \in V$. $d_N(v) =$ $\sum_{u \in N_s(v)} \sigma(u), \ \delta_N(G) = \min \{ d_N(u) : u \in V(G) \} \text{ and } \Delta_N(G) = \max\{ d_N(u) : u \in V(G) \}.$ If $\mu(u, v) = \sigma(u) \land \sigma(v)$ for every $u, v \in V$, then the graph G is called a complete fuzzy graph. It is described by K_{σ} . There is a bipartition V_1 and V_2 of G. Every vertex in V_1 has a strong neighbor in V_2 and also V_2 has a strong neighbor in V_1 , then the bipartition (V_1, V_2) is called a complete bipartite fuzzy graph of G. It is identified by $K_{m.n.}$. If (u, v) be a strong arc, then the node u dominates the node v for every node $u, v \in V$ of G. If for every node v not in a subset P of Vwhich dominated by absolutely a node of P, then P is said to be a perfect dominating set of G. It is identified by P_D. If there is a subgraph P_C of G which is connected and induced by P_Dof G, then P_C is said to be connected P_D. If for each node of G be dominates to at lest a node of Ptof G, then Pt is said to be a total PD of G. There is a sub graph P_D of G induced by total P_D which is connected, then the total P_D is called a connected total P_D of. It is identified by ctp(G). A ctp of G is called a minimal ctp(G) if for all node in, $ctp - \{v\}$ is not ctp(G). $\gamma_{ctp}(G) = min\{ctp(G)\}\ and \ \Gamma_{ctp}(G) =$ max {ctp(G)}. If there are three nodes connected and lying on a path T_C of G, then T_C (G) called triple connected fuzzy graph. A ctp(G) is called a triple connected total P_D of G if the induced sub graph $\langle ctp(G) \rangle$ is triple connected. It is identified by Tctp(G). If there exists $\mu(u, v) = \sigma(u) \land \sigma(v)$ and $d_N(u) \ge d_N(v)$ for all $u, v \in V$ then u is strongly dominated by vof G. If there is a set $S \in V - D$ which is strongly dominated by at least one vertex in D then the fuzzy sub set D of V is called a strong dominating $set(S_D)$ of G. The fuzzy cardinality which is minimum of S_D is said to be a strong domination number(γ_{S}) of G. If there exists $\mu(u, v) = \sigma(u) \land \sigma(v)$ and $d_{N}(u) \le d_{N}(v)$ for all $u, v \in V$ then u is weakly dominated by vof G. If there is a set $W \in V - D$ which is weakly dominated by at least one vertex in D then the fuzzy sub set D of V is called a weak dominating set(W_D) of G. The fuzzy cardinality which is minimum of W_D is said to be a weak domination number(γ_w) of G. There is a fuzzy subset F of V of a nontrivial G is defined to be Strong(Weak) triple connected perfect dominating set if there is strong(Weak) perfect dominating set which induced fuzzy sub graph is triple connected.

3. Main Result

Strong and Weak Tctp Domination of Fuzzy Graph

In the present section, we initiate the new idea of the strong triple connected total P_D which is(\dot{S}) of G and define the concept of a minimal strong triple connected total perfect dominating set as well as introducing a strong triple connected total perfect dominating number($\gamma_{\dot{S}}$). Also, this idea is discussed for \dot{W} dominating set.

Definition 3.1

If there is Tctp and the fuzzy subgraph induced by $\langle Tctp \rangle$ which is strongly triple connected then the sub graph of G is called S dominating set. There exist a minimum fuzzy cardinality taken from all the S which is said to be a S domination number (γ_{s}).

Definition 3.2

If there is Tctp and the fuzzy sub graph induced by $\langle Tctp \rangle$ which is weakly triple connected then the sub graph of G is called \hat{W} dominating set. There exists a minimum fuzzy cardinality taken from all the \hat{W} which is said to be a \hat{W} domination number($\gamma_{\hat{W}}$).

Example 3.3

Fuzzy Graph G

 $Hered_N(a) = 0.3, d_N(b) = \{0.4 + 0.9 + 0.7\} = 2, d_N(c) = 0.3, d_N(d) = 0.9, d_N(e) = 0.9, d_N(e)$ $0.9, d_N(f) = 0.3, d_N(g) = \{0.9 + 0.6\} = 1.5, d_N(h) = \{0.3 + 0.5 + 0.8 + 0.3\} = 1.9.$ Hence $\dot{S} = \{b, h, g\}$ and $\gamma_{\dot{S}} = \{0.3 + 0.9 + 0.3\} = 1.5$.

