
International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 206

 Copyright ⓒ 2019 SERSC

A Superlative Approach to Improve the QoS by Load balancing in Cloud

Computing

Vrajesh Sharmaa*, Manju Balab

aPh.D. Research Scholar, I.K.Gujral. Punjab Technical University, Kapurthala (Punjab),

India.
bDirector, Khalsa College of Engineering & Technology, Amritsar , (Punjab), India.

Abstract: Scheduling of tasks and resources is a big problem in cloud computing, as there are many

factors such as priority, cost, quality of service and deadline which need to be taken care of before

devising any scheduling strategy. Efficient job scheduling algorithm enables the optimal utilization of

resources in cloud computing platform. Sometimes while scheduling, some virtual machines (VMs)

get over-loaded and some remain under-loaded which produces adverse effect on the throughput of

the system. The quest to balance the load during scheduling of cloudlets paves the path for the

research in the load balancing mechanisms. Prevalent priority based job scheduling strategies are

silent in deciding scheduling scheme for tasks with the same priority and strive hard in appropriately

allocating jobs to virtual machines. A Credits based task scheduling algorithm was rendered using

modified K-means for clustering of jobs and VMs but it was observed that for providing optimized

performance, this arrangement further needed some load balancing strategy to balance the load.

Therefore, Honey Bee Foraging behaviour inspired Load balancing technique was roped in for load

balancing. Work pertaining to the use of Honey Bee Foraging Load Balancing Algorithm coupled

with credits based scheduling and modified K-means clustering technique is not available. Results

indicate that the proposed scheduling algorithm has excelled existing priority-based scheduling

strategy and it has been empirically proven with experimental/simulated results in this paper.

Keywords: Honey Bee, Load Balancing, Cloud Computing, Honey Bee Foraging Behavior, Virtual

Machine Scheduling, Scheduling Credits Based Algorithm with Modified K-means, Priority Based

Scheduling, Modified K-means, Quality of Service in Cloud Computing, QoS, Swarm Intelligence.

1. Introduction

Cloud Computing has revolutionized the concept of computing and has brought the new trend in the

enterprise business by bringing in the idea of utility oriented IT services to users worldwide. Due to

its global market and services, millions of jobs are submitted for execution at a time, which makes the

scheduling in cloud an np hard problem. Virtualization has provided the much needed technological

base to allow multiple virtual machines (VMs) on the top of a hardware computing resources and has

brought in the idea of cost effective cloud computing platforms [1, 2]. Optimal Utilization of

available computational resources has always been a challenge in cloud computing and to design and

deploy an efficient task scheduling strategy is a major area of interest for many researchers [3, 4].

Datacenter broker handles and manages the crucial task of Mapping of Cloudlets to Virtual Machine

and it also maintains and keeps the record of available Virtual Machines and ensures Quality of

Service during execution of tasks [5, 6]. Good performance by VMs promises good quality of service

but when a Low Performing VM is allocated to a High Performance job, it underutilizes the available

resources resulting in weak performance and throughput which principally violates Service Level

Agreement (SLA) [5]. It was observed that despite the categorization of jobs and VMs, some

machines were found underloaded while other were overloaded with tasks. Whenever a VM is

overloaded with tasks, it needs to be shifted to VMs which are lying idle or are underloaded at that

given time. This rearrangement should be done in a way that brings in good mix of priorities when no

task needs to starve or wait for long to get processed. Load balancing aims to optimize the use of

available resources, improves the makespan time and minimizes the latency. There are basically two

types of load balancing techniques viz (1) Static and (2) Dynamic. Static algorithms work well when

the tasks and VMs have lesser variation in terms of real time parameters but in cloud environment

where load would be varying at various times, Dynamic load balancing algorithms are proven

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 207

 Copyright ⓒ 2019 SERSC

advantageous. Due to the changing workload dynamics, conventional load balancing algorithms have

many drawbacks in cloud environment. To address these challenges, Swarm Intelligence algorithms

(SI), such as ant colony optimization (ACO), and artificial bee colony (ABC), were rendered in recent

decades [7]. They achieve a great progress in the dynamic situations of cloud computing. Therefore,

many researchers have experimented with Swarm Intelligence algorithms such as foraging for food

and used them to balance load in cloud environment.

