
International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

 

507 

 

 

Tuning Hadoop Parameters for Heterogeneous Multi-node Cluster 
 

Gurwinder Singh* 

Research Scholar, School of Computer Applications, Lovely Professional 

University Punjab, India. 

Dr. Anil Sharma 

Professor School of Computer Applications, Lovely Professional University 

Punjab, India. 
 

 

Abstract 

 

Hadoop, an open source implementation of MapReduce, turns out to be de-facto platform 

which is appropriate for storage of data in distributed as well as local machines to analyze 

and process huge amount of information on commodity hardware. It provides a wide range 

of parameters with default and common configuration settings for single-node as well as 

multi-node clusters and applications. If allows the user to alter the configuration 

according to requirements via modifying xml files. Tuning parameters of a Hadoop is a 

challenging task as to execute even a simple program requires the alteration of different 

parameters. Therefore, optimum parameters tuning can improve Data Locality, amount of 

data processed as well as enhances the utilization of Network, Processor and input/output. 

This paper attempts to throw a light on the literature associated with customization of 

parameters for better tuning and optimal utilization of resources by proposing a 

framework to suggest and modify the parameters to enhance Hadoop performance in 

heterogeneous multi-node cluster.  
 

Keywords: Hadoop, HDFS, MapReduce, Parameters.  

I. INTRODUCTION 

 In this modern world the flooded and massive data is growing in structured, 

semi-structured and unstructured form consisting of audio, video, text, numbers, images, 

photographs, stagnant data, radar data, social media data and streaming data [1]. This data 

is collected from huge datasets repeatedly for immediate exploration with the help of 

complex applications and tools to visualize, store, route, and analyze the facts and figures 

from different perspectives for various sources. Organizations ranging from small to large, 

utilizes this Big Data as supreme fragment in the process of decision making [2]. Big Data 

can be categorized, as per the Volume, Velocity, Variety, Volatility, Variability, Value, 

Validity, and Veracity, by eight V’s [3][4][5]. 

 Doug Cutting and Michael J. Cafarella, created Hadoop in context to be data intensive 

to support Nutch search engine project [6]. Hadoop is designed on the basis of master-slave 

architecture as shown in Fig.1. It offers easy solution for distributed and parallel computing 

with an ability of skipping the description related to communication recovery program [7]. 

The master JobTracker is responsible for management of resources of cluster, job 

scheduling, handling fault-tolerance and monitoring the progress. The TaskTracker 

module, present on each of the slave nodes, is accountable for throwing parallel tasks along 

with task status to the JobTracker. Responsibility of slave node here is to run as well as 

execute one or the other Map or Reduce tasks, and is bifurcated into static computing slots 

[8]. 

As a typical Hadoop cluster contains number of commodity computers therefore the jobs 

 
 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

508 

 

allocated to TaskTrackers need not be all the time Data or Rack local[1]. On deciding about 

the number of mappers and reducers, the user programs are executed by splitting the input 

file into default 64MB blocks and allocating these blocks among various slave nodes [2]. 

The physical distance of nodes and clusters may cause communication delays, resulting in 

longer waiting time for task’s I/O and low utilization of CPU resources [1]. Hadoop offers, 

a replication policy for creating multiple copies of a block on different nodes plus racks, 

enhanced scalability and capability of installation on low-budget hardware to deal fault 

tolerance [3]. It consists of modules Distributed file system (HDFS) and MapReduce 

model for storing and processing of data. 

 

Fig. 1. Apache Hadoop Architecture 

 Being motivated by GFS, Hadoop Distributed File System (HDFS) is used for storage of 

huge data (terabytes or even petabytes) and files on several computers [4]. By replicating 

data on geographically diverse nodes and different servers it attains reliability. These nodes 

dialogues to: rebalance scattered data, create and transport replicas, and preserve high data 

replication rate. HDFS contains: NameNode and DataNode where the NameNode acts as 

master in order to manage namespace and the DataNode is slave node used to store blocks 

of data nearby and remote locations following distributed policy to perform read/write 

requests [5]. 

