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Abstract
Minimal spanning set for 1- generator quasi-cyclic(QC)codes and 1- generator generalized quasi-cyclic
(GQC)codes are over thering R = F, + uF, + vF, + uvF, + wF, + uwF, + vwF, + uvwF, are derived in
this paper. Lower bound for the minimum distance of these codes over ring R are also derived.
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1 Introduction

Cyclic codes have a prominent place in algebraic coding theory because of their rich algebraic structure and
good parameters. Cyclic codes over finite chain rings were discussed in [1, 2, 3, 9, 13, 16, 18, 21]. 1- generator
quasi cyclic codes over F,m + uF,m +...+u5_1Fpm where m, s are positive integers such that s > 2 and
u® = 0 were obtained in [10]. In [15] QC codes over Z, were derived and QC codes over Z, with some new
binary codes were studied in [16]. 1- generater QC codes over F, + uF,, where u? = 0, were derived in [18]
and over the ring F, + uF, where u* = u in [19]. Cyclic codes over the ring F, [u, v, w]/< u?, v, w?,uv —
vu, vw — wv, uw — wu > were discussed in [14]. There are many well known reasons to work on QC codes
as the QC codes over finite fields are closely related to convolutional codes [5] and meet a modified version of
Gilbert-Varshamov bound [12].

The structure of 1-generator quasi-cyclic codes was investigated in [7, 9, 20] and a polynomial approach is
presented in [11]. The structure of generalized quasi-cyclic codes (GQC) over finite fields, was discussed with
their generators and a BCH type bound for these codes in [7, 9, 18]. Further this study has been extended in [3,
4]. In [2] QC codes over the ring F, + uF, + vF, + uvF,, and some new best known binary linear codes as
gray images of QC codes are obtained.

Motivated by the studies in [17], we obtained 1- generator QC codes and GQC codes over the ring

Fylu,v,w]/< u?, v, w?,uv — vu, vw — wo, uw — wu >.

2 Preliminaries
Throughout this paper R denotes the ring F, + uF, + vF, + uvF, + wF, + uwF, + vwF, + uvwF, where
u? = v? = w? = 0, uv =vu, VW= WV, UW=WU.
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A linear code C over R of length n is an R-submodule of R™. Lee Weight of element a + ub + vc +
uvd + we + uwf + vwg + uvwh of R where a, b, c, d, e, f, g, h are elements of F, is Wy(®(a + ub +
vc + uvd + we + uwf + vwg + uvwh)) =Wy(h,f +h,g+h,d+he+f+g+hb+d+f+hc+
d+g+ha+b+c+d+e+f+g+h) where Wy is the Hamming Weight and ®:R — F¢ defined by
®(a + ub + vc + uvd + we + uwf + vwg + uvwh) = (h,f +h,g+h,d+he+f+g+hb+d+
f+hc+d+g+ha+b+c+d+e+f+ g+ h)isaGray map.

Lee Weight W, (c) of n- tuple in R™ is obtained as the rational sum of Lee weights of its components.
Minimum Lee distance of a linear code C over R is d;(c) = min { W, (c) : 0 # c € C }. Similarly, is
defined the minimum Hamming Weight dy(C) of C over R as dy(C) = min{dy(c):0 # c € C}. The
Gray map naturally extend to R™ as distance preserving isometry ®: (R™, Lee Weight) — (F$, Hamming
Weight) as ®(aq, ay, ..., a,) = (P(aq), P(ay), ..., P(a,)) Where a; €R forall 1 <i < n.

Theorem 2.1 Let C is a linear code of size 2¥, minimum distance d and length n over R, then @(C) isa
binary linear code with parameters [8n,k,d].