2. Literature Survey

Many researchers/scholars are studying and researching in the fields of Scheduling for Virtual

Resources (Non-dominated Sorting Genetic Algorithm II) [4], Context Aware Scheduling [14], Cost

Based Scheduling [15], Dynamic Slot Based Scheduling [16] and Energy Efficient Optimization

Methods [17] to enhance the optimal usage of resources with minimal cost, by improving the

scheduling strategies in cloud computing. Some of the research work has been presented in the

inference table given below:

TABLE 1. INFERENCE TABLE

Sr.

No

Author Technique Description Future Scope

1. Lakra, A.

V. et al.

[5]

To aim at multiple

objectives while

keeping Quality of

Service as a primary

concern/criterion

In this algorithm, the jobs

having higher priority are

allotted with lower QoS and

the tasks allotted with

Higher QoS are the task

having lower priority value.

The whole focus of this

technique is to minimize

the total execution time

taken by a task

It can be further improved

by using some good method

for categorization of VMs

& Tasks and considering

more factors/parameters for

QoS. Some optimized load

2. Thomas,

A. et al.

[6]

An improved credit

based scheduling

algorithm

considering user

priority and task

length as two credits

Every task is allocated with

combined credits which are

obtained as a product of

task length credit and

priority credit.

This cumulative total of

credits becomes the base

for the actual scheduling of

the tasks

The proposed scheme is

silent on real time systems

where deadline is the

bottleneck and hence needs

research for delving out

more real-time parameters

and factors for tasks

priority. There is a scope

for balancing the load on

VMS by deploying some

efficient load balancing

algorithm

3. Selvarani

, S. et al.

[7]

A traditional cost

based scheduling

Depending upon their

processing capabilities,

various tasks/cloudlets were

grouped and allocated to

suitable processing

resources (VMs) to meet

the minimum total task

completion time and

minimum cost

can be advanced to handle

concurrent tasks,

considering more complex

scenarios with dynamic

parameters and real time

factors

4. Moses, J

et al. [8]

A shared resource

monitoring strategy

for understanding

the usage of

resources of each

Gathers resource usage

information across various

platforms while migrating

the VMs which are

resource-constrained.

Detailed profiling of VMs

is necessary to steer

scheduling strategies along

with VPA (Virtual Platform

Architecture) monitoring to

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 208

 Copyright ⓒ 2019 SERSC

Virtual Machine

(VM) on each

platform

Incorporated the concept of

priority assignment based

on the QoS, by taking into

account various constraints

such as execution time and

cost of application.

monitor cache on VMs

5. Ghanbari

, S et al.

[9]

A priority-based-

job-scheduling

technique (PJSC)

Multi-criteria-decision-

making (MCDM) model

considering multiple

attributes, complexity and

finish time. Based on

Analytical Hierarchy

Process (AHP)

Can be enhanced to achieve

even lesser makespan time

(finish time) by considering

other QoS parameters for

scheduling

6. Xiao, J et

al. [10]

A priority based

strategy for

discovering the

optimal choices

found that priority based

method has more

advancements over FCFS

technique and is far more

beneficial too

More information is

gathered on regular fashion

of its usage this strategy

can be advanced even

further.

7. Yang, L

et al. [11]

A class based

weighted fair

scheduling

(CBWFQ)

Existing fair queuing

scheduling algorithm

performs well in data

applications but does not

guarantee a fair service in

real time application. This

class based weighted fair

scheduling (CBWFQ)

technique improves the

network performances, time

delay and fairness.

This algorithm is also silent

in deciding scheduling

strategy where the job

priority is same.

8 Wang,

W.-J et

al. [12]

Algorithm is based

on adaptive

scheduling and

Quality of Service

(Adaptive-

Scheduling-with-

QoS-Satisfaction)

and named it AsQ

Devised for hybrid cloud

environment for calculating

the estimated execution

time of the submitted jobs.

This was referred as a

multi-choice knapsack

problem where a fast

scheduling strategy was

discussed using MAX_MIN

strategy without wasting

time on decision making

can be further advanced for

private clouds by devising a

better workload shifting

technique and taking into

account various parameters

like energy efficiency,

operation cost and

execution time

9. Gupta, G

et al. [13]

Deals with

Preemptive

scheduling of jobs.

It is an Earliest-Deadline-

First, priority based

scheduling method.

Authors have coined

waiting queue concept to

process the preempted jobs.

This algorithm is silent on

the use of any static or

dynamic load balancing

algorithm.

10. Ibrahim,

E et al.

[18]

An enhanced task

scheduling policy

where the available

VMs are allocated to

the requesting tasks

based upon their

processing powers

For effective estimation and

calculation of the execution

cost/price, authors have

used Amazon EC2 and

Google pricing models.

