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Abstract 

 

The reference design is developed for evaluating 13-W isolated active clamp flyback 

Powered Devices converter using the IEEE802.3 at Power Over Ethernet interface and DC/DC 

controller TPS23756.  The converter is capable of supporting the 13-W permitted IEEE802.3 at 

power requirements.  It presents good efficiency, load regulation and associated electrical 

performance.  It supports IEEE802.3 at compliant power devices.  This combines PowerOver 

Ethernet Poawered Device and DC/DC controller simplifies the model.  It provides high efficiency 

and better EMI performance with soft-switching technology.  All the measurements were done using 

the DC source to stimulate Power Over Ethernet Power Supply Equipment.  A isolated active clamp 

flyback converter with hiccup protection reference design is implemented in Printed Circuit Board. 

Keywords: : Power over Ethernet, Powered Devices, Power Supply Equipment,Flyback 

Converter,DC/DC controller,Soft-Switching Technology. 

INTRODUCTION 

Power-over-Ethernet (PoE) applications preferred high efficiency due to restricted input power.  The 

IEEE 802.3at specification limits the input power of a powered device to 13 W for low-power systems 

and 25.5 W for high-power systems.  Telecommunication applications, which can have battery 

backup or  exigent  thermal requirements, additionally requires high efficiency.  For several reasons, 

employing an active reset is an excellent choice for optimizing efficiency in these and many other 

low-power applications. 

 

First, the transformer currents soften the switching losses of the primary MOSFETs. Second, the 

clamp provides near lossless snubbing on the primary.  In the forward converter, the transformer is 

always driven into the first and third quadrants, providing better core utilization.  There is no 50% 

duty-cycle limitation, allowing for wide input ranges and lowering the stresses on the switching 

components. Third and most significant, the secondary’s voltage waveforms are ideal for 

implementing self-driven synchronous rectifiers. 

 

The DC-DC controller attributes two complementary gate drivers with programmable dead time. This 

simplifies the model of active-clamp forward converters or optimized gate drive for highly-efficient 

flyback topologies. The second gate driver is also disabled if desired for single MOSFET topologies. 

The controller additional attributes internal soft start, bootstrap start-up source, current-mode 

compensation, and a 78% maximum duty cycle.  
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PROPOSED SYSTEM 

BLOCK DIAGRAM 

 

LMV431A-Low-Voltage(1.24V) Adjustable Precision Shunt Regulators 

The LMV431, LMV431A and LMV431B are exactitude1.24 V shunt regulators capable of 

adjustment to 30 V. Negative feedback from the cathode to the adjust pin controls the cathode 

voltage, very similar to a non-inverting op amp configuration . A two-resistor potential divider 

terminated at the regulate pin controls the gain of a 1.24 V band-gap reference. Shorting the cathode 

to the alter pin (voltage follower) provides a cathode voltage of a 1.24 V. 

 

The LMV431, LMV431A and LMV431B have relavent initial tolerances of 1.5%, 1%, and 0.5%, and 

functionally lend themselves to several applications that prefers zener diode category performance at 

low voltages. Applications incorporate a 3 V to 2.7 V low drop-out regulator, an error amplifier in a 3 

V off-line switching regulator and at the same time as a voltage detector. These parts are typically 

stable with capacitive loads greater than 10 nF and less than 50 pF. 

The LMV431, LMV431A and LMV431B offers performance at a competitive price. 

TPS23756-High Power/High Efficiency PoE Interface and DC/DC Controller 
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The TPS23756 devices has a combined power-over-ethernet (PoE), powered-device (PD) interface, 

and current-mode DC-DC controller optimized specifically for isolated converters. The IEEE 802.3 is 

supported by the power-over-ethernet interface. 

The TPS23754 and TPS23756 support a range of input voltage ORing alternativesincluding 

maximum voltage, external adapter preference, and power-over-ethernet preference. These attributes 

allow the designer to work out that power supply can carry the load below all conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Power over Ethernet interface attributes the new extended hardware classification necessary for 

compatibility with high-power midspan power sourcing equipment (PSE) per IEEE 802.3at. The 

detection signature pin may also be used to force power from the Power over Ethernet source off. 

Classification can be programmed to any of the outlined types with a single resistor. 

A programmable and synchronizable generatorpermits design optimization for efficiency and eases 

use of the controller to upgrade existing power supply designs. Exact programmable blanking, with a 

default period, simplifies the typical current-sense filter design trade-offs. 

The TPS23754 device has a 15-V converter start-up whereas the TPS23756 device has a 9-V 

converter start-up. The TPS23754-1 replaces the PPD pin with a no-connect for enhanced pin spacing. 
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Flyback Converter 

When cost is a major concern, the flyback topology is usually the preferred choice. In its basic 

outline, it utilizes a single primary FET and a single secondary rectifier. The latter will be either a 

diode or a synchronous FET. Many design references exist for the flyback converter. Adding 

synchronous rectification and active clamp to the flyback converter can provide significant gains in 

efficiency. 

