Some New Class Of Generalized Closed And Open Mappings

Jeyasingh Juliet Jeyapackiam^{1, *} Dr.J. Vijaya Xavier Parthipan²

¹Department Of Mathematics, Manonmaniam Sundranar University, Tirunelveli, India ² Department Of Mathematics, St. John's College, Tirunelveli, India

ABSTRACT : In This Paper We Introduce A Class Of Sets Called Greneralised Bog-Closed Sets In Topological Spaces. And We Introduce Basic Properties Of Generalised Bog-Closed Functions. Also We Investigate Contra-Bog-Closed Functions And Their Relationships To Other Functions. Keywords: Bog-Closed Map,Bog-Open Set,Bog-Irresolute,Weakly Bog-Closed,Contra-Bog-Opendness And Bog-Opendness.

1 Introduction

Malghan [2] Introduced Generalised Closed Functions And Devi Et Al [4] Introduced Ag-Closed Functions. Noiri [3] And Veerakumar [1] Introduced Δ -Closed Functions And Gb-Closed Functions In Topological Spaces. In This Present Chapter We Use $B\delta g$ -Closed Sets To Define A New Class Of Functions Called $B\delta g$ -Closed Functions And Obtain Some Properties Of These Functions. We Further Introduce And Study A New Class Of Functions Namely Weakly $B\delta g$ -Closed Functions And We Introduce A New Space Called $B\delta g$ -Regular Space. Also We Define A New Class Of Generalized Closed Functions Called Contra- $B\delta g$ -Closed Functions And Investigate Their Relationships To Other Functions.

2. Preliminaries

2.1 Bog-Closed Maps

Definition 2.1.1. A Map $F : (X, T) \to (Y, \Sigma)$ Is Called *B* δ *g*-Closed If The Image Of Each Closed Set In (*X*, *T*) Is *B* δ *g*-Closed In (*Y*, Σ).

Example 2.1.2. Let $X = \{A, B, C\}$ And $Y = \{P, Q, R\}$ With The Topologies

 $T = \{\Phi, \{A\}, \{C\}, \{A, C\}, \{B, C\}, X\}$ And $\sigma = \{\Phi, \{P\}, \{Q, R\}, Y\}$. Define $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = Q, F(B) = R And F(C) = P. Then F Is $B\delta g$ -Closed Map.

Remark 2.1.3. The Composite Mapping Of Two $B\delta g$ -Closed Maps Is Not In $B\delta g$ -Closed Maps As Shown In The Following Example.

Example 2.1.4. Let $X = \{A, B, C\} = Y = Z$; $T = \{\Phi, \{A\}, X\}, \Sigma = \{\Phi, \{B\}, \{A, C\}, Y\}$ And $H = \{\Phi, \{A\}, \{C\}, \{A, B\}, \{A, C\}, Z\}$. Define A Map $F : (X, T) \to (Y, \Sigma)$ By F(A) = A, F(B) = C And F(C) = B And Let $G : (Y, \Sigma) \to (Z, H)$ By The Identity Function. Clearly F And G Are $B\delta g$ -Closed Maps. But $G \circ F : (X, T) \to (Z, H)$ Is Not An $B\delta g$ -Closed Map Because $(G \circ F)(\{B, C\}) = \{B, C\}$ Is Not An $B\delta g$ -Closed Set Of (Z, H) Where $\{B, C\}$ Is A Closed Set Of (X, T).

Theorem 2.1.5. If $F : (X, T) \to (Y, \Sigma)$ Is Closed And $G : (Y, \Sigma) \to (Z, H)$ Is B δ g-Closed Map Then $G \circ F : (X, T) \to (Z, H)$ Is B δ g-Closed.

Proof. Let *G* Be A Closed Subset Of *X*. Since *F* Is Closed, F(G) Is Closed Set Of (Y, Σ) . On The Other Hand, $B\delta g$ -Closeness Of *G* Implies G(F(G)) Is $B\delta g$ -Closed In (Z, H). Hence $G \circ F$ Is $B\delta g$ -Closed Map.

Remark 2.1.6. If $F : (X, T) \to (Y, \Sigma)$ Is $B\delta g$ -Closed Map And $G : (Y, \Sigma) \to (Z, H)$ Is Closed Map Then

 $G \circ F : (X, T) \rightarrow (Z, H)$ May Not Be $B\delta g$ -Closed Map As Shown By The Following Example.