It can be further improved

by considering dynamic

workflow scheduling and

dependent tasks.

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 209

 Copyright ⓒ 2019 SERSC

and price of

execution.

11. Kaur, S.

et al. [19]

A Support Vector

Machine algorithm

using hybrid K-

means technique

Data is first partitioned in

to several ‘p’ equal parts

and then in the second step,

the centroid point is

calculated by taking the

arithmetic mean of the each

‘p’ part.

It can be used in series with

other categorizing or

grouping techniques.

12. L.D., D.

B et al

[20]

A dynamic load

balancing technique

based on Honey Bee

foraging behavior

In this method priorities of

the tasks have been

considered along with load

balancing.

It can be further improved

by taking other QoS factors

and more real time

parameters.

From the above Table 1, it is evident that in the real-time scenario, scheduling strategies based on

single criteria are far from providing an efficient solution; moreover, there is a strong need to balance

the load in the dynamic environment of cloud where millions of users submits their millions of jobs

worldwide [5]. Literature survey also indicates that the work pertaining to the use of multiple (four)

criteria/credits for deciding priority with modified K means clustering technique coupled with Honey

bee Foraging load balancing technique is not available; so, it was decided to consider four parameters

for assigning priority credits to Tasks, Modified K-means for clustering of tasks & VMs and Honey

Bee Foraging inspired Load Balancing technique to balance the load, to improve Quality of service

(QoS) and for optimal utilization of resources. Paper structure is as follows, Section-3 starts with

discussing the existing system and elaborates in detail the proposed work. Section-4 apprises the

necessary arrangements and Experimental Setup and also discusses the Simulation Results. Section-5

concludes the proposed work and suggests the future scope of the said research work.

s

3. Proposed Work

The existing credits based scheduling system has task length and task priority as two credits [6]. In

this arrangement, while sorting the tasks, there may arise many such cases in which two or more tasks

may have the same priority [2, 9]. Secondly, to allocate the tasks to appropriate VMs without

compromising throughput of the system is a major conern/issue. It was observed that in real time

systems, cost and deadline are very important factors which affect the priority of a task extensively

and without which we cannot handle real time jobs in time constraint.

Therefore, a new scheduling arrangement was proposed which uses four parameters namely Task

Length, Task Priority, Deadline of the Task and the Cost, to decide effective priority of a task. These

four parameters are combined to obtain the final credits for the task; the priority thus obtained would

not only be closer to real time scenario but would also reduce the chances of same priority occurrence

between the two tasks.

Total Credits of the task can be calculated as:

T_Crn = C_Lenn ∗ C_Prion ∗ C_Dlinen ∗ C_Costn

Once the credits are assigned to a task, another challenge is to appropriately map/allocate the tasks to

the VMs by the broker in a way that the Processing Time, Makespan Time (finish time) and Total

Computational Cost are optimized.

Categorization of Tasks & VMs:

1. After assigning total credits to the tasks, these tasks are sorted in descending order of the assigned

credits.

2. For the categorization of tasks and VMs modified K-means technique is incorporated which will

reduce the prediction error during mapping of the tasks to VMs [19].

3. Task clusters are made on the basis of four parameters i.e. Task_Length, Task_Priority, Deadline

and Cost.

4. Clustering at virtual machine side is done on the basis of Bandwidth, RAM, MIPS and Size.

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 210

 Copyright ⓒ 2019 SERSC

5. After applying Modified K-means clustering technique, the descending sort operation within the

clustered groups is performed, which further creates three groups (with priority levels high,

medium and low) in VMs and Cloudlets/tasks.

6. Thus, obtained cloudlet/task clusters are allocated/assigned to virtual machine clusters for ultimate

execution of the job.

This arrangement shows very good outcomes and accuracy levels except some pointed peaks.

Fig. 1 .Line Graph Representation to show the need to balance the load in the system

As shown in the Fig 1, some sharp spikes were observed while plotting the graphs for proposed

system, which suggests the need to balance the load by implementing some superlative technique of

load balancing. The proposed system can perform better if some optimized load balancing strategy is

applied along with the current arrangement. Therefore, to balance the load and improve the overall

stability and efficiency of the system it was decided to deploy Honey Bee Foraging Load balancing

algorithm along with the presented arrangement.

3.1 Load Balancing-Honey Bee Foraging Behavior

Load balancing is done at the virtual machine level i.e. intra datacenter level and in this algorithm

honey bee foraging behavior is modeled. This algorithm aims to balance the load on the VMs by

keeping the priorities of the task in consideration and waiting time of the tasks remains minimal.