Complete ideal structure of a cyclic code C over R of length n is as follows:

Theorem 2.2 [14] Let C be a cyclic code of length n over the ring R. Then

()If n iseven, then C = < 14,7y, T3, T4, Ts, Tg, T7, Tg > Where

71=01 (%) + uéy2(x) + v&13(x) + uvéy 4(x) + wéy5(x) + uwéy 6(x) + vwéy 7 (x) + uvwé; g(x)
Ty = uby(x) + v$23(x) + uvds 4 (x) + wép5(x) + uwése(x) + vwés 7 (x) + uvws; g(x)

73 = v03(X) + uvéz 4(x) + wézs(x) + uwés ¢(x) + vwéz 7 (x) + uvwszg(x)
Ty = UV, (x) + wéss(x) + uwéye(x) + vwés 7(x) + uvwéy g(x)

Ts = W5 (x) + uwés ¢ (x) + vwés 7 (x) + uvwés g(x)

Te = uwbe(x) + vwés 7 (x) + uvwée g(x)

77 = vwl;(x) + uvwé; g(x)

Tg = uvwbg(x)

andB, (x)[6,(x) |6, () |x™ = 1, 04(x)[03(x)161 (x)|x™ — 1, 8(x) |06 (x) |65 (x) |x" — 1,
05 ()67 ()65 ()61 (%), O6(x)|62(x) and 67(x)|65(x) over F.

(if) forodd n, C =< 0;(x) + ub,(x), v3(x) + uvb,(x), wls(x) + uwbg(x), wv; (x) + uvwlg(x) >
Whereb, (x)[6, (x)16; () |x™ — 1, 8,(x)|63(x)[61(x)[x™ — 1, 63(x) |66 (x)[65(x)|x™ — 1,
05 ()67 (x)165 ()61 (x), O6(x)|62(x) and 67(x)|65(x) over F.

(iii) Also C is free cyclic code ifand only if C = < 7; > and 7¢|x™ — 1 in R[x].
Theorem 2.3 [2] If C = < g(x) > is cyclic code over R of length n such that g(x)|x™ — 1 in R[x]/<
x™ —1> and f(x) € R isco-prime to g(x) then C = < (f(x).g(x)) >.

Theorem 2.4 [22] If C is cyclic code over a finite field GF(q) of length n and s be the number of
consecutive power of the nt* roots of unity that are zeros of g(x) then dy(€) = s + 1.
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3 1-Generator Quasi-cyclic Codes Over R

For positive integer ¢, the linear code C, which is invariant under ¢ cyclic shifts, is called an ¢ - quasi cyclic
code. Such a smallest £ is known as index of € . Under polynomial notations, € is £-quasi cyclic code of
length n = m# over R if and only if C is an R,,[x] = R[x]/< x™ — 1 >-submodule of (R,,[x])¢. An
r-generator QC code is a R,,-submodule of Rf, with r-generators. Thus, 1-generator QC code C over R
generated by F(x) € (R,,) is {E(X)F (x): £(x) € R, }.

Theorem 3.11f C is a 1-generator £-QC code over the ring R of length n = m# generated by P(x) =
(Py(x), Py (%), ..., Ps(x)) € (R, [x])?. Foreach i, 1 <i < #, P;(x) belongs to a cyclic code C; over R of
length m and is of the form 6;;(&;(x) + ué,(x)) + 6,; (Vé3(x) + uvéy(x)) + 03, (Wés(x) + uwée(x)) +
04 (Wvé; (x) + uvwég(x)) when m is odd and of the form 6,71 + 02,6, + 03;T3 + 04,74 + 05,75 +
O¢iTe + 07,77 + Og;Tg When m is even, for some 6y;, 65, ...,0g; € R,,,[x] and &;,¢,, ..., &g are defined in
Theorem 2.2.

Proof. For 1<i<#¢, Assume projection map [[; (Pi(x),Ps(x),..,Pi(x)) = Pi(x) . If C=<
(P1(x), Py(x), ..., P/(x)) > is an £-QC code of length n = m#, then due to Theorem 2.2 []; (C) is a cyclic
code over R of length m.