Example 2.1.7. Let $X = \{A, B, C\} = Y = Z$; $T = \{\Phi, \{B\}, X\}$, $\Sigma = \{\Phi, \{C\}, \{A, B\}, Y\}$ And $H = \{\Phi, \{B\}, \{C\}, \{A, B\}, \{B, C\}, Z\}$. Define A Map $F : (X, T) \to (Y, \Sigma)$ By F(A) = B, F(B) = A And F(C) = C And Let

 $G: (Y, \Sigma) \rightarrow (Z, H)$ Be The Identity Function. Clearly *F* Is $B\delta g$ -Closed Map And *G* Is Closed Map. But

 $G \circ F : (X, T) \rightarrow (Z, H)$ Is Not An $B\delta g$ Closed Map Because $(G \circ F)(\{A, C\}) = \{B, C\}$ Is Not An $B\delta g$ -Closed Set Of (Z, H) Where $\{A, C\}$ Is A Closed Set Of (X, T).

Proposition 2.1.8. If A Map $F : (X, T) \to (Y, \Sigma)$ Is $B\delta g$ -Closed, Then $B\delta g$ -Cl(F(A)) $\subset F(Cl(A))$ For Every Subset A Of (X, T).

Proof. Suppose *F* Is $B\delta g$ -Closed Map And Let $A \subset X$. Then F(Cl(A)) Is $B\delta g$ -Closed Set In (Y, Σ) . But $F(A) \subset F(Cl(A))$ And $B\delta g$ - $Cl(F(A)) \subset B\delta g$ -Cl(F(Cl(A))) = F(Cl(A)).

Remark 2.1.9. The Converse Of Proposition 2.1.8 Need Not Be True As Seen From The Following Example.

Example 2.1.10. Let $X = \{A, B, C\}$ And $Y = \{P, Q, R\}$ With The Topologies $T = \{\Phi, \{A\}, X\}$ And $\Sigma = \{\Phi, \{Q\}, \{P, Q\}, Y\}$. Define A Map $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = Q, F(B) = P And F(C) = R. Let $A = \{A\}$. Here $B\delta g$ - $Cl(F(A)) \subset F(Cl(A))$. But F Is Not A $B\delta g$ -Closed Map, Since The Set $\{B, C\}$ Is Closed In (X, T), But $F(\{B, C\}) = \{P, R\}$ Is Not $B\delta g$ -Closed Set In (Y, Σ) .

Theorem 2.1.11. A Map $F : (X, T) \to (Y, \Sigma)$ Is B δ g-Closed If And Only If For Each Subset G Of (Y, Σ) And For Each Open Set U Of (X, T)Containing $F^{-1}(G)$, There Exists An B δ g-Open Set V Of (Y, Σ) Such That $G \subset V$ And $F^{-1}(V) \subset U$.

Proof. Let *F* Be A $B\delta g$ -Closed Map And Let *G* Be An Subset Of (Y, Σ) And *U* Be An Open Set Of (X, T) Containing $F^{-1}(G)$. Then X - U Is Closed In (X, T). Since *F* Is $B\delta g$ -Closed Map, F(X - U) Is $B\delta g$ -Closed Set In (Y, Σ) . Hence Y - F(X - U) Is $B\delta g$ -Open Set In (Y, Σ) . Take V = Y - F(X - U).

Then *V* Is $B\delta g$ -Open Set In (Y, Σ) Containing *G* Such That $F^{-1}(V) \subset U$. Conversely, Let *F* Be An Closed Subset Of (X, T). Then $F^{-1}(Y - F(F)) \subset X - F$ And X - F Is Open. By Hypothesis There Is An $B\delta g$ -Open Set *V* Of (Y, Σ) Such That $Y - F(F) \subset V$ And $F^{-1}(V) \subset X - F$. Therefore $F \subset X - F^{-1}(V)$. Hence $Y - V \subset F(F) \subset F(X - F^{-1}(V)) \subset Y - V$ Which Implies F(F) = Y - V And Hence F(F) Is $B\delta g$ -Closed In (Y, Σ) . Thus *F* Is An $B\delta g$ -Closed Map.

Theorem 2.1.12. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Any Two Maps.