 MapReduce model being soul of Hadoop offers great scalability crossways for 

enormous servers in cluster of Hadoop. It consists of a static pipeline of two individual 

tasks: map and reduce, where map task is responsible for converting the input set of data 

into a different dataset by splitting each element into key-value pairs and reduce task chains 

the key-value pairs obtained from a map task to form set of pairs for generating output[6]. 

The map function performs phases: read and sort, and then store the output file to node’s 

local storage. The reduce function performs shuffle, sort and reduce phases [7].  Data 

locality and Amount of data processed by Hadoop plays an important role in improving the 

performance of job execution in MapReduce [8]. 

II.  HADOOP PARAMETERS CONCERNS AND   RECOMMENDATIONS 

A. HDFS associated parameters 

[6] conducted an experimental analysis on the factors system configuration and task 

scheduling to identify the root causes in tuning Hadoop performance in heterogeneous 

environment by studying effects of Speculation, block size, early shuffle, buffer size and 

assigning map/reduce tasks dynamically as per the capacity of node. 

 Authors in [9] analyse Hadoop’s read and write operations performance with different 

files sizes of 1GB, 2GB, 4GB and 8GB for MapReduce jobs and concluded that HDFS is 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

 

509 

 

better designed for grander size files rather than default block size as well as performance 

falls when size of file is not as much of the default block size. 

 In order to [10] study the behaviour of map and reduce functions when a hefty number 

of files are provided along with the number of bytes read/write by these functions. The 

experiment was initially started with 499 files and doubled the files for each interval till 

7984 files. 

 Hadoops low performance in heterogeneous environment motivates [11] to introduce 

a strategy for data placement to place data crossways the nodes in a way so that each node 

has stable load of data processing. [12] throw a light on the problems like tuning number of 

map/reduce tasks, cluster configuration, locality of data, application logic, blockages in 

system, low resource utilization, block reports and replication that degrades performance 

of heterogeneous Hadoop cluster along with suggestions to improve it. 

B. MapReduce associated parameters 

To ease the overall execution time of jobs in Hadoop [1] introduces a dynamic slot 

scheduling scheme for handling rigorous I/O jobs via utilizing resources of CPU 

effectively on TaskTracker nodes in clusters. 

 According to [7] Hadoop offers different ways to configure parameters in its variants 

while deploying and this involves vast knowledge of hardware and application for 

appropriate modification in configuration of a parameter. Configuring parameters by 

assigning wrong values result in degraded system performance and low utilization of 

resources at disposal. Sailfish which is one of the improved variations of Hadoop provides 

auto-tuning and minimized disk i/o operations to establish number of reducers and 

supervising intermediary data skewness dynamically.  

 Focusing on configuration of slot and complications of scheduling tasks, [13] 

proposed novel approach FRESH, for minimizing the makespan of job and enhancing 

fairness to support both static and dynamic slot configurations by undertaking the decisions 

regarding number of map/reduce slots required and allocating map/reduce jobs to available 

slots. 

 To measure the degree of CPU deployment for individual map task and IO throughput 

two counters for Hadoop are introduced to forecast optimum Map Slot Value using the 

proposed low-overhead technique [14]. Map Slot Value, which limits on the number of 

total map tasks that can run at the same time on single node, remains among essential 

parameters which directly affect the way resources are allocated and furthermore 

influences Hadoop performance. 

 To overcome the problem of delay in completion time of job and lower rate of resource 

utilization [15] proposes a scheme for scheduling the slots for map-reduce tasks to 

minimize I/O wait during job implementation and improve resource utilizations in order to 

strengthen overall performance. 