Tasks are represented as bees and movement of tasks, from one location/VM to another to get

executed in minimal time, is regarded as the foraging behavior of Honey Bees. There can be three

types of movements as under:

1. Scout Bees: Hunt for the sources of food and when they find the suitable food source they

return back to bee hive and intimate others by waggle/tremble/vibration dance. This activity

tells the quality and distance of food to other bees.

2. Onlooker bees: keep track of how much food is left and is there at what location.

3. Employee Bees: These are the food supplies and keep neighborhood of supply in their

memory.

We can understand the implementation of this technique in the following procedure.

3.2 Procedure: Honey Bee Foraging Inspired Load Balancing Method

1. Analyze the Load using Honey Bee Algorithm and check Load and Capacity on VM with

Vmload = (N ∗ Tasklength) Vmmips⁄

Here N denotes the number of tasks, Tasklength denotes the length &VMMips is processing speeds of

VMs measured in Million Instructions per second.

VMCapacity = PENumber ∗ PEMips + VMBW

Where processing elements is denoted with PENumber and PEMips is Million Instructions per second

speed of processing element &VMBW is the allocated bandwidth/network speed associated with VM.

2. Calculate the processing time (PT) of VM

PT_Vmi = VmLoad Vmcapacity⁄

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 211

 Copyright ⓒ 2019 SERSC

3. Calculate Standard deviation (SD) of the load.

SD = √1 M⁄ ∑(PT_Vmi − PT_Vm)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

M

i=0

Where Processing Time of ith VM is denoted by PT_Vmi , average Processing Time of all VMs is

denoted by PT_Vm ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ & Virtual Machine in VM set is denoted my M.

4. Check the need for load balancing by setting threshold value between 0-1

 If (SD <= Threshold)

 VM’s are Balanced or Underloaded, No load balancing is required.

 Exit.

 If (SD> Average processing Time (Threshold))

 VM’s are Overloaded and Load balancing is required.

5. Categorize Underloaded and Overloaded VMs in groups.

 a) Tasks in Overloaded VM’s are considered as Bees and Underloaded VM’s are considered as food

sources.

 b) Calculate the supply value of Underloaded VM’s & demand value for Overloaded VM’s.

6. On the basis of priority Task Transfer takes place from overloaded VMs to Underloaded VMs.

 a) An appropriate Underloaded VM is located for each task in Overloaded VM.

 b) Demand and Supply in VM groups can be calculated as:

SupplyVm= Capacity – Load

DemandVm = Load – Capacity

7. Sort operation is applied on over-loaded & under-loaded VM sets

8. On basis of priority, Sorting of the tasks is done in over-loaded VMs.

9. An appropriate under-loaded VM is searched for each task in over-loaded VM.

10. Update over-loaded & under-loaded VM sets.

11. Repeat steps 6 to 10 till all the VMs are balanced.

Fig. 2 .Flow Chart Representation of the Proposed System (©self) // name is omitted due to double

blinds policy

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 212

 Copyright ⓒ 2019 SERSC

3.3 An optimized scheduling algorithm for improving efficiency of cloud computing: The course

of actions to implement the proposed strategy has been put in a succession (discussed in Procedures

1,2,3,4 & 5) as under.

Input: - (a) Unassigned Cloudlets/Tasks, (b) VMs.

Output: (a) Makespan Time, (b) Processing Time, (c) Processing Cost.

1. Input /Initialize the Tasks (Tn) to the Cloud Simulator (CloudSim 3.0.3)

(To assigns the priority credits on the basis of combination of task length, priority, deadline and

the execution cost assigned to the task)

2. For each n number of Tasks in T. // To assigns the priority on the basis of combination of

credits.

Total_Creditn = Credit_Lengthn ∗ Credit_Priorityn ∗ Credit_Deadlinen ∗ Credit_Costn

 End For

3. Apply the Modified K-Means Clustering technique on Tasks and segregate them into three

clusters.

4. Invoke Function MKMEANS(tasks) //Call Procedure 5:

Modified Kmeans

5. Initialize/Create Virtual Machines (VMs) in the Cloud Simulator (CloudSim 3.0.3).

6. For each VM v in VMs.

Get the values of (MIPS, Size bandwidth and ram) processing power, capacity, bandwidth

and memory of each VM.

 End For

7. Apply the Modified K-Means Clustering technique on VMs and segregate them into three

clusters.

8. Invoke Function MKMEANS(VMs) //Call Procedure 5: Modified

Kmeans

9. Perform Operation descending sort on Tasks and VMs and divide them in to High, Medium and

Low priority Clusters.

