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Abstract 

 

In this paper, we introduced two new subclasses of analytic bi-univalent functions by using multiplier 

transformation in the unit disc  : 1 .U z C z=    The coefficient bounds of 2 3anda a
for functions in 

these two new subclasses are obtained. 
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I. INTRODUCTION 

Let A  denote the class of analytic functions of the form  
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( ) n

n

n

f z z a z


=

= +
           

                  (1.1) 

defined in the unit disc U . The class of functions belongs to A and univalent in U is denoted by 𝑆. We 

know, for every𝑓(𝑧) belongs to 𝑆 has an inverse 𝑓−1(𝑧) exist. Inverse function defined as 

1( ( )) ,f f z z z U− =   and  
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where               
1 2 2 3 3 4

2 2 3 2 2 3 4( ) ( ) (2 ) (5 5 )f w g w w a w a a w a a a a w− = = − + − − − + +L           

                         (1.2) 

If 𝑓−1 and 𝑓 are univalent in U then f A  is called bi-univalent inU .  Symbol  denote the 

class of bi-univalent functions inU . In 1967, Lewin [7] was investigated the class of bi-univalent 

functions and showed that 2 1.51a 
. Afterward, Brannan and Clunie [1] conjectured that 2 2a  .  

Brannan and Taha [2] defined the certain subclasses of bi-univalent functions as follows: 

A function 𝑓(𝑧) of the form (1.1) said to be in the class 
( ) (0 1)S  

  
 if   
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  , 

where the function 𝑔 given by (1.2). Denote 
( )S 

  the class of strongly bi-starlike functions of order

(0 1)   . Similarly, a function 𝑓(𝑧) of the form (1.1) said to be in the class 
( ) (0 1)K    

if 
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where the function 𝑔 given by (1.2). Denote ( )K  the class of strongly bi-convex functions of order

(0 1)   . Now, A function 𝑓(𝑧) of the form (1.1) said to be in the class 
( ) (0 1)S  

  
 if   

' ( )
, ( )
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    and     
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( )
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  , 

where the function 𝑔 given by (1.2). Denote 
( )S 

  the class of strongly bi-starlike functions of order

(0 1)   . Similarly, define ( )K  the class of bi-convex functions of order (0 1)   .  Recently, 

bounds of various subclasses of bi-univalent functions have been investigated by several authors (see 

[3], [4], [8]-[10], [13]). 

Cho and Strivastava [5]  introduced the operator :kI A A → defined as 

    
0

2

( ) , 0, {0}
1

k

k n

n

n

n
I f z z a z k








=

 +
= +   =  

+ 
 ¥ ¥

.      

        (1.3) 

For 0 = the operator
kI reduced to the Salagean operator introduced by Salagean [12]. 

In 2015, J. Jothibasu [6] defines the subclass 
, ( )kS    consisting of analytic functions  𝑓(𝑧) of the 

form (1.1) and 𝑓(𝑧) satisfies the following conditions: 
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(1.5) 

Where the function 𝑔 of the form (1.2) and 
kD  is the differential operator introduced by Salagean [12] 

and defined as 

0
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Also, J. Jothibasu [6] define the subclass 
, ( )kM    consisting of analytic functions  𝑓(𝑧) of the form 

(1.1) and 𝑓(𝑧) satisfies the following conditions: 

1

1

( )
, ,0 1,0 1,

(1 ) ( ) ( )

k

k k

D f z
f z U

D f z D f z
  

 

+

+

 
        

− +      
      (1.6) 

and    

1

1

( )
,0 1,0 1,

(1 ) ( ) ( )

k

k k

D g w
w U

D g w D g w
  

 

+

+

 
       

− +                      

(1.7) 

Where the function 𝑔 of the form (1.2) and 
kD  is the differential operator introduced by Salagean 

[12]. 
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Motivated by this aforementioned work, we introduced two new subclasses of analytic and bi-

univalent functions associated with multiplier transformation. Also, obtain the coefficient bounds of 

2 3anda a
for functions in these two new subclasses. 

Lemma1.1.[11] Let  be the family of all  analytic functions ( )h z  of the form
2 3

1 2 3( ) 1h z c z c z c z= + + + +K and ( )( ) 0h z   defined inU . If hthen | | 2nc   for each n  . 

II.  COEFFICIENT BOUNDS FOR THE FUNCTION CLASS 
, , ( )kS     

Definition 2.1. A function 𝑓(𝑧) of the form (1.1) is said to be in the class
, , ( )kS    ,
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(2.2) 

where 𝑔 is the function of the form (1.2). 