Consider C to be a 1-generator £-QC code over R of length n = m# generated by X; = (§191 + uk; +
vpy + uvqq + wry + uwsy; + vwy; + uvwzy, ..., &g, + uky + vpp + uvq, + wrp + uws, + vwy, +
uvwz,) where &, 9 ki, pi, 7,85, Vi, 2z In F[x], g; divides x™ —1 for 1 <i<#¥. Assume that iy be
selected such that 1 < iy, < ¢ and (§;,g;, + uk;, + vp;, + uvq;, + wr;, + uws; +vwy; +uvwz; ) does
not devides x™ — 1. Further assume

9 = 9¢d(§191,$292, -, §191, x™ — 1) with guy = x™ — 1, deg(uy) = ¢4,

p1 = ged(kipy, ko, oo kypg, x™ — 1) with pyp, = x™ — 1, deg(uz) = t,

p2 = ged(p1p1ta, P2l Mz, ) DIl M, X — 1) With ppps = x™ — 1, deg(us) = t3,

p3 = ged(qria Palis, Gala a3, - Qi P, X™ — 1) With pspy = x™ — 1, deg(uy) = t,

pa = ged(ripi1 o iz lha, Tofi1 o i3, o) I P2 U3, X™ — 1) With pyps = x™ — 1, deg(us) = ts,

ps = ged(S1i Motz falts, Sof1 o U3 lalls, -, St Ho M3 lais, X — 1) With pspe = x™ — 1,deg(uq) = t,

pe = ged (V1 Halizfhalis he) V2 i1 B2 U3 Halts e, - YIH1 Mo H3lapis e, X — 1)With pgpy

= x™ — 1, deg(us) = ty,

p7 = ged(Zy piy a3 plalls Mo hy, Za 11 o 3 Hats e 7, - Z1fh o 3 aMs ey, X™ — 1) With p;ug

=x™ — 1, deg(ug) = tg

and X; = u;_1X;_1 for 2<i<8.

Theorem 3.2The minimal spanning set for 1-generator £-QC codes C is given by
Zy = (X1, %Xy, o, XX Z, = (X, XX, 0, x271X0 )
Z5 = {X3,xX3, ..., x371X3} Zy = (X, xXgy o, x471X,)
Zs = {X5,xXs, ..., x" ' X5}Z6 = {Xo, xXg, ., X" X¢}
Z7 = {X7,xX7, .., x"7 "' X7}Zg = {Xg, xXg, .., X" Xg}
such that |G| = 2818t28t38t44154%6 47 2ts,
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Proof. Let c(x) € C, then c(x) = {(x)X; for some &(x) € R,,[x]. Due to division algorithm, there exists
Q1,R; € R,[x] such that &(x)=Qu+R; , where R; =0 or deg( R)<t; . Since
g =gcd(&191,6292, -, &9, x™ — 1) so for each 1 <i < ¥, there exists b;; € R,,[x] such that & g; =
b;1g and therefore &, g,u1 = b;1gp1 = 0. Hence
c(x) = §(0)X; = QX1 + Ri X1 = Q1X; + R Xy (1)
Since deg(R;) < ty,S0 R;X; € span(Z;).
Again apply division algorithm, to obtain Q,, R, € R,,[x] such that Q;(x) = Q,u, + R,, where R, =0 or
deg(R;,) < t,. Since p; =gcd(kipq, kopyq, ., kg, x™ — 1) soforeach 1 <i < ¥, some b;; € R, [x] such
that k;uy = b;,p; and therefore k;u;u, = bjrp11, = 0. Then (1) becomes,
c(x) = Q1 X2 + RiX1 = QX3 + Ro Xy + R Xq (2)
Also deg(R,) < t,, therefore R,X, € span(Z,).
Following the same procedure, to obtain Q3, R; € R,,[x] such that Q,(x) = Q3u3 + R3, where R; =0 or
deg(R3) < t3. Since p, = gcd (pqiita, D21 Uz, - DI U2, x™ — 1) thus again an element b;3 € R, [x]
such that p;u;u,; = bizp, for each 1 <i < ¢ and hence p;u;uuz = bizpuz = 0. Using (2), to obtain
c(x) = QX3 + RyXy + Ri X1 = Q3X4 + R3 X5+ Ry X, + R1X((3)
Here deg(R3) < t3 thus R;X5; € span(Z3).
Continuing the similar reasoning, to obtain Q4, R4 € R,, [x] suchthat Q3(x) = Q4uz + R4, Where R, = 0 or
deg(R,) < t4 and (3) is expressed as
c(x) = Q3X4 + R3X3 + RyXy + Ri X1 = QuXs + QuX4 + R3X5 + Ry X, + R X, (4)
where deg(R,) < t4 and R,X, € span(Z,).
Then Qs, Rs € R, [x] such that Q,(x) = Qsus + Rs, where Rs = 0 or deg(Rs) < tg and by (4), c(x) =
Q4Xs5 + Q4X4 + R3X3 + Ry X, + R Xy
= QsXe + RsXs + RyX4 + R3 X5 + Ry X, + Ry X,(5)
where deg(Rs) < ts; and RsXs € span(Zs).
Further Qg, Rg € R,,[x] such that Qs(x) = Qgue + Rg, Where R =0 or deg(Rg) <tg and by (5)
c(x) = QsXg + RsXs + Ry Xy + R3X3 + R, X, + R X,