 [16] proposes a structure for evaluating the performance to ease the user efforts in 

MapReduce for fine-tune the settings of reduce task (shuffle, reduce and write) and map 

task (read, map, collect, spill, merge) with help of performance models: workflow model 

along with platform model to optimize the performance. 

 For the efficient use of available resources on the basis of load of each node, [17] 

proposes a method for which can take decision about number of tasks to be execute. In 

multi-node environment of Hadoop this method reduces execution time by 11.1% for the 

given jobs and controls concurrent execution of jobs on each TaskTracker.  

 As compression can upturn the processor work to cut I/O demands, therefore a 

decision method was developed by [18] to aid the users of MapReduce about when and 

where compression can be used. This method results in 35% to 60% saving energy for 

heavy and extremely compacted data.  



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

510 

 

 In order to significantly lower the cost of system [19] proposed a function for 

MapReduce using clustering algorithm for mean shift to execute the jobs in better way with 

optimum values for parameters along with analysing the data sets for minimizing energy 

usage, increased system performance and complexity management. 

C. Parameters associated commonly with HDFS and MapReduce 

In case of processing batch tasks Hadoop’s default configuration results in low 

utilization of resources which in turn delays in execution time [13] . Furthermore [13]  

proposes a dynamic effective slot configuration to allocate appropriate tasks to slots while 

processing batch of map/reduce jobs to provide enhanced fairness and make span. 

 One of the major issues in MapReduce framework is optimum utilization of resources as 

it requires configuring various parameters with impeccable balance which is time 

consuming and challenging practice. [20] performs an analysis to explore various 

parameters of Hadoop under varying configurations and settings to attain better throughput 

with an emphasis on execution time and throughput for scheduling jobs. By conducting 

experiments compare default scheduling methods and to study the behaviour of 

configuration of parameters [20] recommends optimum value for individual cases.  

Performance of Hadoop is affected due to misconfiguration of parameters as it requires 

fine-tuning number of parameters even to run a simple individual job. [21] introduces an 

adaptive mathematical model as configuration tool for configuring Hadoop parameters to 

attain optimized performance with an aim of dynamically adapting the configurations in 

both h/w and s/w level parameters in adequate timeline.        

 The issues framework configuration and fare use of resources encountered by 

application developers motivates [22] to design a framework to systemize Hadoop 

configuration on the basis of gathered need of performance for application. 

 To overcome the time consuming process in Hadoop to configure the parameters of 

MapReduce jobs having non-linear and multi-dimensional structures [23] propose 

predators for 23 parameters as a capable directed optimizer for configuration by utilizing 

execution time of job and categorizing the parameters with aim of reducing search time by 

controlling the rate of visiting un-favourable blocks. 

 Hadoop provides enormous distinct configuration properties which affect its 

performance and keeping this in view [24] discuss few methods used for tuning hardware 

and software components on TeraSort dataset on two different clusters with different 

configurations which shows an increase in processing up to 4.2x on one cluster and 2.1x on 

another cluster.    

 Hadoop is designed to process large datasets but if it need to take small datasets then it 

causes performance drawback. Therefor to overcome this with an improvement of about 

23% in performance [25] proposes job execution performance optimizer to moderate the 

timeline for setup/clean-up of job in initializing/termination phases, supplement pull 

method with push method for assigning tasks and swapping heartbeat centred method with 

prompt method for communication between master and slaves i.e. TaskTracker and 

JobTracker       

 [26] presents a detailed study on energy efficacy in MapReduce for different loads 

which results in pinpointing the factors: replication factor of block size along with 

distributed file system, CPU intensive and I/O intensive to conclude that a noble tuning of 

parameters results in enhanced performance along with better utilization of resources for 

energy saving. 

 [27] assimilates on going practices in semantic search and machine learning on the 

basis of ontologies to propose a new approach with an aim to enhance performance of 

applications in Hadoop to tune the parameters by categorizing them according to influence 

on system performance, Hadoop phases and workloads characteristics. 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

 

511 

 

 [28] introduces a regression model with 87% of accuracy to ascertain the associations 

between Hadoop configurations, workload characteristics and performance by identifying 

a set of configuration metrics, critical metrics and a way of workload grouping via cluster 

analysis which can intensely affect Hadoop’s performance.  

