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Abstract

In this paper, we introduced two new subclasses of analytic bi-univalent functions by using multiplier

:{ZGC:\Z\<1}.

transformation in the unit disc Y The coefficient bounds of 1212913l or functions in

these two new subclasses are obtained.
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I. INTRODUCTION
Let A denote the class of analytic functions of the form

f(z)= Z+Zanz”
n=2

(1.1)
defined in the unit disc U . The class of functions belongs to A and univalent in U is denoted by S. We
know, for everyf(z) belongs to S has an inverse f~1(z) exist. Inverse function defined as

-1 _ l
Pt @)=z, 2eU gyq O WD=W WY [IWI<ro<f>, ro(f)z4j’

where f(w) = g(w) =w—a,w’ +(2aZ —a,)w’ — (5a; —5a,a, +a,)w* +L
(1.2)
If £~ and £ are univalent in U then f €A s called bi-univalent inU . Symbol Z denote the

class of bi-univalent functions inU . In 1967, Lewin [7] was investigated the class of bi-univalent

functions and showed that |a2|<1.51_ Afterward, Brannan and Clunie [1] conjectured that |‘""2|§*/E
Brannan and Taha [2] defined the certain subclasses of bi-univalent functions as follows:

arn

wg (W)
and arg(wj <7 (WEU),

A function f(z) of the form (1.1) said to be in the class
7f '(2)

arg (—f ) j

where the function g given by (1.2). Denote S:(@) the class of strongly bi-starlike functions of order

a(0<a<1) gimilarly, a function f(z) of the form (1.1) said to be in the class K=(®)0<a=Dj¢
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(Z)J
arg| 1+
S

fey, (zeU) arg(1+ wo (W)j (wel)
Kz(a)

2

and w2 ,

where the function g given by (1.2). Denote the class of strongly bi-convex functions of order

a(0<a<1) Now, A function f(z) of the form (L.1) said to be in the class Sz (A (0= <) jf

ey, sn[Zf (Z)] B (zeU) ER(MJ>,B (weU)
f() and g(W) ,

where the function g given by (1.2). Denote 5:(8) the class of strongly bi-starlike functions of order

pO<p<Y Similarly, define Ks (8) the class of bi-convex functions of order (0= /<1 Recently,
bounds of various subclasses of bi-univalent functions have been investigated by several authors (see

[3], [4], [8]-[10], [13]).

k .
Cho and Strivastava [5] introduced the operator l; *A= Adefined as
k
1 f(z) = z+§(%§:] az", y>0ke¥ =¥ u{O}.
(1.3)

k
For 7 =0the operator !} reduced to the Salagean operator introduced by Salagean [12].

In 2015, J. Jothibasu [6] defines the subclass 8% (@) consisting of analytic functions f(z) of the
form (1.1) and f(z) satisfies the following conditions:

k+1
arg( D" 1(2) ) P

P eX | D @10 ) |~ 2

,0<a<1,0<1<1zelU

(1.4)

<%,0<a£1,0$l<l,WeU,

‘ ( Dk+1g(W) )
arg k k+1

and 1-2)D g(w)+AD""g(w)
(1.5)

Where the function g of the form (1.2) and D is the differential operator introduced by Salagean [12]
and defined as

D* f(z)—z+2nazn ke¥ _¥u{0}

n=2

Also, J. Jothibasu [6] define the subclass My*(8) consisting of analytic functions f(z) of the form
(1.1) and f(z) satisfies the following conditions:

fey, m((l_i)Dk[:k(;l)ffzﬂ)DMf(Z)]>ﬂ,0gﬁ<1,05/1<1, zeU
(1.6)
9%( D7gw) _ j>ﬂ,0§,b’<l,0£ﬂ<l,WeU
and (1-4)D*g(w)+AD""g(w)
L7

Where the function g of the form (1.2) and D is the differential operator introduced by Salagean
[12].
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Motivated by this aforementioned work, we introduced two new subclasses of analytic and bi-
univalent functions associated with multiplier transformation. Also, obtain the coefficient bounds of
[2a]and (2| £or functions in these two new subclasses.