= Q¢X7 + RgXg + Rs X5 + Ry X4 + R3X3 + Ry X, + R1 X1 (6)
where deg(Rg) < tg and RgX¢ € span(Zg).
Again Q7,R; € R,,,[x] such that Q¢(x) = Q;u7 + R;, where R; = 0 or deg(R;) < t; and by (6) c(x) =
QcX7 + ReXg + RsXs + Ry X4 + R3X3 + R X, + R Xy

= Q;Xg + R7X; + RgXg + RsXs + Ry X4 + R3X5 + Ry X, + R Xq (7)
where deg(R;) < t; and R;X, € span(Z;).
Finally Qg, Rg € R,,[x] such that Q;(x) = Qgug + Rg, where Rg = 0 or deg(Rg) < tg and by (7) c(x) =
Q7Xg + R7X7 + ReXe + RsXs + RyX4s + R3X5 + Ry X, + Ry X,

= RgXg + Ry Xy + ReXe + RsXs + RyXs + R3X3 + Ry X, + Ri X4

Also, deg(Rg) < tg hence RgXg € span(Zg).
Thus we have c(x) = RgXg + R7X7 + R¢Xg + R5 X5 + Ry X, + R3X3 + R, X, + R Xy in the span of
Z1UZyUZ3UZ4,UZsUZgUZy, U Zg. Hence Z; UZ, UZ3UZ,UZsUZg U Zy; U Zg Spans C.
Now assume that e(x) = (e;(x), e;(x), ..., ep(x)) € span(Z;) N span(Z;). Also suppose that there exists i
such that ¢, g; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz; does not divide x™ — 1. Since e(x) €
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span(Z,), so e;(x) = (uk;u + vp;u + uvq;u + wryu + uws;u + vwy;u + uvez;u)M; where M; = o +
a1x + ax* + -+ a,,_1x271 € R, [x]. Thus, we obtain uvwe;(x) = 0.

Again e(x) € span( Z; ), thus e;(x) = (&9 + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz;,)M,
where M, = By + Byx + oo+ By —1x" 171 € Ry, [x]. Since uvwe;(x) =0 so uvw(&;g; + uk; + vp; +
uvq; +wr; + uws; + vwy; + uvwz; )M, = uvwf;g;M, = 0.Therefore each p; is non-unit element of R.
Moreover

ei(x) = (ukipy + vpipy + uvqiuy + wripg + uwsipy + vwyug + uvezipu )My = (§g; + uk; + vp; +
uvqi+writ+uwsi+vwyi+uvwziM2,50 uvigiM2 +uvwritl2=uvwril M1,

uwé; g;M, + uvwp;M, = uvwp;u;M; and vwé;g;M, + uvwk; M, = uvwk;u;M; and hence at least one
a; must be a unitin R.

Further, (& g; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz; )M, = (uk;pu; + vp; iy +uvq;pq +
wripy + uws; iy + vwy;uq + uvez;u )My which  implies  (§;9; + uk; + vp; + uvq; + wr; + uws; +
vwy; + uvwz;) (M, + uyM;) = 0.