Fuzzy Graph G

 $d_N(a) = \{0.9 + 0.5\} = 1.4, d_N(b) = \{0.2 + 0.9 + 0.3\} = 1.4, d_N(c) =$ Here $\{0.5 + 0.3 + 0.9\} = 1.7, d_N(d) = \{0.3 + 0.8\} = 1.1, d_N(e) = 0.8, d_N(f) = \{0.2 + 0.3 + 0.3\}$ 0.2 = 0.7, $d_N(g) = \{0.8 + 0.9\} = 1.7, d_N(h) = \{0.2 + 0.5 + 0.3 + 0.2\} = 1.2.$ Hence $\dot{W} = \{f, g, h\}$ and $\gamma_{\dot{W}} = \{0.8 + 0.2 + 0.9\} = 1.9$.

Theorem 3.5

Let $G = (\sigma, \mu)$ be a fuzzy graph then \dot{S} and \dot{W} of G does not exist for all fuzzy graph.

ISSN: 2233-7857 IJFGCN Copyright © 2020 SERSC

Proof

Now we consider the fuzzy set F which is a total P_D of Gin the induced subgraph < ctp(G) > is not triple connected. So F does not satisfy that If there $exists\mu(u, v) = \sigma(u) \land \sigma(v), d_N(u) \ge d_N(v)$ and $d_N(u) \le d_N(v)$ for all $u, v \in V$ of G. There fore F is not a S and W of G. Hence S and W of G does not exist for all fuzzy graphs. **Example 3.6**

Here the total $P_D = \{b, d\} = F$ which is a connected total P_D of G, but F is not Tctp dominating set and also not a strong and weak Tctp of G.

Observation 3.6

Let G be a fuzzy graph and if there are a \dot{S} and \dot{W} of G then it is a P_Dof G.

Observation 3.7

There is a $\gamma_{\dot{S}\dot{W}}(G)$, then $\gamma_{\dot{S}\dot{W}}(G) \le p-1$.

Observation 3.8

There is no \dot{S} and $\dot{W}(G)$ if G is a K_{σ} .

Observation 3.9

There is no \dot{S} and $\dot{W}(G)$ if G is a $K_{m,n}$.

Example 3.10

Complete bipartite fuzzy graph G

Here $F = \{a, e\}$ is a connected total P_D but not aTctp(G) also not \dot{S} and \dot{W} of G. **Theorem 3.11**

If there exist \dot{S} and \dot{W} of the fuzzy graph G then it is a total P_D of G.

Proof

Consider the fuzzy subset F of V which contained G induced triple connected subgraph that is S and W dominating set of G. Here the set of all nodes of F is connected which satisfies all nodes of V - F dominates exactly one node of F and exists Tctp of G. Therefore the fuzzy subset F of G is total P_D. **Example 3.12**


```
Here d_N(a) = \{0.4 + 0.5\} = 0.9, d_N(b) = \{0.7 + 0.6\} = 1.3, d_N(c) = \{0.4 + 0.3\} = 0.7, d_N(d) = \{0.7 + 0.5\} = 1.2, d_N(e) = \{0.3 + 0.6\} = 0.9. \dot{S}(G) = \{b, c, d\}, \gamma_{\dot{S}}(G) = \{0.4 + 0.7 + 0.3\} = 1.4 \text{ and } \dot{W}(G) = \{a, b, c\}, \gamma_{\dot{W}}(G) = \{0.6 + 0.4 + 0.7\} = 1.7.
```

Observation 3.13

There are two fuzzy set $\dot{S}(G)$ and $\dot{W}(G)$ of fuzzy graph G then Tctp exist in both sets. **Example 3.14**

Fuzzy Graph G

Here $d_N(a) = \{0.4 + 0.2\} = 0.6, d_N(b) = \{0.3 + 0.5\} = 0.8, d_N(c) = \{0.2 + 0.4 + 0.6\} = 1.2,$

 $d_N(d) = 0.5, d_N(e) = 0.5, d_N(f) = 0.3. \dot{S}(G) = \{a, b, c\}$ which is also a Tctp(G) and $\gamma_{\dot{S}}(G) = \{0.3 + 0.2 + 0.5\} = 1.$

Example 3.15

 $\begin{aligned} &d_N(a) = 0.9, d_N(b) = 1.2, d_N(c) = 1, d_N(d) = 0.8, d_N(e) = 1.1. \, \dot{W}(G) = \{a, e, d\} \text{ is also} \\ &a \, Tctp(G). \gamma_{\dot{W}}(G) = \{0.7 + 0.3 + 0.4\} = 1.4. \end{aligned}$

Remark

Converse of the observation 3.6, 3.13 and theorem 3.11 need not be true.