  [29] conducted an experimental analysis to study impact of parameter on Hadoop 

performance using a representative class of MapReduce programs on different structures of 

cluster and suggests an instance to automate parameters tunning. 

III. TAXONOMY OF TUNING HADOOP PARAMETERS 

When Hadoop is installed it provides number of configurations for setting up the 

parameters having default values in xml file. The parameters may be of cluster level or job 

level. Furthermore based on influence behaviour the parameters can be classified as: Map, 

Reduce and intermediary phases where intermediary phases consist of shuffling and 

merging. The default values of parameters in Hadoop are further configurable and can be 

customised through Coding, updating xml files and passing values at execution time [21] .  

The parameters in XML files: conf/hdfs-site, core-site, and mapred-site in Hadoop can be 

customised by user if they are not protected using keyword final. With help of methods 

hadoop –D and hadoop -conf   the default configuration value of parameter can be changed 

at run time using:    

hadoop jar examples.jar example_name –D name_of_property(key)= new_value 

 Hadoop offers users to configure value of parameter using Configuration Class 

through coding. To create an object of class the syntax is: 

ReflectionUtils.newInstance(Class<T> theClass, Configuration conf) 

Parameters configuration in Hadoop can be classified on the basis of workload 

characteristics like I/O, CPU, memory, network and number of mappers as depicted in 

Table-I, Table-II and Table-III. 

Table I: Memory associated parameters:  

Phase Parameter Initial 

value 

Function 

Sort/ 

Shuffle 

mapreduce.

task.io.sort.

factor 

10 Choose number of streams to be merged at one time 

while sorting the files and determines handling the 

number of open file. 

mapreduce.

task.io.sort.

mb 

512 Decides on the size of memory requisite at time of 

sort. 

Map mapreduce.

map.memo

ry.mb 

1536 Decides on how much memory to limit for map task. 

mapreduce.

map.java.o

pts 

Xmx1024

M 

Decide on size of heap memory for maps child java 

virtual machines. 

Reduce mapreduce.

reduce.me

mory.mb 

3072 Choose amount of memory for reduce task. 

mapreduce.

reduce.java

. opts 

Xmx2560

M 

Decide on size of heap memory for reduce task 

child java virtual machines. 

 

 

 

 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

512 

 

Table II: I/O associated parameters  

Phase Parameter Initial value Function 

Cluster level/ 

Merge/Shuffl

e 

dfs.blocksize 128 MB 

134217728 bytes 

Responsible for choosing 

size of block for a file. 

dfs.replication 3 Decide about replication 

factor of a block. 

dfs.replication.interv

al 

3 Decides period at which 

replication takes place in 

datanodes 

dfs.data.dir ${hadoop.tmp.dir

}/dfs/data 

Decides where a data node 

can store the blocks on its 

local filesystem. 

fs.default.name file:/// Universal Resource 

Identifier that decides the 

FileSystem execution 

structure as well as 

authority.  

dfs.default.name -- It holds NameNodes 

location. It is requisite of 

HDFS and MapReduce. 

io.sort.record.percen

t  

0.05 Agree on the fraction for 

io.sort.mb to acquire at time 

of sorting the file. 

io.sort.spill.percent 0.80 Choose the proportion of 

spill while sorting 

operation. 

io.sort.factor 10 

 

Choose number of total 

streams to merge at one time 

during sort operation of 

files. 

io.file.buffer.size 4096 Decides on amount of data 

to buffer at time of read plus 

write processes. 

mapred.min.split.siz

e 

64MB Require each map to 

process 2 hdfs blocks 

(1-block = 64MB) 

io.sort.mb 100 Decide on memory of buffer 

mandatory while 

performing file sorting.  

