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Abstract 

Hybrid precoding technique reduce the complexity and provides better performance by providing 

acceptable throughput in the system..In this paper, we have used a neural network to conduct hybrid 

phased-Zero forcing with poor phase shifter resolution for improved spectral efficiency (HPZFNN). 

Finally, we have compared performance of the proposed systems to that of the existing system. Simulation 

results indicate that the HPZFNN hybrid pre-coder architecture method outperforms other approaches 

with low phase shifter resolution in terms of spectral accuracy. This paper attempts to contribute towards 

the development of a fifth-generation (5G) wireless infrastructure for ultra-dense networks by providing 

improved local area (ELA) mm Wave technologies  

Keywords: Deep learning Algorithm, Water-filling Algorithm, optimal hybrid precoder, mm wave 

Massive-MIMO, WBAN 

 

1. Introduction 

Wireless data traffic is expected to rise 1000-fold by 2021 and over 10,000-fold by 2030, necessitating the 

need to introduce 5G technologies to deal with the exploding data generation, storage, and transmission 

[1]. The usage of underutilized bandwidth in ultra-high-frequency bands, such as the millimeter-wave 

(mmWave) band, has recently piqued the attention of the scientific community as one of the most 

effective ways to satisfy 5G specifications [2]. One of the evolutionary advancements showed in 

mmWave networking is the ten-fold rise in carrier frequency compared to current wireless networks. In 

other terms, mmWave signals increase free-space path loss by orders of magnitude [3]. The mmWave 

MIMO method, inspired by massive multiple-input multiple-output (MIMO), is regarded as a possible 

technique for high system throughput. Hybrid precoding  is a method to multiplex a huge number of data 

streams and achieve more precise beamforming in mmWave massive MIMO[1]. Gao et al. [4] explored a 

sequential intervention cancellation-based hybrid precoding system with low complexity was proposed, 

which split the sum-rate optimization problem with non-convex constraints into many sub-rate 

optimization problems. The researchers then configured a hybrid precoder to create a low-complexity 

hybrid analog/digital precoding for multiuser mmWave systems in Alkhateeb et al., [5]. However, 

because the previously introduced hybrid analog/digital precoding methods are based on singular value 

decomposition (SVD), these precoding techniques have a high level of disturbance and needs 

improved allocation method. Furthermore, although the recently proposed geometric mean decomposition 
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(GMD)-based scheme given by Chen et al., [6] can solve the bit allocation issue, it still faces significant 

challenges in dealing with the non-convex restriction on the analogue precoder and leveraging the 

structural characteristics of mmWave large MIMO systems. 

Many researchers have recognized this gap in recent years. They have proposed various methods 

for reducing computational complexity or improving precoding efficiency, including the (GMD)-based 

scheme [6], the matrix factorization-based hybrid precoding mean explained by Jin et al., [7], a precoding 

method based on radio-frequency (RF) and baseband signal processing discussed by Zhang and Huang 

[8], and hybrid spatial processing architecture. Even though a lot of research has improved the hybrid 

precoding efficiency in mmWave large MIMO systems, there are still a lot of issues, and two of the 

biggest ones are the extremely high computational complexity and low machine performance. An 

alternating minimization scheme for effectively modeling hybrid precoder was also supported by Yu et al. 

[10] to achieve high spectrum performance with low complexity. Chen et al.  [11] proposed a beamspace-

SVD dependent hybrid precoding approach for reducing uncertainty by using low-dimensional 

beamspace channel state information (CSI) interpreted by compressive sensing (CS) detectors. In general, 

these works depend on traditional mathematical methods such as the SVD and GMD, which are 

insufficient to manipulate the mmWave huge MIMO's sparsity statistics. Simultaneously, since 

conventional approaches fail to take advantage of the structural properties of such mmWave devices, 

traditional low-complexity schemes are implemented at the expense of the systems' hybrid precoding. In 

the MIMO-OFDM scheme, He et al. [12] used a linear and Gaussian interpolation algorithm to reduce the 

feedback overhead induced by beam formation on each subcarrier. The actual model that explains the 

relationship between BER and SNR with limited input, on the other hand, has yet to be established. Duel-