Lemmal.1.[11] Let & be the family of all analytic functions "(Z) of the form

h(z) =1+cz+¢,2° +¢2° +K gng R(N(@D))>0 gefined inU . I1f <9 then! € <2 for eachn .

k,A,
Il. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS 52~ (@)

k, A,y
Definition 2.1. A function f(z) of the form (1.1) is said to be in the class 5 (0‘),

0<a§1,0£ﬂ,<1,720,|(e¥0if

1 £ (2) ar
fed, arg[(l—ﬂ)lff(z)+ﬂ|f”f(z)) <7 (@eV)
2.1)
arg( — |k|’+lg(v2|k+1 J<a_2ﬂ (wel),
o D190+ 219w
2.2)

where g is the function of the form (1.2).
k,4,
For particular values of k,Zandy , the class $;7 (@) reduce to varies subclasses as:

kidy k, 2
(1) For” =0 the class 5@ reduce to 52" (@) | studied by Jothibasu [6], (2) For 7 =0:4=0,k=0

KA,y

the class 52 (@) reduce to S(®) | studied by Brannan and Taha[2], (3) For 7 =04=0.k=1 the class
K, A,y K, A,y

5:77(@) reduce to %=(@) | studied by Brannan and Taha[2], (4) For 7 =0-K =0 the class 5=~ (@) reduce

to Cx (@A) , Studied by G. Murugusundaramoorthy et.al [10].

k.4,
Theorem 2.1. Let function f(z) of the form (L.1) be in the class S~ (@).0<a=<L0<i<landy =0

then
|a |S 201+ y)*
\/‘4a(1+ 7= @+ ) +[ 20 (7 D+ (A-Dy ) (@ -D(A-2)° |2+ 7)*
(2.3)

| |§ a(1+7)k+1 . 4a2(l+7/)2k+2

and @-DE+n" A=-@+n)*
(2.4)

Proof. From conditions (2.1) and (2.2), we have

11 (2) 3 «

A=D1 (2)+ A1 (2) =[p@]
(2.5)

and
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1 g(w)
A=) g(w)+ 1 g(w)

(2.6)
Where functions P(2)anda(w)arein © ang have the forms:
p(z) =1+ p,z+ p,2° + p,2° +K
2.7
q(w) =1+qw+ g, + W’ +K

(2.8)
Now, equating the coefficients in (2.5) and (2.6), we get

L-A)(247)
1+ N\ 1+y %=ah

=[aw)]”

(2.9)
(A -D+(A-Dy )\ 2+y 2 , (2-22 3+7k 1 2
) (T ) o et 2an]
(2.10)

-2\ 2+7)
o | 2=e
1+y N\ 1+y

(2.11)
=D+ (A-Dy )\ 2+7 V" 5 (2-22)(3+7) .., 1 ,
2TV (a2 -a,) = [ a(a-1)g? +2
o E 1+ 7)? ](1+7j a+ 1+ \1+r (2a; —a,) 2[(1(0[ )G + aqz].
(2.12)
From (2.9) and (2.11), we get
p=-q
(2.13)
2 2k
1-2)(2+y 2 2002, 2
2 —_— —_— =
y Sl ER)
(2.14)
From (2.10),(2.12) and (2.14), we get
.2 L+7)*"*a*(p, +0,)

> da(lt ) A-2)E+ ) 2047 D+ (2-Dy) - (a-D-2)* |+ 7)™

By Lemma 1.1, | Pn[=2and [q,[<2 Hence

|a2| < 201+ y)*
\/‘4a(1+ P HA- @+ ) +[ 20 (A7 D+ (A-Dy )~ (@ -D(A-2)° |@+7)*

Now, subtracting equation (2.12) from equation (2.10), we obtain

A-44 )3+ k 4-421(3+y ‘ 21 _ 22 —
(1+7 J(Ej a3_£ 1+ j[m] a; = [aa -1} ~ ) + 2a(p, Q2):|.
(2.15)

From (2.13), (2.14) and (2.15), we get
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k+1 2k+2

_a(p,—q)A+ )" (Pl +6)A+7)
(4—42)3+7)" 2(1- 1) (2+ 7)™

(2.16)
By Lemma 1.1, | P. £2. 19, 1=2 and apply on (2.16), we obtain

|a3| . 0.’(1+]/)k+1 . 4a2(1+7)2k+2
Q-G+ A= @+nN™

8,

The proof is completed.
If we take 7 =Yin Theorem (2.1), then Corollary (2.2) is obtained.
k,A
Corollary 2.2.([6]) Let function f(z) of the form (1.1) be in the class 5 (@):0<a<L0<A<1 o,
2a

la,| <
\/ [4a(1- 23+ 2(22 ~1) - (a DA~ 2)* |2*]

and

< a N 4o
_(1—1)3“ (1—1)222".

|a|

If we take ¥ =08nd2=0 i, Theorem (2.1), then Corollary (2.3) is obtained.
k
Corollary 2.3 ([6]). Let function f(z) of the form (1.1) be in the class Sz (a) , then

201 a 4a®

Q| <
o Jaa3 + @32 8ISt

I11. COEEFICIENT BOUNDS FOR THE FUNCTION CLASS M:™ (8)
Definition 3.1. A function f(z) of the form (1.1) is said to be in the class
M*7(B),0< B<1,0< A<y >0 if

fey % @) > B (zU)
et @ AT @)
(3.1)
% g w) > B (weU)
and @A-)1¥g(w)+ A1 g(w) ,
(3.2)

where g is the function of the form (1.2).