For particular values of , andk   , the class 
, , ( )kS    reduce to varies subclasses as: 

(1) For 0 =  the class 
, , ( )kS    reduce to 

, ( )kS   , studied by Jothibasu  [6], (2) For 0, 0, 0k = = =  

the class 
, , ( )kS    reduce to 

* ( )S  , studied by Brannan and Taha[2], (3) For 0, 0, 1k = = =  the class 
, , ( )kS    reduce to ( )K  , studied by Brannan and Taha[2], (4) For 0, 0k = = the class 

, , ( )kS    reduce 

to ( , )G   , studied by G. Murugusundaramoorthy et.al [10]. 

Theorem 2.1. Let function 𝑓(𝑧) of the form (1.1) be in the class
, , ( ),0 1,0 1and 0kS           

, 

then 
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Proof.  From conditions (2.1) and (2.2), we have 
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and 
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Where functions ( )and ( )areinp z q w and have the forms: 

    
2 3

1 2 3( ) 1p z p z p z p z= + + + +K   ,     

            (2.7) 
2 3

1 2 3( ) 1q w q w q w q w= + + + +K      
           (2.8) 

Now, equating the coefficients in (2.5) and (2.6), we get 
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From (2.9) and (2.11), we get 

1 1p q= −                               
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From (2.10),(2.12) and (2.14), we get 

( )

2 2 2
2 2 2
2 1 2 2 2

(1 ) ( )

4 (1 ) (1 )(3 ) 2 ( 1) ( 1) ( 1)(1 ) (2 )

k

k k k

p q
a

 

          

+

+

+ +
=

 + − + + − + − − − − +
  . 

By Lemma 1.1, | | 2 and | | 2n np q  . Hence 
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Now, subtracting equation (2.12) from equation (2.10), we obtain 
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From (2.13), (2.14) and (2.15), we get 
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By Lemma 1.1, | | 2, | | 2n np q   and apply on (2.16), we obtain  
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The proof is completed. 

If we take 0 = in Theorem (2.1), then Corollary (2.2) is obtained. 

Corollary 2.2.([6])  Let function 𝑓(𝑧) of the form (1.1) be in the class
, ( ),0 1,0 1kS        

, then 

2
2 2 2
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 − + − − − −      and    
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If we take 0and 0 = =  in Theorem (2.1), then Corollary (2.3) is obtained. 

Corollary 2.3 ([6]). Let function 𝑓(𝑧) of the form (1.1) be in the class
( )kS  , then 
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III. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS 
, , ( )kM     

Definition 3.1. A function 𝑓(𝑧) of the form (1.1) is said to be in the class
, , ( ), 0 1,0 1, 0kM           

,if 
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(3.2) 

where 𝑔 is the function of the form (1.2). 

For particular values of , andk   , the class 
, , ( )kM    reduce to varies subclasses as: 

(1) For 0 = the class
, , ( )kM    reduce to

, ( )kM   , studied by Jothibasu  [6], (2) For 0, 0, 0k = = =  

the class 
, , ( )kM    reduce to 

* ( )S  , studied by Brannan and Taha [2], (3) For 0, 0, 1k = = =  the 

class 
, , ( )kM    reduce to 

( )K  , studied by Brannan and Taha[2], (4) For 0, 0k = = the class 
, , ( )kM    reduce to ( , )M   , studied by G. Murugusundaramoorthy et.al [10]. 

Theorem 3.1. Let function 𝑓(𝑧) of the form (1.1) be in the class
, , ( ), 0 1,0 1, 0kM           

, then 
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Proof.  From conditions (3.1) and (3.2) that there exist ,p q such that 
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Where functions ( )and ( )p z q w belong to  and have the forms: 
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 From (3.10), (3.12) and (3.14), we get 
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By Lemma 1.1, | | 2 and | | 2n np q  . Hence 
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Now, subtracting equation (3.12) from equation (3.10), we obtain 
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From (3.13), (3.14) and (3.15), we get 
1 2 2 2 2 2

2 2 1 1
3 2 2

(1 )( )(1 ) (1 ) ( )(1 )

(4 4 )(3 ) 2(1 ) (2 )

k k

k k

p q p q
a

   

   

+ +− − + − + +
= +

− + − +  .                    

         (3.16) 

By Lemma 1.1, | | 2, | | 2n np q   and apply on (3.16), we obtain  
2 2 2 1

3 2 2

4(1 ) (1 ) (1 )(1 )

(1 ) (2 ) (1 )(3 )

k k

k k
a

   

   

+ +− + − +
 +

− + − +  . 

The proof  is completed. 

If we take 0 = in Theorem (3.1), then Corollary (3.2) is obtained. 

Corollary 3.2.([6])  Let function 𝑓(𝑧) of the form (1.1) be in the class
, ( ), 0 1,0 1kM        

, then 
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If we take 0and 0 = =  in Theorem (3.1), then Corollary (3.3) is obtained. 

Corollary 3.3([6]). Let function 𝑓(𝑧) of the form (1.1) be in the class
( )kM  , then 
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