10. For Each Task/Cloudlet q

Assign Task/Cloudlet q to VMq of appropriate cluster

Vindex++

If Vindex>=VmListSize

{

Vindex= =0;

}

End For

11. For all Vmi //all Virtual Machines in the

Set

Loadi =
N ∗ Cloudlet_length

VM_MIPS

 // Find the load on the virtual machine, where N is the total number of tasks assigned to a

VM, Cloudlet_length is the length of single task and VM_MIPS is the MIPS rate of that VM.

12. Calculate capacity of a particular VM

Capacityi = PENum ∗ PEMIPS + VmBW

13. Calculate Processing Time

PT_Vmi =
Load

Capacity

14. Calculate Standard deviation (SD) of load

SD = √
1

N
∑(PT_Vmi − PT_Vm)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

N

i=0

 //Where PT_Vmi is Processing Time and PT_Vm ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is the average Processing Time of the

virtual machine

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 213

 Copyright ⓒ 2019 SERSC

15. Decide the state of VM groups based on load (whether system is overloaded or under loaded)

If SD<=threshold.

 System is balanced

Exit

16. Load balancing Decision

If Ld>Max_capacity

 Load Balancing is not possible

Else

 Trigger: Process Load Balancing

17. Process: Load Balancing // Find the supply of under loaded VMs and demand of overloaded

VMs

 Supply of each VM in LVM is

Supply of LVMj = Maximum Capacity −
Load

Capacity

 Demand of each VM in OVM is

Demand of OVMj =
Load

Capacity
− Maximum Capacity

18. Sort the overloaded VM sets based on the Load in Descending Order

19. Sort the under loaded VM sets based on the Load in Ascending Order

20. Sort the tasks in overloaded VMs based on priority

21. For each task

 Each overloaded VM (find a suitable under loaded VM)

 Update the overloaded and under loaded VM sets

 go to step 11

 End For

22. Mapping of the task with the virtual machines using function

Task.set VMid (m.id)

sendNow(virtual machine id, Cloudsim Submission Tag, Task);

23. Analyse the performance parameters Makespan Time (Finish Time), Processing Time and Total

Computational Cost.

Load Balancing using Honey Bee Foraging Behaviour coupled with categorised credits based

prioitised taks & VMs improves the performance of processor, saves memory allocated during tasks

and optimizes time on network operations by dropping datacenter’s workload.

4. Experimental Setup and Simulation

4.1 Cloud Simulator:CloudSim 3.0.3

The simulation of the proposed arrangement/algorithm has been done in CloudSim 3.0.3 cloud

simulation tool, using Java. It provides a conducive environment for cloud managing computing

applications and helps in creating datacenters, virtual machines and other facilities which can be

rapidly generated as per the need, easily. Selecting or Choosing a simulator, majorly, depends upon

the nature and kind of research. Many researchers recommend CloudSim as a general purpose

simulator due to its features, facilities and ease of use for simulation [21].

4.2 The Configuration of Proposed Simulated Environment

Basic Configuration for Proposed Simulated Environment is as mentioned in

TABLE 1. BASIC CONFIGURATIONS OF DATACENTERS

Number of Datacenters 5

Number of Hosts under each Datacenter 2

Total Hosts 10

Number of cloudlets/tasks 100-2900

Number of Brokers 1

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 214

 Copyright ⓒ 2019 SERSC

TABLE 2. BASIC CONFIGURATIONS OF HOST

Number of Virtual Machines (VMs) 80

RAM (MB) value initialized in simulator 20480

MIPS (Millions of instructions per second) 5000

Storage (MB) value initialized in simulator 1,048,576

Bandwidth (MB/sec) value initialized in simulator 76800

TABLE 3. VIRTUAL MACHINES AND THEIR BASIC CONFIGURATION

RAM (MB) value 256

MIPS (MIPS=250,count=0;count<15; MIPS+5,count++)

Bandwidth (MB/second) value

(bandwidth=1000,count<15;bandwidth+500,count

++)

Number of Cores 1

Size (MB) value

(size=10000,count=0;size<15;size=size+2343,cou

nt++)

4.3 Equations

Makespan Time: Makespan is overall task completion time for the jobs assigned for execution [20].

Completion time of task Tp onVMq as CTpq. .Therefore, the makespan (MS) can be represented as:

 MS = max{CTpq|p ∈ T, p = 1,2 … n and q ∈ VM. j = 1,2. . m} (eq. I)

Processing Time: Processing Time can be calculated as length of the task divided by the product of

MIPS of a Virtual Machine and Number of processing elements (NumberOfPes).