Job Level/ 

Core Job 

mapred.output.com 

pression.type 

RECORD Choose type of compression 

for output. 

mapred.output.com 

pression.codec 

org.apache.hadoo

p.io.compress.De

faultCodec 

Accountable to codec while 

compressing the job output. 

Map 

mapred.compress. 

map.output 

False Results in deciding the map 

output compressed or else? 

mapred.map.output.

compression.codec 

org.apache.hadoo

p.io.compress.De

faultCodec 

Choose codec during 

compressing of job outputs 

for map phase. 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

 

513 

 

IV. FRAMEWORK 

Proposed framework given below will enhance the overall performance of jobs in Hadoop 

on the basis of workload of job and modified parameter values in heterogeneous 

environment.    

Algorithm: 

1. Run Hadoop MapReduce job(s) along with default values of parameters to analyse the 

performance and store these results on basis of workload characteristics like I/O, CPU, 

memory and time taken. 

2. Apply changes to modify default values and then again execute the job(s) to analyse the 

performance and store these results. 

3. Compare results of both situations i.e. with default parameter values and with modified 

parameter values to analyse whether performance is tuned or not? 

4. If results show improvement in performance then repeat step 2 till results are in better 

tuning than default values, else go to step 5. 

5. Exit 

Table III: CPU associated parameter 

Phase Parameter Initial value Function 

Map mapred.map.tasks 2 No. of mappers tasks per 

job 

mapred.TaskTracker.map.t

asks.maximum 

2 No. of mapper tasks for job 

to be executed by a task 

tracker simultaneously  

mapred.map.tasks.speculat

ive.execution 

True No. of multi-instances of 

mappers for parallel 

execution. 

Reduce mapred.reduce.tasks 1 No. of reducers tasks 

required per job 

mapred.TaskTracker.reduc

e.tasks.maximum 

2 No. of reducer tasks for job 

to be executed by a task 

tracker simultaneously 

mapred.reduce.tasks.specu

lative.execution 

True No. of multi-instances of 

reducers for parallel 

execution. 

Core Job mapred.output.compress False Required output of job to be 

compressed or not? 

mapred.output.compressio

n.type 

BLOCK Whether job outputs to be 

compressed as 

SequenceFiles? Must be 

NONE, RECORD or 

BLOCK. 

mapred.reduce.slowstart.c

ompleted.maps 

0.0 

0.5 

1.0 

 

Value 0.0 starts the 

reducers immediately, 0.5 

start the reducers while 

about half of the mappers’ 

tasks are done, and value of 

1.00 wait until mappers 

finished the job. 

mapreduce.map.output.co

mpress 

False Whether to compress map 

Outputs or not? 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

514 

 

 

Fig. 2. Framework to modify values 

 Following set of modified values for parameters given in Table-IV are used for running 

different Hadoop jobs.  

  

Table IV: Modified values  

Parameter 
Default 

Value 

Modified value of 

parameter 

1
st
 2

nd
 3

rd
 

dfs.blocksize 64 128 256 512 

dfs.replication 3 5 7 9 

io.sort.factor 10 20 30 50 

io.sort.mb 100 120 150 170 

Execution time of job 1000 550 450 355 

Improvement over baseline (%) N.A 30 55 64.5 

V. EXPERIMENTS AND RESULTS 

 Using modified values experiments were carried on Hadoop 1.2.1 multi-cluster nodes 

using Ubuntu 12.04(LTS) with one master and five slave nodes. The master node is 

Intel(R) Core(TM) i7-2630 QM CPU @ 2.00 GHz, and 8 GB of RAM.  