However, (¢;g; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz;) does not divide x™ —1 and
deg(M; + puyM;) < m, therefore M, + uyM; = 0 which is possible only when M, and M; both are zero
elements of R,,[x]. Therefore span(Z;) n span(Z;) = 0. On similar lines it can be concluded that span(Z;) n
span (Z;) = 0 for i #j and 1 <1i,j <8. Hence Z is linearly independent and so forms a minnimal
generating set for C.

Relaxing the condition and assuming that (&;g; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz;)
divides x™ — 1 for 1 < i < ¢, in next theorem, the minimal generating set for a free 1-generator £-QC code
of length n = m# over R are represented.

Consider C to be a 1-generator £-QC code of length n = m# over R generated by X = ({91 + uky +
vpy + uvqq + wry + uwsy + vwy; + uvwzy, ..., $p g, + uky + vpp + uvq, + wrp + uws, + vwy, +
uvwz,) where &;, g, ki, 0i, 9,71, Si, Vi, Zi € F>[x], g; divides x™ — 1 and

&i(g; + uk; +vp; + uvg; + wr; + uws; + vwy; + uvwz;) divides x™ -1 for 1<i<,
g+uk+vp+uvg+wr+uws+vwy+uvwz = ged (X,x™ — 1 ) over R with deg(g) =tand g(x)h(x) = x™ — 1.

Theorem 3.3C is a free R- module having minimal spanning set X; = {X, xX, ...,x™ 71X} and |C| =
28(m—t—1)_

Proof. Since gcd (X,x™ — 1 ) = (g+uk+vp+uvg+wr+uws+vwy+uvwz), so there exists (h + uk’ + vp' +
uvq' + wr' + uws’ + vwy' + uvwz") in R,,[x] such that (g+uk+vp+uvg+wr+uws+vwy+uvwz)(h + uk’ +
vp' +uvq + wr' + uws’ + vwy' + uvwz') = x™ — 1 which further implies (¢;g; + uk; + vp; + uvq; +
wr; + uws; + vwy; + uvwz;)(h + uk’ + vp' + uvq’' + wr' + uws’ + vwy' + uvwz’) = 0 in R, [x]. Also
u(g + uk + vp + uvqg + wr + uws + vwy + uvwz)u(h + uk’ + vp' + uvq’' + wr' + uws’ + vwy’' +
uvwz') =gh=0in F[x]/<x™ — 1 >.

Thus (uk;h + vp;h + uvq;h + wr;h + uws;h + vwy;h + uvwz;h) + (¢;9;, + uk; + vp; + uvq; + wr; +
uws; + vwy; + uvwz)(uk’' + vp' + uvq' + wr' + uws' + vwy' + uvwz’) =0 and hence (uk;h +
vp;h + uvq;h + wr;h + uws;h + vwy;h + uvwz;h) = (§;g9; + uk; + vp; + uvq; + wr; + uws; + vwy; +
uvwz;) (uk’ + vp' + uvq' + wr' + uws’ + vwy’ + uvwz’) for 1 <i < 4.

Let c(x) € C,then c(x) = £(x)X forsome &(x) € R,,[x]. Use division algorithm to obtain Q, R; € R, [x]
such that £(x) = Q;h + R; where R; =0 or degR; < m —t. Then
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c(x) =&)X = (Q1(uk’ + vp' + uvq' + wr' + uws' + vwy' + uvwz") + Ry)(é191 + uk, + vp; + uvgqy
+ wry + uws; + vwy, + uvwzy, ..., g, + uk, + vp, + uvq, + wry + uws, + vwy,
+ uvwz,)
Hence c(x) € span(X;). Therefore, X; spans C.
Further, let there exists a non zero polynomial e(x) € R,,[x], with deg(e(x)) < m —t such that e(x)X =0
and therefore, e(x)(§;9; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz;) =0 for 1 <i < #. Hence
¢&igin(e(x)) =0 in Fy[x]/< x™ — 1 > however, g divides &;g; for 1 <i < #,s0 gu(e) = 0. Therefore,
x™ — 1 divides g(x)u(e(x)) and so h divides u(e(x)). Hence deg(e(x)) > m — t, which contradicts the
assumption. Therefore X; is lineary independent.