Processing time = CloudletLength / vmMips*vmNumberOfPes (eq. II)

Memory Cost: The memory utilization cost of a task can be calculated as CostPerMem * vm.getRam

 (eq.

III)

Total Computational Cost: It can be calculated by taking the product of Eq (II) * Eq(III).

Total Processing Cost = (CloudletLength / vmMips*vmNumberOfPes) *

(CostPerMem * vm.getRam)

 (eq. IV)

In simulation we can use any currency value as Units for Processing Cost and Total Computational

Cost.

4.4 Experimental Observations in Simulated Environment

Experimental Results of the existing Credit Based System having Length and Priority as two credits

are recorded in Table 4:

TABLE 4. EXPERIMENTAL RESULTS OF THE EXISTING SYSTEM

Credit Based System with Length and Priority as Credit Parameters

Sr. No Tasks

Makespan

Time (ms)

Processing

Time(ms)

Processing

Cost

(currency

units)

Total Computational

Cost

(currency units)

1 100 900.87 1738.30 20742.84 36057296.80

2 300 1902.37 8893.00 61385.04 545897082.37

3 500 3422.48 20954.57 100855.74 2113388657.45

4 700 4657.32 37611.77 139154.94 5233864063.75

5 900 5990.41 59442.53 176282.64 10478685898.92

6 1100 7481.82 85436.72 212238.84 18132990746.31

7 1300 8772.61 117096.99 247023.54 28925712576.10

8 1500 10556.19 152797.73 280636.74 42880656680.18

9 1700 11807.71 194043.94 313078.44 60750974598.88

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 215

 Copyright ⓒ 2019 SERSC

10 1900 13915.26 239090.43 344348.64 82330462928.07

11 2100 15131.89 290166.15 374447.34 108651942675.25

12 2300 17600.50 344919.18 403374.54 139131615967.62

13 2500 18788.49 405580.85 431130.24 174858169316.44

14 2700 21661.69 469679.62 457714.44 214979146491.28

15 2900 22829.98 540170.81 483127.14 260971176226.24

Experimental Results of the Proposed Credit Based System with Modified K-means Clustering

Algorithm coupled with Honey Bee Foraging Load Balancing Algorithm are mentioned in Table 5:

TABLE 5. EXPERIMENTAL RESULTS OF THE PROPOSED SYSTEM

Credit Based System (Task Length, Task Priority, Deadline & Cost) with Modified K-means

Clustering technique coupled with Honey Bee Foraging Load Balancing Algorithm

Sr. No. Tasks
Makespan Time

(ms)

Processing

Time(ms)

Processing

Cost

Total

Computational

Cost

1 100 57.29 1478.95 7961.93 11775303.76

2 300 211.19 6765.16 27347.76 185011953.91

3 500 640.98 15185.53 44980.58 683053848.73

4 700 1191.05 27534.06 61885.35 1703954812.34

5 900 1765.01 42164.44 81852.17 3451251235.62

6 1100 2795.45 63683.70 97626.43 6217212358.72

7 1300 3558.65 80664.45 138589.31 11179229744.62

8 1500 4730.92 102040.31 163989.09 16733496803.94

9 1700 5536.00 128972.08 187010.17 24119090130.63

10 1900 6822.96 159165.05 209598.43 33360745283.21

11 2100 6647.61 212129.56 201530.62 42750603325.20

12 2300 7738.63 257866.85 216971.83 55949841823.81

13 2500 9059.55 312632.45 231402.37 72343890753.57

14 2700 10308.81 358260.80 250676.92 89807714661.06

15 2900 11956.83 410653.12 268361.11 110203326536.39

4.5 Results & Discussions

From the above findings it has been empirically proven that the proposed system has excelled in

performance and presented reduced Makespan Time (eq. I), Processing Time (eq. II) and Total

Computational Cost (eq. IV) than the existing system while increasing the throughput of the cloud

computing system which can be analyzed in the Fig 3, Fig 4, Fig 5 & Fig 6.

After comparing Graphs in the Fig 1 and Fig 3 it is evident that the spikes occurred due to the

imbalance in the system have been smoothened out by deploying an optimized Honey Bee foraging

behavior inspired Load balancing algorithm and shows the steady behavior of the proposed algorithm.