 

Table V: Experimental setup configuration  

Node Processor RAM 

Master Intel(R) Core(TM) i7-2630 QM CPU @ 2.00 GHz 8GB 

Slave-1 Pentium(R) Dual-Core CPU E5800 @ 3.20 GHz 3GB 

Slave-2 Intel(R) Pentium(R) Dual CPU E2160 @ 1.80 GHz  1GB 

Slave-3 Pentium(R) Dual-Core CPU E5800 @ 3.20 GHz 2GB 

Slave-4 Intel(R) Pentium(R) D CPU 2.80 GHZ 1GB 

Slave-5 Pentium(R) Dual-Core CPU E5800 @ 3.20 GHz 2GB 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

 

515 

 

 Results of experiments to calculate execution time, Total CPU time along with CPU 

utilization by jobs TeraSort, WordCount and Pi are shown in Table-VI. CPU utilization by 

these jobs with default values is shown in Fig.3. 

CPU utilization = (Total CPU time/Execution time) x 100 

Table VI: Performance on Single-cluster node  

Parameter TeraSort WordCount Pi 

Execution time 2050 1170 14 

Total CPU time 398.18 219.25 1.65 

CPU utilization 19.42 18.73 11.78 

 Furthemore to anlyze the performance of suggested and modified values of parameters 

(Table-IV) for different jobs on multi-cluster heterogeneous environment experimental 

results are shown in Table-VII. 

 

 

Fig. 3. Evaluation of CPU utilization single-cluster node 

 

Table VII: Performance on Multi-cluster nodes 

Parameter Job 
No. of Nodes 

1 2 3 4 5 

Execution time 

TeraSort 2050 388 131 473 426 

WordCount 1170 762 190 426 182.4 

Pi 14 12 19 17 23 

Total 

CPU time 

TeraSort 398.18 111.50 100.35 125.45 102.86 

WordCount 219.25 177.29 132.75 127.44 126.9 

Pi 1.65 1.32 1.45 1.06 1.35 

CPU utilization 

TeraSort 19.42 28.73 76.60 26.52 65.93 

WordCount 18.73 23.27 69.87 29.91 69.57 

Pi 11.78 11 7.63 6.23 5.87 

 

 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

516 

 

 

 
 

 

Fig. 4. Execution time, CPU time and CPU utilization of muti-node cluster 

 

CONCLUSION AND FUTURE WORK 
 

The default parameter configuration of Hadoop is not appropriate for all type of clusters 

especially heterogeneous. Fine tuning Hadoop Parameters in right manner can enhance 

data locality and amount of data processed to improve the performance of resources. In 

future, further to improve data locality and amount of data processed there is need to design 

a frame that offers better arrangements of parameter configuration setting via executing 

different Hadoop jobs with varying parameter sets. There is need to design a novel 

scheduling framework to offer enhanced data locality as well as enriched amount of data 

processing to improve overall performance of Hadoop in Heterogeneous multi node 

cluster. Proposed framework along with better combination of values for different 

parameters can enhance the performance of Hadoop in heterogeneous environment. 

REFERENCES 

[1] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo, “Dynamic processing slots scheduling for I / O 

intensive jobs of Hadoop MapReduce,” in 2012 Third International Conference on Networking and 

Computing, 2012, pp. 288–292. 

[2] C. A. Hansen, “Optimizing Hadoop for the cluster,” 2012. 

[3] T. White, Hadoop: The Definitive Guide, 4th ed., vol. 4. O’Reilly Media, 2015. 

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” in 2010 

IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST2010, 2010, pp. 1–10. 

[5] M. Vaidya, “Parallel Processing of cluster by Map Reduce,” International Journal of Distributed and 

Parallel Systems, vol. 3, no. 1, pp. 167–179, 2012. 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

 

517 

 

[6] X. Zhao, L. Liu, Q. Zhang, and X. Dong, “Improving MapReduce Performance in a Heterogeneous 

Cloud  : A Measurement Study,” in 2014 IEEE 7th International Conference on Cloud Computing, 

2016, no. June 2014, p. 8. 