- (I) If $G \circ F : (X, T) \rightarrow (Z, H)$ Is Bδg-Closed Map And G Is Bδg Irresolute, Injective Map Then F Is Bδg Closed.
- (Ii) If $G \circ F : (X, T) \rightarrow (Z, H)$ Is Bδg-Irresolute And G Is Bδg-Closed, Injective Map Then F Is Bδg-Continuous.

Proof. (I) Let U Be Any Closed Set In (X, T). Since $G \circ F$ Is $B\delta g$ Closed, $(G \circ F)(U)$ Is $B\delta g$ -Closed Set In (Z, H). Therefore G(F(U))Is $B\delta g$ -Closed In (Z, H). Since G Is $B\delta g$ -Irresolute, $G^{-1}(G(F(U)))$ Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . Hence F Is $B\delta g$ -Closed Map. (Ii) Let U Be Any Closed Set In (Y, Σ) . Since G Is $B\delta g$ -Closed Map, G(U) Is $B\delta g$ -Closed Set In (Z, H). Since $G \circ F$ Is $B\delta g$ -Irresolute, $(G \circ F)^{-1}(G(U))$ Is $B\delta g$ -Closed In (X, T). Therefore $(F^{-1}(G^{-1}(G(U))))$ Is $B\delta g$ -Closed In (X, T). Therefore $(F^{-1}(G^{-1}(G(U))))$ Is $B\delta g$ -Closed In (X, T). This Shown That F Is $B\delta g$ -Continuous Function.

Theorem .2.1.13. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Any Two Maps And $G \circ F : (X, T) \to (Z, H)$ Be An B δg -Closed Map. If F Is Continuous Then G Is B δg -Closed. **Proof.** Let V Be Any Closed In (Y, Σ) . Since F Is Continuous, $F^{-1}(V)$ Is Closed In (X, T). Since G $\circ F$ Is B δg -Closed Map, $(G \circ F)(F^{-1}(V))$ Is B δg -Closed In (Z, H). That Is G(V) Is B δg -Closed In (Z, H).

Hence G Is $B\delta g$ -Closed Map.

Theorem 2.1.14. A Bijection $F : (X, T) \to (Y, \Sigma)$ Is Bδg-Closed Map If And Only If F(U) Is Bδg-Open In (Y, Σ) For Every Open Set U In (X, T).

Proof. Necessity: Suppose $F : (X, T) \to (Y, \Sigma)$ Is $B\delta g$ -Closed Map. Let U Be An Open Set In (X, T). Then U^c is Closed In (X, T). Since F Is $B\delta g$ -Closed Map, $F(U^c)$ Is $B\delta g$ -Closed Set In (Y, Σ) . But $F(U^c) = [F(U)]^C$ And Hence $[F(U)]^c$ is $B\delta g$ -Closed In (Y, Σ) . Hence F(U) Is $B\delta g$ -Open In (Y, Σ) . Sufficiency: Let F(U) Be $B\delta g$ -Open In (Y, Σ) For Every Open Set U Of (X, T). Then U^c is Closed Set In (X, T) And $[F(U)]^c$ is $B\delta g$ Closed Set In (Y, Σ) . But $[F(U)]^c = F(U^c)$ And Hence $F(U^c)$ Is $B\delta g$ Closed Set In (Y, Σ) . Therefore F Is $B\delta g$ -Closed Map.

Definition 2.1.15. A Map $F : (X, T) \to (Y, \Sigma)$ Is Said To Be $B\delta g$ Open If The Image Of Every Open Set In (X, T) Is $B\delta g$ -Open In (Y, Σ) .

Remark .2.1.16. $B\delta g$ -Openness And $B\delta g$ -Continuity Are Indepen Dent As Shown In The Following Example.

Example 2.1.17. Let $X = \{A, B, C\}$ And $Y = \{P, Q, R\}$ With The Topologies $T = \{\Phi, \{A\}, \{B\}, \{A, B\}, X\}$ And $\Sigma = \{\Phi, \{Q\}, \{P, Q\}, Y\}$. Define $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = P, F(B) = Q And F(C) = R. Clearly F Is $B\delta g$ -Continuous But Not $B\delta g$ -Open Map Because $\{B\}$ Is Open In (X, T) But $F(\{B\}) = \{Q\}$ Is Not $B\delta g$ -Open In (Y, Σ) .