 

Figure shows the simplified power stage for a flyback converter with an active clamp and a 

synchronous-FET rectifier. A diode-rectified flyback  converter allows the secondary current to flow 

in only one direction and can operate in discontinuous-conduction mode (DCM) at light loads. 

Interestingly, a flyback converter with synchronous rectifiers allows the secondary current to flow in 

both directions and forces a continuous conduction mode (CCM) to occur over the entire load range. 

At light loads, this AC circulating current will reduce the efficiency (compared to a diode-rectified 

flyback) as it flows though the primary FET, secondary FET, and transformer. Choosing the correct 

primary inductance for the power transformer willscale back the losses by reducing the AC circulating 

currents. 

Transformer Design 

When the primary inductance for the flyback transformer is selected, trade-offs need to be made. With 

lower inductance, losses at light loads will be ligher due to the higher peak-topeak AC circulating 

current. Higher inductance will improve light-load efficiency by reducing the peak-to-peak ripple 

current. But higher inductance will require more primary turns and larger core.  This will increase the 

winding losses and reduce the efficiency at higher loads.  Also, the right-half-plane zero (RHPZ)  in 

the control loop is inversely proportional to the primary inductance.  

RHPZ=
Rload×(1−D)2

2𝜋𝐿𝐷
 

 As the inductance increases, the RHPZ moves lower in frequency. To achieve acceptable phase and 

gain margins, the loop crossover frequency should be at least one decade below the RHPZ frequency. 

A primary inductance that results in a peak-to-peak ripple current of 25 to 50% of the maximum load 

current is usually a good compromise between peak-to-peak current, transformer size, and RHPZ 

frequency. 
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For a flyback converter operating in CCM, the transformer turns ratio and input-voltage range 

determine the duty-cycle range: 

𝐷 =
𝑉𝑂𝑈𝑇 ×

𝑁𝑝𝑟𝑖

𝑁𝑠𝑒𝑐

𝑉𝐼𝑁 + 𝑉𝑂𝑈𝑇 ×
𝑁𝑝𝑟𝑖

𝑁𝑠𝑒𝑐

 

An input range of 36 to 75 V covers most PoE An input range of 36 to 75 V covers most PoEand 

telecom applications. For this input range,the transformer turns ratio is usually selected toachieve a 

maximum duty cycle of 60% at theminimum input voltage of 36 V. This results ina minimum duty 

cycle of approximately 42% atthe maximum input voltage of 75 V. One of thebenefits of the flyback 

topology is that it canaccommodate a wide input range without severechanges in duty cycle. Fig. 7 

shows how thechoice of transformer turns ratio affects the VDSratings of the primary FETs (Q1 and 

Q2). The sum of the input voltage and reflectedoutput voltage is plotted versus the input 

voltage,where the duty cycle was set to 60% for a 36-Vinput. This neglects the effects of any 

peakingfrom the clamp resonance, which must also beconsidered before the VDS rating of the 

primaryFETs is determined. 

 

Active-Clamp Circuit 

Because of the large voltage spike that occurs when Q1 turns off, a primary FET with a ligher voltage 

rating is often required. FETs with higher voltage ratings generally have higher RDS(on) and slower 

switching times, both of which reduce efficiency.  Resistor R1 in the lamp must also dissipate part of 

the energy in the leakage inductance, which can be significant. In addition, the voltage overshoot and 

ringing that occur when the primary FET’s drain is turned off may create an EMI issue. 

 

Because of the large voltage spike that occurs when Q1 turns off, a primary FET with a ligher voltage 

rating is often required. FETs with higher voltage ratings generally have higher RDS(on) and slower 

switching times, both of which reduce efficiency.  Resistor R1 in the lamp must also dissipate part of 

the energy in the leakage inductance, which can be significant. In addition, the voltage overshoot and 

ringing that occur when the primary FET’s drain is turned off may create an EMI issue. 
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The active-clamp circuit, provides significant benefits versus an RCD clamp the drain-to-source 

voltage of the primary FET no longer has the large voltage spike when it is turned off. Instead of 

being dissipated in a resistor, the leakage energy is mostly recovered and returned to the input 

capacitors. Eliminating the leakage spike permits a primary FET with a lower VDS rating to be used, 

improving efficiency. Potential EMI issues are also significantly reduced. 

In the operation of an active-clamp flybackconverter, the transformer’s primary leakage inductance 

plays a crucial role. A simplified schematic of the flyback converter’s activeclamp power stage, 

including the leakage inductance.  