In next theorem, assume C to be the 1-generator £-QC code of length n = m# over R generated by
X = (&(g1 + uky + vp; + uvqy + wry + uws; + vwy, + uvwzy), ..., &,(ge + uk, + vp, + uvq, +

wrp + uws, + vwy, + uvwzy)), g;, ki, vi, @i, i, Si» Vi, Zi € F>[x], & € R[x] and g; divides (x™ — 1). Also
consider (gi + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz;) divides x™ =1 and

ged(&,, il y=1for1<i<?

gi+uki+vpi+uvqi+wri+uwsi+vai+uvwzi

Theorem 3.41f g+uk+vp+uvg+wr+uws+vwy+uvwz = gcd(g; + uky + vp; + uvq, + wry + uws; +

vwy; + uvwzy, ..., gp + uk, + vp, + uvq, + wry + uws, + vwy, + uvwz,) with
deg(g+uk+vp+uvg+wr+uws+vwy+uvwz) = t, then C is free module with basis Z = {X, xX, ..x™t"1X}
and |C| = 280n=9) Further, dy(C) = min;—;, _{a; + 1} where «; is the number of consecutive powers of
the m*"* roots of unity satisfying g;(x).

Proof.Let

xM™—1

' +uk'; + vp'; + uvq’; + wr'; + uws’; + vwy'; + uvwz'; = and
gituk;+vp;tuvq;+wr;+uws;+vwy; +uvw z;

h' +uk' + vp' + uvq + wr' + uws’' + vwy' + uvwz’ = lem (h'; + uk'y + vp'y + uvg'y + wr'y +

uws'y + vwy'y + uvwz'y, ..., k', + uk', + vp'p, + uvq’, + wr'y, + uws’, + vwy', + uvwz',) . Then

x™—1
g+uk +vp +uvq +wr +uws +vwy +uvwz '
Let c(x) € C, then c(x) = &(x)X for some &(x) € R, [x], so there exists Q1,R; € R,,[x] such that £(x) =

Q.h + R, where R, =0 or degR; <degh' . Thus, c(x) =&)X = (Q,(uk' + vp' + uvq' + wr' +
uws' + vwy’ + uvwz') + R)(&1(g1 + uky + vpy + uvqy + wry + uwsy; + vwy; + uvwzy), ..., &(g, +
uk, + vp, + uvq, + wry + uws, + vwy, + uvwzy))

Hence c(x) € span(X;). Therefore, X; spans C.

Assume &(x)X = 0 for some non-zero element R,,[x] with deg(é(x)) <m —t. Thus, &(x)&(x)(g; +
uk; + vp; + uvq; + wr; + uws; +vwy; +uvwz;) = 0 for 1<i<¥¢ and so x™ —1 divides
ECOE M) (g; + uk; +vp; + uvg; + wr; + uws; + vwy; + uvwz;) for 1 <i <. Since ged(§;(x), h'; +
uk'; + vp'; + uvq'; + wr'; + uws’; + vwy’; +uvwz’;) = 1. So h'; +uk’; +vp'; + uvq'; + wr'; +
uws'; + vwy'; + uvwz’; divides &£(x) and hence h' + uk’ + vp' + uvq' + wr' + uws' + vwy’ + uvwz’
divides &(x). Therefore, deg(é(x)) > deg(h’ + uk’ + vp' + uvq' + wr' + uws’ + vwy' + uwwz") = m —
t which contraducts the assumption. Thus, Z is linearly independent.

h +uk' + vp' + uvqg' + wr' + uws’' + vwy' + uvwz' =
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Further, let ¢ = (cy, ¢y, .. ... ,¢;) be any non zero codeword of C. Then, at least one ¢; for 1 <j <, is
different form zero. This implies that ¢ € []; (C) =<¢;(x)(g; + uk; + vp; + uvq; + wr; + uws; +
vwy; + uvwz) >=< g; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz; >. Therefore, due to theorem
2.4, the non zero weight of ¢ €< g; + uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz; > is atleast
a; + 1. Hence the result follows.