Example 2.1.18. Let $X = \{A, B, C\}$ And $Y = \{P, Q, R\}$ With The Topologies $T = \{\Phi, \{A\}, \{A, C\}, X\}$ And

 $\Sigma = \{\Phi, \{P\}, \{Q\}, \{P, Q\}, Y\}$. Define The Function $F : (X, T) \to (Y, \Sigma)$ By F(A) = Q, F(B) = R And F(C) = P. Then *F* Is $B\delta g$ -Open But Not $B\delta g$ -Continuous Map Because $\{R\}$ Is Closed In (Y, Σ) But $F^{-1}(\{R\}) = \{B\}$ Is Not $B\delta g$ -Closed In (X, T).

Theorem 2.1.19. A Map $F : (X, T) \to (Y, \Sigma)$ Is B δ g-Open If And Only If For Each Subset G Of (Y, Σ) And For Each Closed Set U Of (X, T)Containing $F^{-1}(G)$, There Exists An B δ g-Closed Set V Of (Y, Σ) Such That $G \subset V$ And $F^{-1}(V) \subset U$.

Proof. Suppose *F* Is $B\delta g$ -Open Map. Let *G* Be Any Subset Of (Y, Σ) And *U* Be An Closed Set (X, T) Containing $F^{-1}(G)$. Then U^c is Open In (X, T). Since *F* Is $B\delta g$ -Open Map, $F(U^c)$ Is $B\delta g$ -Open Set In (Y, Σ) . Hence $(F(U^c))^C$ is $B\delta g$ -Closed Set In (Y, Σ) . Put $V = (F(U^c))^C$. Then *V* Is $B\delta g$ -Closed Set In (Y, Σ) Containing *G* Such That $F^{-1}(V) \subset U$. Conversely, Let *F* Be An Open Subset Of (X, T). Then $F^{-1}(F(F^c)) \subset F^c$ And F^c is Closed. By Hypothesis There Is An $B\delta g$ -Closed Set *V* Of (Y, Σ) Such That $(F(F))^C \subset V$ And $F^{-1}(V) \subset F^c$. Therefore $F \subset (F^{-1}(V))^C$. Hence $V^c \subset F(F) \subset F(F^{-1}(V))^C \subset V^c$, Which Implies $F(F) = V^c$ And Hence F(F) Is $B\delta g$ -Open In (Y, Σ) . Thus *F* Is A $B\delta g$ Open Map.

Corollary 2.1.20. A Map $F : (X, T) \to (Y, \Sigma)$ Is $B\delta g$ -Open If And Only If $F^{-1}(B\delta g$ - $Cl(B)) \subset Cl(F^{-1}(B))$ For Every Subset B Of (Y, Σ) .

Proof. Suppose That *F* Is $B\delta g$ -Open Map. For Any Subset *B* Of (Y, Σ) , $F^{-1}(B) \subset Cl(F^{-1}(B))$. Hence By Theorem 4.2.19 There Ex Ists A $B\delta g$ -Closed Set *A* Of (Y, Σ) Such That $B \subset A$ And $F^{-1}(A) \subset Cl(F^{-1}(B))$. Hence We Obtain $F^{-1}(B\delta g$ - $Cl(B)) \subset F^{-1}(A) \subset Cl(F^{-1}(B))$,

Since *A* Is $B\delta g$ -Closed Set In (Y, Σ) . Conversely, Let *B* Be Any Sub Set Of (Y, Σ) And Let *U* Be Any Closed Set Containing $F^{-1}(B)$. Take $A = B\delta g$ -Cl(*B*). Then *A* Is $B\delta g$ -Closed And $B \subset A$. By Assump Tion $F^{-1}(A) = F^{-1}(B\delta g$ -Cl(*B*)) \subset Cl($F^{-1}(B)$) \subset U And Therefore By Theorem 2.1.19 *F* Is $B\delta g$ -Open.

2.2 Weakly *Bδg*-Closed Maps

We Introduce The Following Definition.

Definition 2.2.1. A Map $F : (X, T) \to (Y, \Sigma)$ Is Called *Weakly Bdg Closed* (Resp. Weakly *Bdg*-Open) If The Image Of Every Δ -Closed (Resp. Δ -Open) Set In (X, T) Is *Bdg*-Closed (Resp. *Bdg*-Open) Set In (Y, Σ) .

Theorem 2.2.2. *Every Bδg-Closed Map Is Weakly Bδg-Closed*.