Theorem 3.16

If there exist a minimum fuzzy cardinality of Tctp(G) in \dot{S} and $\dot{W}(G)$ then $\gamma_{\dot{S}\dot{W}}(G) = \gamma_{Tctp}(G)$.

Proof

Let we take $G = (\sigma, \mu)$ be a fuzzy graph and consider the fuzzy set which is Tctpof $\dot{S}(G)$. it satisfies the condition $\mu(u, v) = \sigma(u) \land \sigma(v)$ and $d_N(u) \ge d_N(v)$. Also Tctp is strongly triple connected. Therefore the nodes of $\dot{S}(G)$ and Tctp(G) are same. Similarly for $\dot{W}(G)$. Hence $\gamma_{\dot{S}\dot{W}}(G) = \gamma_{Tctp}(G)$.

Observation 3.17

The complement of \dot{S} and $\dot{W}(G)$ need not be a \dot{S} and $\dot{W}(G)$.

Example 3.18

Fuzzy Graph G

Complement of Fuzzy Graph G

Now $Tctp(G) = \{e, a, b\}, \{a, b, c\}, \{b, c, d\}$ and $\{c, d, e\}$ are triple connected, but complement of Tctp(G) is not a triple connected.

4. Conclusion

We initiated the idea of strong triple connected total perfect (\dot{S}) dominating set, weak triple connected total perfect dominating set (\dot{W}) of fuzzy graph. The new kinds of

observations are initiated for S and W dominating set of fuzzy graph. We conclude that the S and W dominating number are obtained and discussed some results with example.

REFERENCES

- [1]. Bhutain.K.R and Rosenfeld.A, Strong arcs in fuzzy graphs, Information Sciences, 152(2003)319-322.
- [2]. Cockayne.E.J and Hedetniemi.S.T, Towards a theory of domination in graphs, Networks, 7(1977)247-261.
- [3]. Mahadevan.G and Selvam, Triple connected domination number of a graph, International Mathematics Combin, 3(2012)93-104.
- [4]. Manjusha.O.T and Sunitha.M.S, Connected domination in fuzzy graphs using strong arcs, Annals of Fuzzy Mathematics and Informatics, (2015).
- [5]. Manjusha.O.T and Sunitha.M.S, Total domination in fuzzy graphs using strong arc, Annals of pure and applied Mathematics, 9(1)(2015)23-33.
- [6]. Nagoorgani.A and BasheerAhamed.M, Order and Size in fuzzy graph, Bulletin of Pure and Applied Sciences, 22(2003)145-148.
- [7]. Nagoorgani.A and Chandrasekaran.V.T, Domination in fuzzy graph, Advances in fuzzy and system, 1(2006)17-26.
- [8]. Revathi.S, Harinarayanan.C.V.R and Jayalakshmi.P.J, Perfect dominating sets in fuzzy Graph, IOSR Journal of Mathematics, 8(3)(2013)43-47.
- [9]. Revathi.S, Harinarayanan.C.V.R and Muthuraj.R, Connected perfect domination in fuzzy Graph, Golden Research thoughts, 5(2015)1-5.
- [10]. Revathi.S, Harinarayanan.C.V.R and Muthuraj.R, Connected total perfect dominating set In fuzzy graph, International journal of computational and applied Mathematics, 12(1)(2017)84-98.
- [11]. Rosenfeld.A, Fuzzy graphs, Zadeh.L.A, Fu.K.S and Shimura.M, Fuzzy sets and their Applications, Academic press, New York, (1975)77-95.
- [12]. Sarala.N and Kavitha.T, Triple connected domination number of fuzzy graph, International Journal of Applied Engineering Research, 10(51)(2015)914-917.
- [13]. Sarala.N and Kavitha.T, Strong (Weak) Triple connected domination number of fuzzy graph, International Journal of Computational Engineering Research, 05(11)(2015)18-22.
- [14]. Somasundaram.A and Somasundaram.S, Domination in fuzzy graphs, Pattern Recognition Letter, 19(9)(1998)77-95.
- [15]. Zadeh.L.A, Fuzzy sets, Information sciences, 8(1965)338-353.