Remark If in theorem 3.4, in place of C to be generated by X = (¢;(g; + uky + vpy + uvgy + wry +
uwsy + vwy, + uvwzy), ..., &p(ge + uk, + vp, + uvg, + wry + uws, + vwy, + uvwz,)) we consider C
to be generated by X = (¢1(g + uk + vp + uvg + wr + uws + vwy + uvwz), ... ... ,€o(g +uk +vp +
uvq + wr + uws + vwy + uvwz)) and rest assumptions remain invariant, then following the same
procedure, C is free module with basis Z = {X,xX, ...x™ 71X} and |C| = 28(m—0),

Further, assume that

xm =1
h+uk' +vp" + uvq' + wr' + uws' + vwy' + uvwz' =
g +uk +vp + uvq + wr + uws + vwy + uvwz
and ¢ = (cq, ¢z, won oo ,C;) € C be any code word. Then ¢ = aX for some a € R[x]. Clearly deg(a(x)) <

m—t. If ¢; =0 for some 1 <i <7, that is, a§;(g + uk + vp + uvq + wr + uws + vwy + uvwz) =0
then x™ — 1 divides aé;(g + uk + vp + uvq + wr + uws + vwy + uvwz) which implies that h + uk’ +
vp' +uvq + wr' + uws' + vwy' + uvwz') divides aé; . Since gcd(é,h+uk' + vp' +uvqg' +wr' +
uws' + vwy' +uvwz') =1, so h+uk' + vp' +uvq' + wr' + uws' + vwy' + uvwz' divides a. Also,
deg(a(x)) < deg(h +uk' +vp' + uvq' + wr' + uws' + vwy' + uvwz’) and h+uk'+vp' +uvq' +
wr' +uws’' + vwy’ + uvwz' being monic in R[x], therefore @ =0 and hence ¢ = 0. Thus, if ¢ is a
non-zero codeword in C then all of its components must be non-zero. As []; (C) =< &;(g + uk + vp +
uvq + wr + uws + vwy + uvwz) >=< g + uk + vp + uvq + wr + uws + vwy + uvwz > and
dy(T1; () =dy(< g >).Soif g has 'a’ number of m*”* roots of unity, then the hamming weight of each
non-zero component will be > (a+1) and hence dy(C) = ¥¢(a+ 1) where a is the number of
consecutive powers of the m®" roots of unity which satisfy g(x).

41-Generator Generalized Quasi-Cyclic Code (GQC)

If 11,25, ..., 4, are integers such that n = A, + A, + -+ A, 4; > 0 and R;[x] = R[x]/< x* —1 > for
1<i<?¢, then the cartesian product R = R; X R, X ...X R, is an R[x] -module and generalized
quasi-cyclic (GQC) codes of length (4; + A, + -, 4,) over the ring R is an R[x]-submodule of R. For
Ay =21, =+ =1, =m, aGQC code of length (44,4, ...,4,) Is a quasi-cyclic code of length n = m# and
index £ over R. An k-generator GQC code over R isan R[x]-submodule of R with k-generator.

In present section we only study 1-generator GQC code of length (44,4,,...,4,) over the ring R. A

1-generator GQC code C over R spanned by P(x) = (P;(x), P,(x), ... ... ,Pp(x)) where P;[x] € <X§Ex_]1>

defined by C = {&(x)P(x):&(x) € R[x]}. Next result help in obtaining minimal spanning set of 1-generator
GQC over R.

is

Theorem 4.1Let C be a 1-generator GQC code of length (A4, 4,, ... 4,) over R generated by X; = (§191 +
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uk, + vp; + uvqq + wry + uwsy + vwy; + uvwzy, ..., &g, + uk, + vop, + uvq, + wrp + uws, +

vwy, + uvwz,) where &;, g, ki, qi, 71, 5;, Vi, Zi € Zy[x], g; divides x* — 1 for 1 < i < ¢ and there exists

iy, 1 < iy < £ suchthat & g;, + uk;, + vp;, +uvq;, + wr;, + uws;, +vwy; +uvwz; does not divides
A

xt—1.