Proof. Let $F : (X, T) \to (Y, \Sigma)$ Be An $B\delta g$ -Closed Map And G Be A Δ -Closed Set In (X, T). Every Δ -Closed Set Is Closed, G Is Closed Set In (X, T). Since F Is $B\delta g$ -Closed Map, F(G) Is $B\delta g$ -Closed In (Y, Σ) .

Hence *F* Is Weakly $B\delta g$ -Closed Map.

Remark 2.2.3. The Converse Of The Above Theorem Need Not Be True As Shown In The Following Example.

Example 2.2.4. Let $X = \{A, B, C\}$ And $Y = \{P, Q, R\}$ With The Topologies $T = \{\Phi, \{A\}, X\}\Sigma = \{\Phi, \{Q\}, \{P, Q\}, Y\}$. Define A Map $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = Q, F(B) = P And F(C) = R. Then F Is Weakly $B\delta g$ -Closed But Not $B\delta g$ -Closed Map. Because $F(\{B, C\}) = \{P, R\}$ Is Not $B\delta g$ -Closed In (Y, Σ) Where $\{B, C\}$ Is Closed In (X, T).

Theorem 2.2.5. Every \triangle -Closed Map Is Weakly $B\delta g$ -Closed Map.

Proof. It Is True That Every \triangle -Closed Set Is $B\delta g$ -Closed.

Remark 2.2.6. The Converse Of The Above Theorem Need Not Be True As Shown In The Following Example.

Example2.2.7. Let $X = \{A, B, C\}$ And $Y = \{P, Q, R\}$ With The Topologies $T = \{\Phi, \{A\}, \{B, C\}, X\}$ And $\Sigma = \{\Phi, \{R\}, \{P, Q\}, Y\}$. De Fine $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = P, F(B) = R And F(C) = Q. Then F Is Weakly $B\delta g$ -Closed Map But F Is Not Δ -Closed Because $F(\{B, C\}) = \{Q, R\}$ Is Not Δ -Closed In (Y, Σ) Where $\{B, C\}$ Is Δ -Closed In (X, T).

Remark 2.2.8. The Composition Of Two Weakly $B\delta g$ -Closed Maps Need Not Be Weakly $B\delta g$ -Closed As Shown In The Following Example.

Example 2.2.9. Let $X = \{A, B, C\} = Y = Z$ With The Topologies $T = \{\Phi, \{A\}, \{B, C\}, X\}; \Sigma = \{\Phi, \{C\}, \{A, B\}, Y\}$ And $H = \{\Phi, \{A\}, \{C\}, \{A, B\}, \{A, C\}, Z\}$. Define $F : (X, T) \to (Y, \Sigma)$ By F(A) = B, F(B) = A And F(C) = C And Let $G : (Y, \Sigma) \to (Z, H)$ Be The Identity Function. Clearly F And G Are Weakly $B\delta g$ -Closed Maps But $G \circ F : (X, T) \to (Z, H)$ Is Not An Weakly $B\delta g$ -Closed Map. Because $\{B, C\}$ Is Δ -Closed In (X, T) But $(G \circ F)(\{B, C\}) = G(F(\{B, C\})) = \{A, C\}$ Is Not $B\delta g$ -Closed Set In (Z, H).

Theorem 2.2.10. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Any Two Maps. Then (I) $G \circ F : (X, T) \to (Z, H)$ Is Weakly Bδg-Closed Map, If F Is Δ Closed Map And G Is Weakly Bδg-

Closed Map. (Ii) If $G \circ F : (X, T) \rightarrow (Z, H)$ Is Weakly Bôg-Closed And G Is Bôg Irresolute, Injective Map Then F Is Weakly Bôg-Closed.

Proof. (I) Let $V \text{ Be } \Delta$ -Closed In (X, T). Since F Is Δ -Closed Map, F(V) Is Δ -Closed In (Y, Σ) . Since G Is Weakly $B\delta g$ -Closed Map, G(F(V)) Is $B\delta g$ -Closed In (Z, H). That Is $(G \circ F)(V)$ Is $B\delta g$ -Closed In (Z, H). Hence $(G \circ F)$ Is Weakly $B\delta g$ -Closed Map. (Ii) Let U Be Δ -Closed In (X, T). Since $G \circ F$ Is Weakly $B\delta g$ Closed Map, $(G \circ F)(U)$ Is $B\delta g$ -Closed In (Z, H). Therefore G(F(U)) Is $B\delta g$ -Closed In (Z, H). Since G Is $B\delta g$ -Irresolute, $G^{-1}(G(F(U)))$ Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . That Is F(U) Is $B\delta g$ -Closed In (Y, Σ) . Hence F Is Weakly $B\delta g$ -Closed Map.