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 216

 Copyright ⓒ 2019 SERSC

Fig. 3 Line Chart Graphical Representation of the

Experimental Results for Makespan Time in the

Existing System vs. Proposed System

Fig. 4 3-D Cluster-Column Graphical

Representation of the Experimental Results for

Processing Time in the Existing System vs.

Proposed System

Fig. 5 3-D Cluster-Column Graphical

Representation of the Experimental Results for

Processing Cost in the Existing System vs.

Proposed System

Fig. 6 Line Chart Graphical Representation of the

Experimental Results for Total Computational

Cost in the Existing System vs. Proposed System

Impact of the proposed system on processor, memory, network operations and subsequently on QoS is

as follows.

.

a. Processor: Experimental results indicate that the proposed approach provides 26.78% better

results in terms of Processing Time as compared to the Existing System. Thus, it improves the

efficiency of the processor while uplifting the performance of the whole system.

b. Memory: Simulation Results prove that the proposed system has gained huge leap in the

performance for Makespan Time by providing 63.60% better results than the existing system.

It has optimized memory utilization by relinquishing the occupied memory on cloud

resources, which is now free and available to other jobs/customers for use.

c. Network Operations: With the improved Makespan Time, Processing Time and Total

Computational Cost, the proposed system is saving time on network operations by making the

channel free earlier than the existing system and results indicate that the proposed system is

43.81 % better in terms of Total Computational Cost.

d. Quality of Service: By using, Honey Bee Foraging inspired superlative load balancing

technique, to balance the load on the VMs; the quality of service (QoS) has been improved

immensely which is vivid from the comparison of Fig 1 and Fig 3. The smooth line in the Fig

6 shows the consistency and reliability of the proposed algorithm with reduced total

Computational Cost.

5. Conclusion

In this paper, an optimized approach to improve the quality of service and efficiency of cloud

computing has been proposed. For optimal allocation of the tasks, a scheduling strategy was rendered

by categorizing VMs & credits based prioritized cloudlets. This arrangement had shown very good

results but it had also shown some sharp spikes while plotting the graph for the obtained readings.

These peaks were pointing towards an unbalanced load on some VMs and advocated that some

superlative load balancing technique was required to balance the load. Therefore an optimized Honey

Bee foraging inspired load balancing technique was deployed at VM level i.e. intra-datacenter level.

This arrangement has shown excellent results when compared to the existing system and has shown

the remarkable improvement in terms of balancing of load on VMs. In future, it can be further

improved by using more superlative load balancing techniques and more real time factors can be

included for deciding priority of the tasks.

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 217

 Copyright ⓒ 2019 SERSC

 References

[1] Bourguiba, M., Haddadou, K., El Korbi, I., & Pujolle, G. (2014). Improving Network I/O

Virtualization for Cloud Computing. IEEE Transactions on Parallel and Distributed Systems,

25(3), 673–681. doi:10.1109/tpds.2013.29

[2] Buyya R., Broberg J., Andrzej G., 2015. Cloud Computing: Principles and Paradigms, Wiley

India Pvt. Ltd. New Delhi, 637pp.

[3] Sharma V., Chhabra N., Bala M.,(2017) An Approach to Improve Efficiency of Cloud

Computing. In: Proceedings International Interdisciplinary Conference on Science Technology

Engineering Management Pharmacy and Humanities Held on 22nd – 23rd April 2017, in

Singapore, paper 27, ISBN: 9780998900001

[4] Journal, I., Technological, F., Lamba, A., Singh, S., Singh, B., Dutta, N., … Islands, C. (2017).

ANALYZING AND FIXING CYBER SECURITY THREATS FOR SUPPLY CHAIN

MANAGEMENT. 4(5), 5678–5681.

[5] Zhao, J., Zeng, W., Liu, M., & Li, G. (2011). Multi-objective optimization model of virtual

resources scheduling under cloud computing and it’s solution. 2011 International Conference on

Cloud and Service Computing. doi:10.1109/csc.2011.6138518

[6] Lakra, A. V., & Yadav, D. K. (2015). Multi-Objective Tasks Scheduling Algorithm for Cloud

Computing Throughput Optimization. Procedia Computer Science, 48, 107–113.

doi:10.1016/j.procs.2015.04.158

[7] Thomas, A., Krishnalal, G., & Jagathy Raj, V. P. (2015). Credit Based Scheduling Algorithm in

Cloud Computing Environment. Procedia Computer Science, 46, 913–920.

doi:10.1016/j.procs.2015.02.162 .