Hallen et al. [16] described and tested a long-range fading channel prediction algorithm for simulating 

stationary fading models using calculated data and data produced by a physical channel model. They 

calculate the average BER for a given SNR using an estimated formula they created. Hassan [14] looked 

at how orthogonal frequency division multiplexing (OFDM) is used in radio communications to reduce 

inter-symbol conflict and improve device capability. By developing STCP estimators for a 2x2 multi-

antenna device using MATLAB, they could compare MIMO-OFDM using BPSK and QAM on Rayleigh 

and Rician networks. As a result, previous work has failed to address these issues fundamentally, and new 

approaches for improving the hybrid precoding efficiency of mmWave massive MIMO are urgently 

needed. Deep learning by Hinton et al. [15], showed a new solution that has recently emerged is a truly 

remarkable technique for dealing with massive amounts of data and solving complex nonlinear problems. 

Deep learning has been demonstrated to be an excellent method for dealing with challenging non-convex 

problems and high-computation questions, thanks to its superior recognition and representation skills. 

Beam selection, heterogeneous network, non-orthogonal multiple access (NOMA), huge MIMO, and 

heterogeneous network are several previous works that have explored deep learning in communications 

[16–21]. Deep learning has already been extended to intelligent traffic management [22–25], 

demonstrating significant advances resulting from deep-learning-based connectivity schemes. As a result, 

this research looks at a process that combines deep learning with hybrid precoding in mmWave MIMO 

systems. 

This paper proposes a deep-learning-enabled mmWave massive MIMO architecture for efficient 

hybrid precoding. Each precoder choice for obtaining the best decoder is treated as a mapping connection 

in the deep neural network (DNN). The hybrid precoder is chosen for improving the precoding phase of 
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the mmWave huge MIMO by training focused on the DNN. There are various application cases for 

typical deep learning algorithms, as we saw in the previous section's associated works. In this paper, we 

have used the proposed hybrid BiLSTM neural network with channel characteristics and the Fast Fourier 

Transform (FFT) technique to resolve these issues [26], where we use FFT to preprocess the data 

collection, allowing us to spot deviations that aren't detectable throughout the established time domain. 

We have used a bidirectional LSTM (BiLSTM) to encode sentence-level content, concatenated with a 

CNN-extracted local lexical function, to predict whether an object serves as an argument in a sentence. 

Bidirectional recurrent neural networks (RNN) are just two separate RNNs joined together. This 

configuration allows the networks to supply both backward and forward knowledge about the chain at any 

one time. Using bidirectional transfer of inputs in two directions, one from past to future and the other 

from future to past.A hybrid precoding transceiver design, which combines a digital and analogue 

precoder, has lately attracted a lot of interest as a cost-effective option. The difference between this 

technique and unidirectional is that in the LSTM that operates backward, knowledge from the future is 

preserved while using the two hidden states together, we will retain information from both past and future 

at any point in time. 

1. Proposed System  

For this work, consider medical results, such as pulse rate, blood pressure, glucose content, and 

temperature, as input to the data stream. We    combine IFFT and parallel to serial conversion with a 

hybrid pre-coding scheme (phased-Zero forcing).  BiLSTM neural network is designed having wireless 

channel characteristics to predict the channel parameters. Finally, to obtain an output stream, execute 

serial to parallel conversion and FFT[26]. Analyze the proposed system's output using the flow diagram 

as shown in Fig 1. 

 

Fig 1. Flow Diagram of hybrid pre-coding scheme (phased-Zero forcing) process 

2.1 Schematic Module Representation 
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• Data Selection and Loading: Consider medical data as the input for the data stream, such as heart 

rate, blood pressure, glucose level, temperature. 