Theorem 2.2.11. A Bijection $F : (X, T) \to (Y, \Sigma)$ Is Weakly Bog Closed Map If And Only If F(U) Is Bog-Open In (Y, Σ) For Every Δ -Open Set U In (X, T).

Proof. Let $F : (X, T) \to (Y, \Sigma)$ Be Weakly $B\delta g$ -Closed Map And U Be Any Δ -Open Set In (X, T). Then U^c is Δ -Closed Set In (X, T). Since F Is Weakly $B\delta g$ -Closed Map, $F(U^c)$ Is $B\delta g$ -Closed Set In (Y, Σ) . But $F(U^c) = [F(U)]^C$ And Hence $[F(U)]^C$ is $B\delta g$ -Closed Set In (Y, Σ) . There Fore F(U) Is $B\delta g$ -Open In (Y, Σ) . Conversely, Assume That F(U) Is $B\delta g$ -Open In (Y, Σ) For Every Δ -Open Set U Of (X, T). Then U^c is Δ Closed Set In (X, T) And $[F(U)]^C$ is $B\delta g$ -Closed In (Y, Σ) . Hence $F(U^c)$ Is $B\delta g$ -Closed In (Y, Σ) . Thus F Is Weakly $B\delta g$ -Closed Map.

Theorem 2.2.12. A Map $F : (X, T) \to (Y, \Sigma)$ Is Weakly Bδg-Closed Map If And Only If For Each Subset B Of (Y, Σ) And For Each Δ -Open Set U Of (X, T) Containing $F^{-1}(B)$, There Exists An Bδg-Open Set V Of (Y, Σ) Such That $B \subset V$ And $F^{-1}(V) \subset U$.

Proof. Necessity: Suppose *F* Is Weakly $B\delta g$ -Closed Map. Let *B* Be Any Subset Of (Y, Σ) And *U* Be An Δ -Open Set Of (X, T) Containing $F^{-1}(B)$. Then X - U Is Δ -Closed Subset Of (X, T). Since *F* Is Weakly $B\delta g$ -Closed Map, F(X - U) Is $B\delta g$ -Closed Set In (Y, Σ) . That Is Y - F(X - U) Is $B\delta g$ -Open In (Y, Σ) . Put V = Y - F(X - U). Then *V* Is An $B\delta g$ -Open Set In (Y, Σ) Containing *B* Such That $F^{-1}(V) \subset U$.

Sufficiency: Let *F* Be Any \triangle -Closed Subset Of (X, T). Then $F^{-1}(Y - F(F)) \subset X - F$ And X - F Is \triangle -Open In (X, T). Put B = Y - F(F) Then $F^{-1}(B) \subset X - F$. There Exists An $B\delta g$ -Open Set *V* Of (Y, Σ) Such That $B = Y - F(F) \subset V$ And $F^{-1}(V) \subset X - F$. Therefore We Obtain F(F) = Y - V And Hence F(F) Is $B\delta g$ -Closed In (Y, Σ) . Thus *F* Is Weakly $B\delta g$ -Closed Map.

2.3 Contra-*Bδg*-Closed Maps

This Section Deals With Contra- $B\delta g$ -Closed Maps And Contra- $B\delta g$ Open Maps, Their Weaker Forms Namely Contra-Weakly- $B\delta g$ -Closed Maps And Contra-Weakly $B\delta g$ -Open Maps Respectively.

Definition 2.3.1. A Map $F : (X, T) \to (Y, \Sigma)$ Is Called *Contra-B* δg -*Closed* (Resp. Contra-*B* δg -Open) If The Image Of Each Closed (Resp. Open) Set In (X, T) Is *B* δg -Open (Resp. *B* δg -Closed) Set In (Y, Σ) .

Definition 2.3.2. A Map $F : (X, T) \to (Y, \Sigma)$ Is Said To Be Contra Weakly $B\delta g$ -Closed (Resp. Contra-Weakly $B\delta g$ -Open) If The Image Of Each Δ -Closed (Resp. Δ -Open) Set In (X, T) Is $B\delta g$ -Open (Resp. $B\delta g$ Closed) Set In (Y, Σ) .