Let uy; = W, u = lem(uq, yy, ..., ) with deg(p) = t;

Ui = W1 po = lem(pgq, g, -5 H2e) With deg(uy) = t;

Hai = (piﬁiu_zl'm_l), p3 = lem(uzq, U3z, -, Mze) With deg(uz) = t3

Mai = (qmi;iz_uz,xﬂi—l)’ ta = lem(uar, Pag, -, har) With deg(uy) =ty

Hsi = (Tiﬂliz;;thhxli_l)’ s = lem(usy, Us, .., Usp) With deg(us) = ts

Hei = (Siﬂlﬂzj;;ld,ﬂs,xli_l), te = lem(ugy, Loz, > Hee) With deg(ue) = tg

Hri = (yi#1ﬂzjtzil;tlsﬂe,xli—1)’ 7 = lem(uz1, U7z, ) h71e) With deg(uy) = t;

Uge = gcd(mez;;i;tﬂéw’xgi_1), g = lem(ugs, Ugz, -, gr) With deg (ug) =tg and X; = p; 1 X; 1 for
2<i<8.

Then the minimal spanning set of C is given by
Zy = (X0, xX1, .., X" X1}Z5 = (X, xXg, e, X271 X0}
Z3 = {Xg,xX3, ...,xt3—1x3}z4 — {X4,9CX4, ...,xt4_1X4}
Zs = (X5, 3, ey X057 X5) 2 = (X, 5oy e X151}
Z7 = {X1,xX7, ., x"771X7} Zg = {Xg, xXg, ..., x"* "' Xg}

Proof. Proof can be obtained on similar lines of that of theorem 3.2.

Theorem 4.2If C is a 1-generator GQC code of length (44,45, ..., 4,) over R generated by X; = (§;(g1 +
uk, + vpy + uvqy + wry + uws; + vwy; + uvwz,), ..., &,(g, + uk, + vp, + uvq, + wrp + uws, +
vwy, + uvwz,)) where &, gi, ki, qi,7:, i, Vi, Z; € Fp[x], g; divides x* — 1 for 1 <i < £.Also &g, +
uk; + vp; + uvq; + wr; + uws; + vwy; + uvwz; divides x* — 1 , p;

xti—1
:§igi+uk,-+vpi+uvq,-+wri+uwsi+vai+uvwzi
lem(pq, P2, -.-pp) With deg(p)=m—ty, then C is free module and minimal spanning setis Z; =
(X1, xXq, .., x™ 171X} and |c| =28m—t1=D Also, d(c) = ¥ n; where § = maxX< (1,2, ...,1) and Icm
p; and n; is minimum distance of I1;(C)
Further if p; = p, = --- = p, then d(C) = Zn;

such that gcd(&;,p;) =1foreach 1 <i<? ifp=

Proof. Following with the same arguments given in theorem 3.3, C is free module and minimal spanning set
is Z; = {X1,xXq, .., x™ 171X} and |c| =280t If ¢(x)=(cq (%), c2 (%), ..., ¢;(x)) € C. Then ¢c(x)=
E(X)X for some &(x) € R[x] and if c(x) =0 for 1 < i < ¢, implies that x* — 1 divides &(x)(&;g; + uk; +
vp; + uvq; + wr; + uws; + vwy; + uvwz;) and hence p; divides &(x) for 1 < i < #. Therefore c(x) # 0
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if and only if p divides £(x) for 1 < i < £. In other words when p divides &(x), C has maximum number
of non- zero co-ordinate positions and their distances is greater than minimum distance of corresponding
projections. Sod(c) = Y n; for § =max X < (1,2, ...,¢) andlcm p; . Further,if § = ¢ forany 1 <i< ¥
then d(C) = Zn;.
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