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Abstract 

  To estimate the channel in a time division duplex (TDD) mode of a large-scale 

multi cell system in the uplink, a maximum likelihood estimator (MLE) is proposed for 

reduction of pilot contamination problem and compared with the traditional estimators; 

least squares (LS) and minimum mean square error (MMSE). An i.i.d Rayleigh channel 

model is considered for the fast fading channels. Simulations have been performed in 

MATLAB with Monte-Carlo Simulations to observe that the proposed estimator MLE 

performs better than the traditional channel estimators for complex systems. 

 

Keywords: Pilot Contamination, Maximum Likelihood Estimation, Massive 
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1. Introduction 
Wireless technology has become the primary enabler of progressive and pervasive 

network access over the years. With the upsurge in technology, various gadgets are being 

enhanced each day with wireless capabilities to fulfill the needs and practices of the 

world’s population with major challenges in data throughput, latency, and coverage. To 

meet the requirements of users, one way is to increase the amount of base stations and 

densify the network. However, this will increase interference and deployment costs. 

Another option is to increase the number of antennas and introduce large-scale antennas 

which will decrease deployment cost and will achieve high performance. Over the past 

several years large scale MIMO has come forth as being among the core innovations and 

key aspects of all developed and enhanced cellular wireless systems [1-7]. 

 
 

Figure 1 Massive MIMO Uplink System 
 

In the modern communication system, the massive MIMO antenna technology 

has become a very important and effective innovation. Multiple input single output 

(MISO) technology and single input multiple output (SIMO) technology were used with a 

single antenna at transmitter and receiver but it caused problems with multipath effects [8]. 

While these traditional technologies are having problems in providing high data 
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throughputs, massive MIMO with large-scale antennas provide 10s of Gbps data rates for 

real-time multimedia wireless services. Massive MIMO attained much attention as it 

provides truly broadband wireless networks [9]. The time division duplex (TDD) feature 

is generally used in large scale MIMO systems. BS receives orthogonal pilot signals from 

respective users in the uplink to estimate the channel [10]. 

Large scale antennas gained substantial attention as it is one of the 5th Generation 

physical layer candidates. Due to these large scale antennas at the base station, higher 

multiplexing and diversity gains can be gained for uplink and downlink training. The 

usage of large scale antennas provides several other advantages too like a better signal to 

noise ratio, coverage, capacity, reliability, and energy-efficient system [11]. Hence, the 

influence of noise and fast fading is tremendously decreased. The BS needs to know the 

responses of the channel estimated in the uplink training by transmitting noise and inter-

cell interference contaminated pilot signals. In pilot patterns, several adjacent cells can 

use the same pilot sequence and may overlap due to extensive network deployment and 

limitation of channel coherence interval. This overlapping of pilot positions and inter-cell 

interference will have a direct impact on channel estimation performance, generating pilot 

contamination [12]. 

 

 
Figure 2 Pilot Contamination Scenario 

The augmentation of massive MIMO encounters many problems and pilot 

contamination is among some of the biggest challenges faced by massive MIMO. It is a 

key factor to limit the efficiency and potential capacity gain of massive MIMO due to 

deteriorated channel estimation and restricted orthogonal pilots at limited cohesive 

intervals and bandwidth [13]. Various schemes have been developed to alleviate this pilot 

contamination challenge. Among different existing schemes, pilot assignment, precoding 

process, and channel estimation are key aspects. Most popular among these are channel 

estimation methods. Channel estimation is a very crucial component of cellular 

transmission since the precision of estimation can influence the efficiency of data 

transmission. 

Channel estimation plays a vital role in massive MIMO in reducing pilot 

contamination and increasing system efficiency. Training sequence algorithms, blind 

channel estimation algorithms, and semi-blind estimation algorithms are some of the 

categories used for channel estimation. Training sequence-based linear algorithms 

perform much better than latter estimation techniques. Non-linear algorithm eigenvalue-

decomposition based approach can also help to reduce pilot contamination [14]. However, 

utilizing practical training based channel estimator for multi cell massive MIMO systems 

will result in very high throughput with less pilot contamination. In TDD systems, the 

general methods for evaluation are uplink and downlink calculation [15-20]. However, 

due to pilot contamination and hardware, the downlink measurement is limited by channel 

reciprocity [21]. 

In this article, we consider the challenges of pilot pollution in Rayleigh fading 

channels with uplink training and consider its effect on our system. We present and 
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analyze an effective and realistic channel estimator Maximum Likelihood which does not 

require prior information of large scale noise power, inter and intra cell interference. We 

demonstrate that this estimator is unbiased and attains Cramér–Rao bound. Being classic 

estimators, both LS estimator and ML estimator is equal in a linear model where we 

assume an unknown channel coefficient in additive white Gaussian noise (AWGN). 