• Pre-Coding Scheme: Perform a hybrid pre-coding scheme (phased-Zero forcing) process and 

IFFT and parallel to serial conversion. Fourier analysis converts a signal from its original domain 

(often time or space) to a representation in the frequency domain and vice versa. 

• Channel Selection: A Bidirectional LSTM, or biLSTM, is a sequence processing model that 

consists of two LSTMs: one taking the input in a forward direction and the other in a backward 

direction : It performs serial to parallel conversion and FFT to obtain output stream[26] 

2.2 Enhanced Approaches 

We provide simulation findings to verify the proposed scheme's excellent success in the deep Learning 

algorithm under mm-wave Massive-MIMO in WBAN using optimal hybrid precoder. To deal with this 

massive growth in wireless data traffic, one solution is to boost spectrally efficient networks like 4G LTE 

in bands below 6 GHz by using more sophisticated spectral performance strategies such as textual 

attribute analysis utilizing deep learning algorithms. It is evident that to keep up with the ever increasing 

wireless data consumption, significant hardware change need to be acknowledged towards 

implementation of optimal hybrid precoder .The second solution is to increase the frequency and enter an 

unused nontraditional range of vast bandwidths( such as millimeter wave mmWave bandwidth , 2GHz) 

allows for basic air interfaces rather than highly sophisticated methods designed to achieve high spectral 

performance for narrower bandwidths. Furthermore, as data demands grow, mmWave systems can easily 

evolve to even higher channel capacities  and there will be plenty of beam spacing to boost spectral 

performance.  

2.3 System Model  

In this section we provide the channel models of mmWave MIMO systems, which would then be 

formulated as a matrix factorization factor using hybrid precoding design. Owing to the enormous number 

of radio-frequency (RF) chains in mmWave MIMO systems with tens to hundreds of antennas, full-digital 

precoders are unfeasible due to the manufacturing cost and energy consumption of high-frequency mixed 

signal components. Furthermore, a few notations on complex matrix derivatives are introduced shortly. 

This paper adopted the following notations: For vectors, matrices, or sets accordingly, boldface lowercase 

letters, boldface uppercase letters and calligraphic story lines are utilized. The real or complicated fields 

are listed R and C, respectively. The superscripts ( )
T

• . ( )
*

•  and ( )
H

• stand for transpose, conjugate, and 

conjugate transpose operations, respectively ( )tr • is the trace of a matrix; • denotes the Euclidean norm 

of a vector; F•  represents the Frobenius norm of a matrix; ( )I •  represents the mutual information. 

The linear precoder is divided into analog or digital precoders, who were implemented alternately in 

analog and digital areas. A small number of RF chains is made of both the digital precoder, whereas phase 

shifters are used for the analog precoder. Each analog precoder entry fulfills the constant modulus limit 

because of the feature of phase shifters. Such continuous module restrictions provide an important 

obstacle throughout the development of hybrid precoding. 
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Assume a mmWave MIMO point-to-point system, in which a Nt-antennas transmitter provides Ns data 

streams to a Nr-antenna recipient. Nrf is the number of RF chains on the transmitter that fulfills Ns≤Nrf≤Nt. 

They take into account the hybrid precoding approach that first precodes Ns data streams that used a 

digital precoder and thereafter analog precoding. The baseband signal received 1rNy C  can be written as 

RF BBy HF F x n= +                                                                                 (1) 

Where 
Nr NtH C   is the channel matrix F t rfN N

RFF


 is the analog precoder with
1

F
t

f f
N

  
= = 
  

being the 

constant modulus set; C rf sN N

BBF


 is the digital precoder
1

C sN
x


 is the input data vector and

1
C tN

n


  

is really the circular symmetrical complex independent and equitably represented (i.i.d). Zero media and 

value of traditional Gaussian noise 
2I Provide that whilst the transmitter and even the recipient are 

known along channel H and each element including its input data vector x is gets uniformly dispersed 

without cardinality M from such a specified constellation. Therefore mutual service is transmitted either 

by input-output [27] 