 

 
When Q1 is on, operation is the same as with a standard flyback converter. The current flows into the 

transformer’s primary, storing energy in the primary’s magnetizing and leakage inductances.  

During this time, Q2 and Q3 are off, while the output capacitor supplies current to the load. 

1 
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When Q1 turns off, Q2 and Q3 turn on. The stored energy in the magnetizing inductance is diverted 

by Q3, supplying current to the load and charging the output capacitor. The output capacitor is 

connected across the secondary winding and gets reflected through the transformer to the primary, 

essentially shorting the primary winding.  With the voltage on the primary’s magnetizing inductance 

held to the reflected output voltage, the current flowing in the clamp will resonate with Lleakage and 

Cclamp at a frequency of 

𝑓𝑐𝑙𝑎𝑚𝑝 =
1

2 × √ Lleakage × Cclamp
 

The instantaneous current flowing in the clamp circuit at the moment when Q2 turns on is equal to the 

peak primary current. Neglecting circuit losses, the clamp current will resonate fclamp while Q1 is 

off. 

 

 

As can be seen from the clamp current’s waveform, the current will flow in both directions through 

Q2. The magnitude and direction of the clamp current when Q2 turns off depends on the duty cycle. If 

the clamp current is flowing from drain to source when Q2 turns off, the clamp current continues to 

flow through the body diode of Q2. In this scenario, when Q1 turns on, Cclamp dispenses until the 

body diode of Q2 completes reverse recovery and turns off. This results in significantly increased 

power dissipation in Q1. To prevent this condition, it is required for fclamp to be selected such that 

the clamp current is flowing from source to drain through Q2 when Q1 turns on. If fclamp is set equal 

to the switching frequency, the current will be flowing in the correct direction for duty cycles between 
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25% and 75%. (The cosine waveform crosses 0 at p and 3p/2.) Cclamp is typically selected to obtain 

an acceptable value for fclamp, per Equation (6). The leakage inductance can be measured or taken 

from the transformer specification. The measured leakage inductance can be much lower than the 

maximum rated leakage from the transformer specification. To account for variations in the leakage 

inductance, fclamp should be about 20% lower than the switching frequency. 

Soft Switching 

Before Q1 turns off, the peak primary current is flowing through the transformer’s agnetizing 

inductance, leakage inductance, and Q1 to ground. When the gate of Q1 is pulled low, the current 

stored in the magnetizing inductance (gap) begins to transfer to the secondary winding, but only after 

the voltage on the secondary transitions up to the point where theinternal diode of Q3 is forward-

biased.  

 

 
 

When Q1 is completely off, the current flowing in the leakage inductance is commuted from Q1 

through the clamp capacitor and body diode of Q2 before Q2 actually turns on. After a delay time, Q2 

is turned on with 0 V across it. The load and duty cycle have no effect, because the peak current is 

always flowing in the same direction during this transition. 

 

 
 

Assuming that the clamp frequency was properly chosen, the clamp current will flow from source to 

drain through Q2 before Q1 turns on.  When Q2 is switched off, the clamp current will continue to 

flow through the body capacitance of Q2, resonating with the leakage inductance. The clamp current 

also commutates to the body capacitance of Q1, again resonating with the leakage inductance. It can 

be seen that Q2 switches off with 0 V across it.  
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After a delay,the gate of Q1 transitions high, and Q1 begins to turn on. As may be seen from the 

waveforms, this transition does not take place with the voltage fully at zero. At maximum load, the 

drain of Q1 resonates down toward ground before Q1 is switched on, achieving partial zero-voltage 

switching. At lighter loads), Q1’s drain voltage does not resonate as far down because there is less 

energy stored in the leakage before this transition occurs.  Since the resonant frequency of the falling 

drain voltage depends on various parasitic capacitances and the leakage inductance of the transformer, 

it is difficult to precisely calculate the required delay time. The best way to select a delay time is to 

measure these waveforms on an actual converter with maximum load. The delay time should be set 

such that Q1 turns on just before Q1’s drain voltage reaches the resonant valley. 

 

CONCLUSION AND FUTURE WORK 

The project represents an example of systematic approach to the assessment of High-Efficiency 

Active Clamp Flyback Converter Design.  This article provides an introduction to PoE and the higher-

power Power over Ethernet, outlining the standards, explaining the components parts, Powered 

Devices, Power Supplying Equipment, “midspan” and “endspan” Ethernet switches and splitters and 

describing a simple system.  When developing or upgrading an Ethernet-based communication 

systems, investing on PoE architecture is a cost effective upgrade for industrial based Ethernet 

switches systems, as it reduces the need to maintain numerous separate remote interruptible power 

source units to guard against data loss during power outage situations. 
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