[7] V. Kalavri and V. Vlassov, “MapReduce: Limitations, optimizations and open issues,” in Proceedings 

- 12th IEEE International Conference on Trust, Security and Privacy in Computing and 

Communications, TrustCom 2013, 2013, pp. 1031–1038. 

[8] A. Sharma and G. Singh, “A Review on Data locality in Hadoop MapReduce,” in 5th IEEE 

International Conference on Parallel, Distributed and Grid Computing(PDGC-2018), 2018, pp. 

723–728. 

[9] T. L. S. R. Krishna, D. T. Ragunathan, and S. K. Battula, “Performance Evaluation of Read and Write 

Operations in Hadoop Distributed File System,” in 2014 Sixth International Symposium on Parallel 

Architectures, Algorithms and Programming, 2014, pp. 110–113. 

[10] A. Pal, P. Agrawal, K. Jain, and S. Agrawal, “A Performance Analysis of MapReduce Task with Large 

Number of Files Dataset in Big Data Using Hadoop,” in 2014 Fourth International Conference on 

Communication Systems and Network Technologies, 2014, pp. 587–591. 

[11] J. Xie et al., “Improving MapReduce Performance through Data Placement in Heterogeneous Hadoop 

Clusters,” in 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops 

and Phd Forum (IPDPSW), 2010, p. 9. 

[12] B. T. Rao, N. V Sridevi, V. K. Reddy, and L. S. S. Reddy, “Performance Issues of Heterogeneous 

Hadoop Clusters in Cloud Computing,” Global Journal of Computer Science and Technology, vol. 11, 

no. 81–87, 2011. 

[13] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “FRESH  : Fair and Efficient Slot Configuration and 

Scheduling for Hadoop Clusters,” in 2014 IEEE 7th International Conference on Cloud Computing, 

2014, no. June, p. 9. 

[14] K. Kc and V. W. Freeh, “Tuning Hadoop map slot value using CPU and IO metrics,” in Big Data 

Benchmarks, Performance Optimization, and Emerging Hardware: 4th and 5th Workshops, BPOE 

2014, J. Zhan, R. Han, and Chuliang Weng, Eds. Springer, 2013, pp. 141–153. 

[15] Y. Yao, J. Wang, B. Sheng, and N. Mi, “Using a Tunable Knob for Reducing Makespan of MapReduce 

Jobs in a Hadoop Cluster,” in 2013 IEEE Sixth International Conference on Cloud Computing, 2013, 

p. 8. 

[16] Z. Zhang, L. Cherkasova, and B. T. Loo, “Getting More for Less in Optimized MapReduce 

Workflows,” in 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 

2013), 2014, no. May, p. 8. 

[17] K. Yamazaki, R. Kawashima, S. Saito, and H. Matsuo, “Implementation and Evaluation of The 

JobTracker Initiative Task Scheduling on Hadoop,” in 2013 First International Symposium on 

Computing and Networking, 2013, pp. 622–626. 

[18] Y. Chen, A. Ganapathi, and R. H. Katz, “To Compress or Not To Compress Compute vs . IO tradeoffs 

for MapReduce Energy Efficiency,” in Green Networking ’10 Proceedings of the first ACM 

SIGCOMM workshop on Green networking, 2010, pp. 23–28. 

[19] G. Sasiniveda and R. N, “Performance Tuning and Scheduling of Large Data Set Analysis in Map 

Reduce Paradigm by Optimal Configuration using Hadoop,” International Journal of Computer 

Applications, vol. 70, no. 21, pp. 37–41, 2013. 

[20] G. Bansal, A. Gupta, U. Pyne, M. Singhal, and S. Banerjee, “A Framework for Performance Analysis 

and Tuning in Hadoop Based Clusters,” in Smarter Planet and Big Data Analytics Workshop (SPBDA 

2014), held in conjunction with International Conference on Distributed Computing and Networking 

(ICDCN 2014), Coimbatore, INDIA, 2014, p. 6. 