Simulation result demonstrates that MLE works better than LS and MMSE when done 

with Monte-Carlo Simulations in calculating both bit and mean square error rates. The 

modulation of the data sequence is performed in QAM and QPSK scheme at the 

transmitter for multi-cell massive MIMO TDD network. 

The rest of this article is split into four sections: in the first section, we 

demonstrate the system model for multi cell massive MIMO system, second, we present 

the popular estimation techniques LS and MMSE for estimating channel. In the third 

section, we propose a maximum likelihood estimator for Rayleigh fading channels. The 

fourth section displays simulation results to prove the efficiency of the proposed channel 

estimator and finally, we will present the conclusion of this article. 

 

2. System Model 
We suppose a massive MIMO multi cell uplink network from single antenna 

terminals tM to one base station in each cell with rM  transceiver antennas. The system 

includes cell 1 as a desired cell. In the desired cell, the generated signal consists of the 

required symbols from L interfering cells. In the present scenario of massive MIMO 

configuration, r tM M is satisfied. 

 

 

Figure 3 System Model of Multi cell Uplink Massive MIMO 
 

2.1. Signal Model 

The pilot signal is given at the required BS as 

1

l

l l
l

Y JX J X N
=

= + +                                                                                                    (1) 

Where
1 11

, J ,Jt tr M MM

lY C C C
 

   , represent received vector, transmitted vector of 

required cell and the 
thl  interfering cell accordingly and lJ represents the corresponding 

cell. 
1rM

N C


  is the AWGN vector. 
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1

L

l l
l

W J X N
=

=  +                                                                                                            (2) 

By considering all these vectors as independent and identical complex random variables 

and noise and interference as a unique matrix, we can write the above equation (1) as 

Y JX W= +                                                                                                                    (3) 

 

2.2. Uplink Training 

The multi cell system contains L cells and every cell in the system is arranged 

with a BS with rM  antennas and tM  randomly located single-antenna users. We can 

represent that the received pilot signal in 
thl  cell as 

1 1 2 2(J .... )lY X J X N= + + +                                                                                          (4) 

It contains pilots from other users which are present in other cells. Thus, pilot 

contamination cannot be avoided as the same pilots are being used in different cells. For 

estimation in the uplink, the 
thl  BS will receive the uplink training sequence as 

   

1

L
H

u u u u

l

Y q J X W
=

= +                                                                                                    (5) 

 Where q  represents uplink power, uX  is the pilot transmission matrix, uY  is received 

signal matrix and uW  represents the AWGN matrix with I.I.D entities
2( , )CN O  .   

2.3. Least Square Channel Estimation: 

A conventional LS estimation algorithm is considered for estimation in uplink 

training. The receiver of the required cell first obtains  pilot symbols and then utilizes 

the   signals in pilot positions to generate a receiving signal matrix y-ϵ CM
r
* . 

Y J X W= +                                                                                                                   (6) 

Where X ϵ CM
t
* , W ϵ CM

r
*  and the correlative pseudo-inverse matrix is defined as X 

ϵ CM
t
* . 

The received output of LS channel estimation is 
^ †

1( )
H H

J yx yx xx −= =                                                                                               (7) 

Taking Hermitian on both sides 
H H

H Hy x J W= +                                                                                                              (8) 

2|| ||
H H

Hy x J−                                                                                                                   (9) 

Again taking Hermitian on both sides 

^ ^
1( ) ( )

H
H H

LSJ J yx xx −= =                                                                                               (10) 

Mean Square Error of LS can be given as 
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{( ) ( )}H

LS
LSLSMSE E J J J J

 

= −               (11) 

By putting the value of ĤLS in equation (11), we get 

1 1

{(J ) (J X Y)}
H

LS
MSE E X Y

− −

= − −                           (12) 

Now, inserting the value of Y from equation (3) in equation (12) 
1 1

{(J (XJ )) (J ( ))}
H

LS
MSE E X W X XJ W

− −

= − + − +                                                       (13) 

By solving equation (13), we get 
1 1

MSE {( ) ( )}H

LS E X W X W− −=                                                                           (14) 

2

2

W

LS

X

MSE



=

                                                                                                                (15) 

2.4. Minimum Mean Square Channel Estimation: 

Bayesian channel estimator MMSE is a more realistic approach than LS channel 

estimator to reduce noise enhancement. LS approach is simple in computation but 

produces lesser MSE than MMSE. The MMSE estimator requires information of 

statistical details of parameters to be estimated. To find the MSE of MMSE, we will use 

the general equation (6) 

Y J X W= +  

Where X is the pilot vector, Y is the observation vector, W is noise vector and J is a 

complex channel coefficient that means it is complex Gaussian. By obtaining a strong 

linear estimate in form of weight vector M and LS value, we will define
^

J MJ , the 

MMSE estimator reduces the mean square error (MSE) for both the true channel J and the 