Theorem 2.3.3. Every Contra-Bog-Closed Map Is Contra-Weakly Bog Closed.

Proof. Let $F : (X, T) \to (Y, \Sigma)$ Be Contra-*B* δg -Closed Map And *G* Be A Δ -Closed Set In (X, T). Every Δ -Closed Set Is Closed, *G* Is Closed In (X, T). Since *F* Is Contra-*B* δg -Closed Map, F(G) Is *B* δg -Open In

(*Y*, Σ). Hence *F* Is Contra-Weakly *B* δ *g*-Closed Map.

Remark 2.3.4. The Converse Of The Above Theorem Need Not Be True As Shown In The Following Example.

Example 2.3.5. Let $X = \{A, B, C\}$; $Y = \{P, Q, R\}$ With The Topolo Gies $T = \{\Phi, \{A\}, X\}$ And $\Sigma = \{\Phi, \{P\}, \{P, R\}, Y\}$. Define A Map $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = Q, F(B) = R And F(C) = P. Then *F* Is Contra-Weakly $B\delta g$ -Closed But *F* Is Not Contra $B\delta g$ -Closed Map, Because $F(\{B, C\}) = \{P, R\}$ Is Not $B\delta g$ -Open In (Y, Σ) Where $\{B, C\}$ Is Closed In (X, T).

Theorem 2.3.6. *Every Contra-B*δg-*Open Map Is Contra-Weakly B*δg *Open.*

Proof. Follows From The Definitions.

Remark 2.3.7. The Converse Of The Theorem 4.4.6 Need Not Be True As Shwon In The Following Example.

Example 2.3.8. Let $X = \{A, B, C\}$; $Y = \{P, Q, R\}$ With The Topologies $T = \{\Phi, \{A\}, \{A, C\}, X\}$ And $\Sigma = \{\Phi, \{R\}, \{P, R\}, Y\}$. Define A Map $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = R, F(B) = Q And F(C) = P. Then Clearly *F* Is Contra-Weakly $B\delta g$ -Open But *F* Is Not Contra $B\delta g$ -Open Map, Because $F(\{A\}) = \{R\}$ Is Not $B\delta g$ -Closed In (Y, Σ) Where $\{A\}$ Is Open In (X, T).

Remark 2.3.9. Contra-*B* δg -Closedness And *B* δg -Closedness Are In Dependent Notions As Shown In The Following Examples. Example 4.4.10. Let $X = \{A, B, C\}$; $Y = \{P, Q, R\}$ With The Topolo Gies $T = \{\Phi, \{A\}, X\}$ And $\Sigma = \{\Sigma, \{Q\}, Y\}$. Define A Map $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = P, F(B) = Q And F(C) = R. Then *F* Is *B* δg -Closed Map But *F* Is Not Contra-*B* δg -Closed, Because $F(\{B, C\})$ $= \{Q, R\}$ Is Not *B* δg -Open In (Y, Σ) Where $\{B, C\}$ Is Closed In (X, T).

Example 2.3.11. Let $X = \{A, B, C\}$; $Y = \{P, Q, R\}$ With The Topolgies $T = \{\Phi, \{B\}, \{A, B\}, X\}$ And $\Sigma = \{\Phi, \{P\}, \{R\}, \{P, R\}, Y\}$. Define A Map $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = P, F(B) = Q And F(C) = R. Then *F* Is Contra-*B* δg -Closed. It Is Not *B* δg -Closed Map, Because $\{A, C\}$ Is Closed In (X, T) But $F(\{A, C\}) = \{P, R\}$ Is Not *B* δg -Closed In (Y, Σ) .

Theorem 2.3.12. A Bijection $F : (X, T) \to (Y, \Sigma)$ Is Contra-Bog Closed Map If And Only If F(U) Is Bog-Closed In (Y, Σ) For Every Open Set U In (X, T).