[8] Selvarani, S., & Sadhasivam, G. S. (2010). Improved cost-based algorithm for task scheduling in

cloud computing. 2010 IEEE International Conference on Computational Intelligence and

Computing Research. doi:10.1109/iccic.2010.5705847

[9] Moses, J., Iyer, R., Illikkal, R., Srinivasan, S., & Aisopos, K. (2011). Shared Resource Monitoring

and Throughput Optimization in Cloud-Computing Datacenters. 2011 IEEE International Parallel

& Distributed Processing Symposium. doi:10.1109/ipdps.2011.98

[10] Ghanbari, S., & Othman, M. (2012). A Priority Based Job Scheduling Algorithm in Cloud

Computing. Procedia Engineering, 50, 778–785. doi:10.1016/j.proeng.2012.10.086

[11] Xiao, J., & Wang, Z. (2012). A Priority Based Scheduling Strategy for Virtual Machine

Allocations in Cloud Computing Environment. 2012 International Conference on Cloud and

Service Computing. doi:10.1109/csc.2012.16

[12] Yang, L., Pan, C., Zhang, E., & Liu, H. (2012). A New Class of Priority-based Weighted Fair

Scheduling Algorithm. Physics Procedia, 33, 942–948. doi:10.1016/j.phpro.2012.05.158

[13] Wang, W.-J., Chang, Y.-S., Lo, W.-T., & Lee, Y.-K. (2013). Adaptive scheduling for parallel

tasks with QoS satisfaction for hybrid cloud environments. The Journal of Supercomputing, 66(2),

783–811. doi:10.1007/s11227-013-0890-2

[14] Journal, I., Technological, F., Lamba, A., Singh, S., Singh, B., Dutta, N., … Islands, C. (2017).

ANALYZING AND FIXING CYBER SECURITY THREATS FOR SUPPLY CHAIN

MANAGEMENT. 4(5), 5678–5681.

[15] Gupta, G., Kumawat, V. K., Laxmi, P. R., Singh, D., Jain, V., & Singh, R. (2014). A simulation

of priority based earliest deadline first scheduling for cloud computing system. 2014 First

International Conference on Networks & Soft Computing (ICNSC2014).

doi:10.1109/cnsc.2014.6906659

[16] Assuncao, M. D., Netto, M. A. S., Koch, F., & Bianchi, S. (2012). Context-Aware Job Scheduling

for Cloud Computing Environments. 2012 IEEE Fifth International Conference on Utility and

Cloud Computing. doi:10.1109/ucc.2012.33

[17] Yang, Z., Yin, C., & Liu, Y. (2011). A Cost-Based Resource Scheduling Paradigm in Cloud

Computing. 2011 12th International Conference on Parallel and Distributed Computing,

Applications and Technologies. doi:10.1109/pdcat.2011.1

International Journal of Future Generation Communication and Networking

 Vol. 12, No. 5, (2019), pp. 206 - 218

 ISSN: 2233-7857 IJFGCN 218

 Copyright ⓒ 2019 SERSC

[18] Shih, H.-Y., Huang, J.-J., & Leu, J.-S. (2012). Dynamic slot-based task scheduling based on node

workload in a MapReduce computation model. Anti-Counterfeiting, Security, and Identification.

doi:10.1109/icasid.2012.6325318

[19] Liang Luo, Wenjun Wu, Dichen Di, Fei Zhang, Yizhou Yan, & Yaokuan Mao. (2012). A resource

scheduling algorithm of cloud computing based on energy efficient optimization methods. 2012

International Green Computing Conference (IGCC). doi:10.1109/igcc.2012.6322251

[20] Ibrahim, E., El-Bahnasawy, N. A., & Omara, F. A. (2016). Task Scheduling Algorithm in Cloud

Computing Environment Based on Cloud Pricing Models. 2016 World Symposium on Computer

Applications & Research (WSCAR). doi:10.1109/wscar.2016.20

[21] Kaur, S., & Kalra, S. (2016). Disease prediction using hybrid K-means and support vector

machine. 2016 1st India International Conference on Information Processing (IICIP).

doi:10.1109/iicip.2016.7975367

[22] L.D., D. B., & Venkata Krishna, P. (2013). Honey bee behavior inspired load balancing of tasks

in cloud computing environments. Applied Soft Computing, 13(5), 2292–

2303. doi:10.1016/j.asoc.2013.01.025

[23] Pericherla S Suryateja,"A Comparative Analysis of Cloud Simulators", International Journal of

Modern Education and Computer Science(IJMECS), Vol.8, No.4, pp.64-71, 2016.DOI:

10.5815/ijmecs.2016.04.08