MMSE estimated channel
^ MMSE

J . The MMSE channel estimate for this scenario is given 

as: 

^
2Z( ) {|| e || }J E=              (16) 

^
2Z( ) {|| e || }J E=                   (17) 

The estimation vector 
^

v J J= − is orthogonal to J as per the principle of orthogonality 

^

{vJ } {(J ) J }H HE E J= −            (18) 

After inserting the value of 
^

J in equation (18), we get 

{vJ } {(J ) J }H HE E MJ= −           (19) 

{vJ } {JJ } {JJ }H H HE E ME= −              (20)   

{vJ } 0HE =              (21)   
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As J is a symmetric complex Gaussian parameter, it will have two parts; real and 

imaginary with mean j and variance
2

j . MMSE channel estimate of both real and 

imaginary parts will always be equal in the complex parameters scenario. 

The MSE of MMSE is given as:  

^

2 ^
1

2
( )W

MMSE JJ
J J

X

MSE R R I J




−= +                                                                              (22) 

2.5. Maximum Likelihood Channel Estimation: 

To perform parameter estimations by ML, we will first form a log-likelihood 

function in terms of the parameter to be estimated. Applying the ML method for a 

complex parameter, we find the following result 

^
H

H

x y
j

x x
=                                                                                                          (23) 

^

2|| ||

H

x y
j

x
=                                                                                                          (24) 

This estimator has { }E j j


=  which describes that ML estimator is unbiased and variance 

of ML estimator can be given as 

2

2
var( )

|| ||
j

x


=                                                                                                          (25) 

More efficiency of the estimator can be achieved by deriving Cramer-Rao lower bound as 

2

2
var( )

|| ||
j

x


            (26) 

In general, for a complex parameter, the MSE of ML Channel Estimate can be given as 

2
2

2 2
( )

|| || || ||

H

MLE

x y
MSE

x x


= +                                                                                       (27) 

Where 

2

2|| ||x


is variance and 

2

2
( )
|| ||

H

x y

x
is the squared bias relationship of the estimator. As 

MLE is an unbiased estimator so in this case, the MSE of MLE will be equivalent to its 

variance and the squared bias. 

 

3. Simulation Results 

To obtain simulation results for the decontamination of pilot contamination 

through channel estimation techniques, we used MATLAB for massive MIMO TDD 

systems. BER and MSE performances over SNR has been achieved for LS, MMSE and 

ML estimation methods. We assume a simple but realistic approach to prove the 

efficiency of our proposed estimator with Rayleigh fading model. We simulated our 
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results with 4 antenna terminals and 100 receiver antennas with 4 number of pilot 

sequences. SNR value for each simulation result used is 30dB. A simple comparison of 

BER and MSE has been done between LS and MMSE methods in figure 4 and figure 5. 

 

Table 1 Simulation Parameters 

Serial # Parameters Values 

1 Mr 100 

2 Mt 4 

3 Monte-Carlo Simulations 10e2 

4 Num_pilot 4 

5 Constellation QAM,QPSK 

6 SNR 30dB 

7 Fading Model Rayleigh 

 

 

Figure 4 BER vs SNR for LS, MMSE 
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Figure 5 MSE vs SNR for traditional LS, MMSE 
 

 

Figure 6 BER vs SNR for QPSK, QAM 
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Figure 7 MSE vs SNR for QPSK, QAM 
 

BER and MSE performance for Bayesian estimator MMSE and classic estimator MLE 

has been done with both QAM and QPSK modulation schemes in figure 6 and figure 7 

and proved that QPSK produces better results than QAM. 

 

Figure 8 BER vs SNR for LS, MMSE and MLE 
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Figure 9 MSE vs SNR by Monte-Carlo Simulations method for LS, MMSE, 
and MLE 

 

Monte-Carlo simulations method with 10e2 iterations is used to evaluate BER and MSE 

performance to show significant achievement of the proposed estimator as compared to 

other estimation techniques in figure 8 and figure 9. As we discussed earlier, LS and MLE 

are equal in terms of unknown channel coefficient with AWGN. The use of Monte-Carlo 

Simulations cross-validated the same errors numerically. 

 

4. Conclusions 

Pilot Contamination can substantially reduce the functionality of massive MIMO 

system and a major challenge in 5G massive MIMO networks. Traditional channel 

estimation methods used to mitigate this challenge cannot achieve very high performance 

due to the complexity of large number of unknown channel coefficients. However, to 

alleviate the effect of pilot contamination we implemented ML Estimate to ease the pilot 

multiplexing and to reduce this effect of pilot contamination. Improved results by 

simulation work proved that ML Estimation done with Monte-Carlo Simulations provides 

better results than conventional LS and MMSE estimation. 
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