1 1

1
I( ; ) log log

N Ns s

mk

s

M M
d

s nN
m k

x y N M E e
M

−

= =

  
= =  

  
                                             (2) 

Where ( )( 22 2

mk RF BB m kd HF F x x n n −= − + −  with xm and xk being two possible input data vectors 

from x. 

a. Channel Model 

Standard Multipath Models may be used for the mmWave MIMO channel. Assume the number of 

pathways between it transmitter and or the recipient L of physical propagation. The three parameters of 

each route are specified: complexgain i , angle of arrival ,r i ` and angle of departure ,t i .. The angles

 , 1

L

r i i


=
 and  , 1

L

t i i


=
are i.i.d. uniformly distributed over [0, 2 ) and the complex gains  

1

L

i i


=  are i.i.d. 

complex Gaussian distributed in unit variance without zero-mean. The channel matrix H gets given using 

that same model [28] 

( ) ( ), ,

1

a a
L

H
r t

l r i t i

i

N N
H

L
  

=

=                                                                      (3) 

Where ( ),a t i and ( ),a r i  Arrays provide transmission steering vectors while antenna arrays typically 

received. This paper contains uniform linear frames for said transmitter and receiver which steering 

vector array ( )a  is given by 
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( )
2 2

sin ( 1)sin1
a 1, ,....,

T
j d j d N

e e
N

 
 

 
− − − 

=  
 

                                                        (4) 

where N is the number of antenna element, is the wave length of the carrier frequency and 
1

2
d = is the 

antenna spacing. 

The channel in (3) can be rewritten in a more compact form as 

diag( ) H

r tH A A−                                                                                 (5) 

Where  1,....
T

L  = , C rN L

rA  and C tN L

tA   are array steering matrices with constant modulus 

entries, given by 

( ) ( )r ,1 ,A = a ,......ar r L  
                                                                                 (6) 

( ) ( ),1 ,A = a ,......at t t L  
                                                                                (7) 

Note that At is a full rank matrix when the angels  , 1

L

t i i


=  substantially distinct[1], and probably because 

this event happens  ,t i is drawn from either the uniform distribution separately. Accordingly, Ar and 

diag( )Full rank matrices are now one without likelihood. The rank of H is indeed determined 

( )  rank min , ,r tH L N N=                                                                             (8) 

The maximization of input-output information by power & constant modulus restrictions seems to be a 

fundamental approach there in hybrid precoding design. If the mmWave receiver may decode data 

optimally with the signal received, then perhaps the hybrid issue is phrased 

( )
,

Maximize I( ; )

Subject to

RF BBF u F

H H

BB RF RF BB

x y

tr F F F F P



                                                               (9) 

Where I( ; )x y  is the transmitting power constraint P is specified in (2) and F t rfN N
u


=  is the analog 

precoders set seems feasible. It really is difficult to solve (9) two reasons directly: First, issue 9 is 

nonconvex so because two are nonconvex I( ; )x y and U are not convex or concave as far as (FRF;FBB). 

Second, this objective function is evaluated by iterative problem algorithms, I( ; )x y  this might be very 

expensive even though in every iteration I( ; )x y  No expressions in closed form. 



International Journal of Future Generation Communication and Networking 

Vol. 14, No. 1, (2021), pp. 3307–3320 

 

3313 

ISSN: 2233-7857IJFGCN 

Copyright ⓒ2021SERSC 

In response to this demand and improve precoding design, they propose the following formulations for 

matrix factoring,[29] in which the unconstrained ideal precoder is approximated with hybrid precoders 

(FRF;FBB) Fopt, i.e., 

( )

2

,
Minimize

Subject to

RF BB
opt RF BBF u F F

H H

BB RF RF BB

F F F

tr F F F F P


−


                                                                 (10) 