[21] C. Li et al., “An Adaptive Auto-Configuration Tool for Hadoop,” in 2014 19th International 

Conference on Engineering of Complex Computer Systems, 2014, pp. 69–72. 

[22] D. Wu and A. Gokhale, “A Self-Tuning System based on Application Profiling and Performance 

Analysis for Optimizing Hadoop MapReduce Cluster Configuration,” in 20th Annual International 

Conference on High Performance Computing, 2013, pp. 89–98. 

[23] K. Wang, X. Lin, and W. Tang, “Predator - An Experience Guided Configuration Optimizer for 

Hadoop MapReduce,” in 2012 IEEE 4th International Conference on Cloud Computing Technology 

and Science Predator, 2012, pp. 419–426. 

[24] S. B. Joshi, “Apache Hadoop Performance-Tuning Methodologies and Best Practices,” in ICPE ’12 

Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering, 2012, pp. 

241–242. 

[25] J. Yan, X. Yang, R. Gu, C. Yuan, and Y. Huang, “Performance Optimization for Short MapReduce Job 

Execution in Hadoop,” in 2012 Second International Conference on Cloud and Green Computing, 

2012, pp. 688–694. 

[26] B. Feng, J. Lu, Y. Zhou, and N. Yang, “Energy Efficiency for MapReduce Workloads  : An In-depth 

Study,” in ADC ’12 Proceedings of the Twenty-Third Australasian Database Conference - Volume 

124, 2015, no. April, pp. 61–70. 

[27] A. Bonifacio, A. Menolli, and F. Silva, “Towards an Ontology-Based Semantic Approach to Tuning 

Parameters to Improve Hadoop Application Performance,” IT in Industry, vol. 2, no. 2, pp. 56–61, 

2014. 



International Journal of Future Generation Communication and Networking 

 Vol. 13, No. 1, (2020), pp.507-518 

518 

 

 

 

[28] H. Yang, Z. Luan, W. Li, D. Qian, and G. Guan, “Statistics-based Workload Modeling for 

MapReduce,” in 2012 IEEE 26th International Parallel and Distributed Processing Symposium 

Workshops & PhD Forum, 2012, pp. 2043–2051. 

[29] S. Babu, “Towards Automatic Optimization of MapReduce Programs,” in SoCC ’10 Proceedings of 

the 1st ACM symposium on Cloud computing, 2010, pp. 137–142. 
 

AUTHORS PROFILE 

Gurwinder Singh MCA, M.Phil, M.Tech(IT) working as Assistant Professor in Sikh National 

College Banga and doing research in School of Computer Applications, Lovely Professional University 

Punjab, India. He is having more than 13-years of teaching experience. He is a member of CSTA.  

Publications: 

1. “A Review of Scheduling Algorithms in Hadoop” published in Proceedings of ICRIC 2019 by  

Springer, Lecture Notes in Electrical Engineering-597. 

2. “A Review on Data locality in Hadoop MapReduce” published in IEEExplore. 

3. “ A Review of Big Data Challenges and Preserving Privacy in Big Data” published in proceedings 

of  2nd International Conference on Data and Information Sciences (ICDIS 2019) by Springer 

”Advances in Data and Information Sciences”.   

4. “A Study on Big Data Tools and Applications” published in IJRECE VOL. 6 ISSUE 2 APR.-JUNE 

2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

5. “Big Data Applications” published in International Journal of Advance Research in Science and 

Engineering (IJARSE) Vol. Issue 10 October 2017. 

 

 Dr. Anil Sharma MCA, Ph.D. working as Professor in School of Computer Applications, Lovely 

Professional University Punjab, India. He received his doctorate from HPU Shimla. He has over 18 

years of Academic experience.  He has published more than 10 research papers in reputed journals. His 

area of interest includes Databases, Cloud Computing, and IOT.  

 

 

 

 