For particular values of k.Aandy the class M3 (B) reduce to varies subclasses as:

(1) For” =Othe class M= (@ reduce toM: " (B) | studied by Jothibasu [6], (2) For ¥ =0:4=0.k=0
the class M= (B reduce to S:(P) | studied by Brannan and Taha [2], (3) For 7 =04=0.k=1 tpe
class M7 (B) reduce to Kz(ﬁ), studied by Brannan and Taha[2], (4) For 7=0.k=0ne class
M3 (B) reduce to M= (B:4) | studied by G. Murugusundaramoorthy et.al [10].

ML* (B), 0< f<10<4<1y20

Theorem 3.1. Let function f (z) of the form (1.1) be in the class , then
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< J 20~ p)(L+7)*
[20-2)@+ )@+ 7) +[ (A2 =)+ (A-Dy @+ 1)*|
(3.3)
|a3|S4(l—/3)§(1+7)2:k*2 1-B)a+pn
and A-2)"(2+7) L-DEB+n)"
(3.4)
Proof. From conditions (3.1) and (3.2) that there exist P:9€§ such that
1421 (2)
At @Al L e AP
(3.5)
1 g(w)
and - D1rgw)+ atgqw ~ T4
(3.6)

Where functions P(2)andd(W) pejong to & and have the forms:
p(z) =1+ p,z+ p,2° + p,2° +K ,
(3.7)
q(w) =1+q,w+q,w* + W’ +K
(3.8)
Now, equating the coefficients in (3.5) and (3.6), we get

-2\ 2+7) . .
(mj(m} a,=(1 ﬂ)ply
(3.9)

A -D+G-Dy)(2+7) o (2-22)(3+7) . .
( @+ J[lw] aﬁ[ 1+y j(m) =P

(3.10)
1-2) 2+
T

(3.11)
-0+ (A-Dy )\ 2+7 ), (2-22\(3+7 L
and ( @+ J[le aﬁ( 1+y j[le (22 -a) = ﬁ)qz_
(3.12)
From (3.9) and (3.11), we get
P,=-0q

(3.13)

2 AV [2H1) @z gy (p+ @)
and 1+y) (1+y .
(3.14)

From (3.10), (3.12) and (3.14), we get
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2 (L= B)(P, + G)(L+ 7)™
T AW @+ 2 (AP -D+ (A -Dy J@e )

By Lemma 1.1, | PnIs2and |G, IS2 Hence
< 20- A+ 7)™
|a2| - _ k+1 k 2 _ 2k
202+ )@+ ) +[ (A7 -D + (A-D)y |2+ 1)

Now, subtracting equation (3.12) from equation (3.10), we obtain
K k
4-421(3+y 4-42)(3+7)
2TV e - 3+7) 2 )
(1+7 j[le % (1+)/ )(l—i—yj % =(1-/)p, qz).
(3.15)

From (3.13), (3.14) and (3.15), we get

AL=A)P, ~G)A+ 1) (A= B) (P + @)L+ 7)™
(4-42)@3+7) 2(L-2) 2+ )™

(3.16)
By Lemma 1.1, | P. £2. 19, 1=2 and apply on (3.16), we obtain

AL-BY W+ )™ | (= B)A+y)"
@-'@+n*  Q-HE+)

a3:

|ag| <

The proof is completed.
If we take 7 =Yin Theorem (3.2), then Corollary (3.2) is obtained.

Corollary 3.2.([6]) Let function f(z) of the form (1.1) be in the class My*(B), 0<p<10<2<1

2(1-p) 41-8)°  (1-5)
LA k 2 2k =
el \/|2(1—/1)3 + (A -12%| and |‘5‘3|<(1—1)222k+(1—/1)3k _

, then

If we take 7 =08nd4=0 jn Theorem (3.1), then Corollary (3.3) is obtained.
k
Corollary 3.3([6]). Let function f(z) of the form (L.1) be in the class M= (#) | then

/ 1- 41-p)°  (A-p)
|"’12|S 3k_—2€|<4 and|a3|£ 2k + 3
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