The unconstrained optimal precoder Fopt is given by [27, 30] 

F
Maximize I( ; )opt

F
F x y


=                                                                                 (11) 

Where ( ) F F FHF tr P=   

b. Preliminaries on Complex Matrix Derivatives 

Non-linear optimization using complex matrix variables are also the issues examined in this study, hence 

they give certain concepts for complex matrix derivatives. For a univariate function ( ) : C Rf x → the 

definition of the complex derivative is given in [31]: 

1

2 ( ) ( )

f f f
j

x x x

    
= − 

   
                                                                             (12) 

1

* 2 ( ) ( )

f f f
j

x x x

    
= + 

   
                                                                              (13) 

For a multivariate function
n r( ) : C Rf X  →  the partial derivatives with respect to X and X* are matrices 

kl

f f

X X

   
= 

  
 and **

kl

f f

X X

   
= 

   
                                                                    (14) 

Where klX ` denotes the (k; l)-th element of X. In addition, the complex gradient matrix ( )x f X is 

defined as 

( )
*

x

f
f X

X

 
 =


                                                                                     (15) 

Let  1 , *X X X and  2 , *X X X  then the complex Hessian of f(X) with respect to X1 and X2 is 

defined in[31]: 

1 2,

1 2( ) ( )

T

X X T T

f
H f

vec X vec X

   
=  
  

                                                           (16) 
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The number of physical propagation paths is set as L = 8,and the signal-to-noise ratio (SNR)= 
2

P


 is 

described as SNR. We generate N=1000 channel performance using (3), and then using the following 

average Gaussian inputs can assess system performance: 

2

1

1
logdet 1 H Q H

N
H

i i i

iN
 −

=

 +                                                                      (17) 

Where Hi is the ith channel realization, and 
( ) ( ) ( ) ( )Q ( ) ( )i i i H i H

i RF BB BB RFF F F F=  with 
( ) ( )( . )i i

RF BBF F  the 

appropriate analog and digital precoder solution Hi. Researchers establish a benchmark again for 

performance of unconstrained optimum precoders and then compare our suggested approach. It addresses 

an overall problem of factoring of the modulus matrix. Let suggest first designing a digital analog 

precoder FRF 

2

,
Minimize

RF BB

opt RF BB FF u F
F F F


−                                                                    (18) 

Thus it is interesting to assess the performance every arbitrary provided matrix of our suggested algorithm 

Fopt. The results of the method are assessed by the average error in uclidean provided as 

2
( ) ( ) ( )

1

1 N
i i i

opt RF BB F
i

F F F
N =

−                                                                           (19) 

Where
( ) C tN Ni

optF  , 
( ) C t rfN Ni

RFF


 and 
( ) C rf sN Ni

BBF


 are outputs ofAlgorithm 1 with the given 

input 
( )i

optF =𝑝𝑠
𝑚,𝑛

, after assuming this as optimal value of phase shifter  𝑝𝑠
𝑚,𝑛

. 

c. Water-filling Principle 

In a frequency-selective channel, water filling and link adaptation based on CSI may be used to optimize 

the cumulative rate given a transmission power. Traditional water-filling,  is not the ideal method for 

achieving efficient and dependable subcarrier power distribution. The suggested method outperformed the 

water-filling method. To decrease the computing complexity of [33], a new energy-efficient method was 

suggested in [32]. Energy-optimal link adaptation and resource scheduling methods were developed in 

closed forms, taking into account temporal average bit-per-Joule metrics. 

For multicarrier loading issues, a water-filling method was used  here. Maximize the total bit rate Rtotal for 

the whole multichannel MIMO-OFDM transmission system, while maintaining a constant Pt and an 

optimum allocation of the total transmit power Pt across the N sub-channels. This phenomenon, in 

contrast to the suggested system, may be expressed as: 

2

i
c t

i

K p
H


= +      1≤i≤N                                                                 (20) 
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Where pi is the transmission power, 2

i is the noise variance (power) and |Hi| magnitude response at 

subchannel i respectively.To be exact, for each subchannel, the sum of transmit power and noise variance 

(power) scaled by the inverse of the channel (subchannel) magnitude response should be kept constant. 

It's also possible to write it as; 

1

( )
c i

i

K p
SNR

= +   1≤i≤N                                                            (21) 

Where 

2

2 2
( ) i

i

i i

H P
SNR

 
= =                                                            (22) 

In the water-filling process, we establish all streams to be of equal significance and the SNR is defined as 

2

i

P


another benefit of the suggested method is that the value of the constant Kc is computed systematically 

and provided below as the equation is being derived. 

1

1 1

( )

N

c avg

i i

K P
N SNR=

= +                                                                      (23) 

Where Pavg is the average transmit power per subcarrier and (SNR)i   is the signal-to-noise ratio of the 

subcarrier (21). Equation (23), on the other hand, will be used to determine the throughput of this loading 

method, while Equation (24), on the other hand, will be used to find the power vector P by using the 

water-filling process (1). Hence Algorithm 1 with the given input 
( )i

optF =𝑝𝑠
𝑚,𝑛

=R, after assuming this as 

optimal value of phase shifter 𝑝𝑠
𝑚,𝑛

 

,

1 2 ,

1 1 1 1

1 1 1 1
(log ( )) ( , ) ( , )

N N N N
m n

c i i i i i s

i i i i

R r M R p Qos p Qos p
N N N N= = = =

= = =  =  =                          (24) 

The water filling algorithm and all hybrid precoding algorithm in this subsections employ the same as Fopt 

for analog and digital precoders. The unconstrained optimum precoder Fopt was also available under 

Gaussian inputs. The optimal value of phase shifter 𝑝𝑠
𝑚,𝑛

 between the m-th user and the n-th channel, 

𝑝𝑠
𝑚,𝑛 =

1

√𝑁𝐾
𝑒𝑗 arg (𝑃𝑀

𝑚,𝑛,𝑃
𝐴𝐻)

                                                                   (25) 

Where 𝑃𝑀
𝑚,𝑛

 - digital precoding matrix for m-th user and the n-th channel; 𝑃𝐴𝐻 – Analog precoding matrix 

for channel coefficient.Power allocated by individual channel is given by 

Power allocated= 
1

1

1

( )

n

t i
i

c i

P
H

Channel H H

=
+

= −




                                                          (26) 

Where Pt is the total power of the MIMO system, which is distributed over the various channels, and Hc 

denotes the system's channel matrix. The algebraic sum of the capacities of all channels gives the capacity 

of a MIMO: 
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1

log(1 Power Allocation )
n

c

i

Capacity H
=

= +                                                             (27) 

The total amount of bits that must be transmitted must be as high as possible. The water filling algorithm 

is carried out using the procedures outlined in the scheme. As long as the channel matrix is accessible, it 

may be used in both the mmWave sparse scattering channel and the traditional i.i.d Rayleigh channel. 

2.4 Enhanced Channel Prediction Algorithm 

Algorithm 1: Phased-ZF precoding based DNN approach in Massive MIMO 

Input: Channel Matrix 𝐻𝐶, Maximum transmitted power 𝑇𝑟𝑝𝑤 , number of iteration 𝐼𝑡𝑒𝑟𝑛𝑜  

Output:  Precoding matrix 𝑃𝐴 

Initialization 𝑁𝐾 = 𝑁𝑇/𝑁𝑅 

1. Compute digital precoding matrix  

                                                      𝑃𝑀 = 𝛥 𝑃𝐴                                                                                                     

(28)                                                                           

𝑤ℎ𝑒𝑟𝑒,   

𝛥 −  Power allocation matrix achieved by water filling algorithm [as given in (26)] 

𝑃𝐴 – Analog matrix. 

2. Construct the proposed DNN based on BiLSTM framework. 

3. Perform the network model simulator to simulate wireless channel with artificial distortion or 

noise. 

4. While 𝑖 ≤  𝐼𝑡𝑒𝑟𝑛𝑜 do 

• (error≥τ) : Train the DNN by processing the SGD with momentum 

τ  - threshold value for loss factor 

• Update fixed digital pre coding matrix. 𝑃𝑀 

• The  optimal value of phase shifter 𝑝𝑠
𝑚,𝑛

 between the m-th user and the n-th 

channel, 

                                            𝑝𝑠

𝑚,𝑛

=
1

√𝑁𝐾
𝑒𝑗 arg (𝑃𝑀

𝑚,𝑛,𝑃
𝐴𝐻)

                                                      

(29) 

𝑃𝑀
𝑚,𝑛

 - digital precoding matrix for m-th user and the n-th channel 

𝑃𝐴𝐻  – Analog precoding matrix for channel coefficient  

end while 

 

2. Results and Discussion 

To begin with, we study the spectral efficiency of various methods where the number of RF chains equals 

the data streams i.e Nt=Nr=Nk. Fig 2 provides the spectral efficiency obtained as a function of SNR (dB). 

On comparison, it is seen spectral efficiency is improved with the existing approach. It was found that the 
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proposed system based on phased-ZF precoding DNN provides maximum efficiency of approximately. 

98.5% at SNR =25dB compared with other schemes. 

  

 
Fig. 2. Comparative plots for spectral efficiency as a function of  SNR (dB) 

Fig 3 shows the bit error ratio in relation to SNR (dB), and we used the proposed methodology for all 

system models (OFDM – no CP, OFDM, and FBMC). Using the phased-ZF precoding DNN, OFDM – no 

CP provided Bit Error Ratio of 10-2 at SNR= 30 dB , while that of OFDM and FBMC  ranged from 10-2 to 

10-3. As there are a linear number of phase shifts, fully integrated structure would significantly increase 

power usage as Nt. It is seen that the power consumption has grown considerably more rapidly than that 

of the spatial multiplexing, causing the energy efficiency to fall significantly.  

 
Fig. 3.  Bit Error Rate performance v/s SNR for different system models 
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Fig 4 shows the channel capacity obtained in the proposed system using a deep learning algorithm. The 

response curve shows steady increasing order of the capacity of the proposed system for  SNR ranging 

from  6.5 to 15 dB. However, below 6.5dB or for SNR > 15db there is no significant change in the 

capacity of the system. Therefore, SNR working range can be defined as 6.5 to 15dB. 

 

Fig. 4. Estimation of channel capacity for proposed system v/s SNR 

The channel capacity as a function of SNR for different values of sub channels is as shown in Fig 5. It is 

seen from the curves that the dynamic range of the capacity increases with increase in the number of 

subchannels. For example: For 15 sub channels, the capacity changes by 9 Mbps (range is 5 to 14 Mbps); 

For 45 subchannels it is 20 Mbps (from 25 to 45Mbps). This is because of the insufficient interference 

cancellation. Therefore, depending on the capacity range requirement, optimum number of sub channels 

can be chosen. 

 

Fig. 5 Comparison of Channel Capacity v/s SNR at different sub channels (15, 25, 35, 45) 

3. Conclusion 
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We can conclude that using a deep learning algorithm, we can improve hybrid precoding efficiency by 

reducing computational sophistication and exploiting the spatial statistics of mmWave MIMO systems. 

The proposed method which is built on phased-ZF precoding DNN has a maximum performance (bits/Hz) 

of approximately 98.5 percent at a SNR of 25 dB, which is higher than that provided by the existing 

system.” DNN-based method is capable of lowering the BER and increasing the spectrum efficiency of 

the mmWave as well as s achieving better output in hybrid precoding than traditional schemes thus 

significantly reducing the necessary computational factors. In future the new deep learning architecture 

can be combined with 5G standards for further signal processing in WBAN.  
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