Proof. Let $F : (X, T) \to (Y, \Sigma)$ Be A Contra-*B* δg -Closed Map And *U* Be A Open Set In (X, T). Then U^c is Closed In (X, T). Since *F* Is Contra-*B* δg -Closed Map, $F(U^c)$ Is *B* δg -Open Set In (Y, Σ) . But $F(U^c) = [F(U)]^C$

ISSN: 2233-7857IJFGCN Copyright ©2021SERSC And Hence $[F(U)]^c$ is $B\delta g$ -Open Set In (Y, Σ) . Hence F(U) Is $B\delta g$ -Closed In (Y, Σ) . Conversely, F(U) Is $B\delta g$ -Closed In (Y, Σ) For Every Open Set U In (X, T). Then U^c is Closed Set In (X, T) And $[F(U)]^c$ is $B\delta g$ -Open In (Y, Σ) . But $[F(U)]^c = F(U^c)$ And Hence $F(U^c)$ Is $B\delta g$ -Open In (Y, Σ) . Therefore F Is Contra- $B\delta g$ -Closed Map.

Remark 2.3.13. Contra-*B* δg -Opendness And *B* δg -Opendness Are Independent Notions As Shown In The Following Examples.

Example 2.3.14. Let $X = \{A, B, C\}$; $Y = \{P, Q, R\}$ With The Topolo Gies $T = \{\Phi, \{C\}, X\}$ And $\Sigma = \{\Phi, \{R\}, \{Q, R\}, Y\}$. Define A Function $F : (X, T) \rightarrow (Y, \Sigma)$ By F(A) = R, F(B) = P And F(C) = Q. Then Clearly *F* Is $B\delta g$ -Open Map But Not Contra- $B\delta g$ -Open Because $\{C\}$ Is Open In (X, T) But $F(\{C\}) = \{Q\}$ Is Not $B\delta g$ -Closed In (Y, Σ) .

Example 2.3.15. Let $X = \{A, B, C\}$; $Y = \{P, Q, R\}$ With The Topolo Gies $T = \{\Phi, \{A, B\}, X\}$, And $\Sigma = \{\Phi, \{Q\}, \{Q, R\}, Y\}$. Define A Map $F : (X, T) \to (Y, \Sigma)$ By F(A) = P, F(B) = Q And F(C) = R. Then Clearly *F* Is Contra-*B* δ *g*-Open But Not *B* δ *g*-Open Map Because $F(\{A, B\}) = \{P, Q\}$ Is Not *B* δ *g*-Open (Y, Σ) Where $\{A, B\}$ Is Open In (X, T).

Theorem 2.3.16. A Bijection $F : (X, T) \to (Y, \Sigma)$ Is Contra-Weakly Bδg-Closed Map, If And Only If F(U) Is Bδg-Closed In (Y, Σ) For Every Δ -Open Set U In (X, T).

Proof. Let $F : (X, T) \to (Y, \Sigma)$ Be An Contra-Weakly $B\delta g$ -Closed Map And U Be Any Δ -Open Set In (X, T). Then U^c is Δ -Closed Set In (X, T). Since F Is Contra-Weakly $B\delta g$ -Closed Map, $F(U^c)$ Is $B\delta g$ -Open Set In (Y, Σ) . But $F(U^c) = [F(U)]^c$ And Hence $[F(U)]^c$ is $B\delta g$ -Open Set In (Y, Σ) . Hence F(U) Is $B\delta g$ -Closed In (Y, Σ) . Conversely, F(U) Is $B\delta g$ -Closed In (Y, Σ) For Every Δ -Open Set U Of (X, T). Then U^c is Δ -Closed Set In (X, T) And $[F(U)]^c$ is $B\delta g$ -Open In (Y, Σ) . Hence $F(U^c)$

Is $B\delta g$ -Open In (Y, Σ) . Thus F Is Contra-Weakly $B\delta g$ -Closed Map.

Theorem 2.3.17. For A Map $F : (X, T) \rightarrow (Y, \Sigma)$ The Followings Are Equivalent.

- (*i*) F Is Contra-Weakly Bog-Open.
- (ii) (Ii) For Every Subset B Of (Y, Σ) And For Every Δ -Closed Subset F Of (X, T) With $F^{-1}(B) \subseteq F$, There Exists An Bog-Open Subset U Of (Y, Σ) With $B \subseteq U$ And $F^{-1}(U) \subseteq F$.
- (iii) For Every Subset $Y \in Y$ And For Every Δ -Closed Subset F Of (X, T) With $F^{-1}(Y) \subseteq F$, There Exists An Bog-Open Subset U Of (Y, Σ) With $Y \in U$ And $F^{-1}(U) \subseteq F$.

Proof. (I) \Rightarrow (Ii). Let *B* Be A Subset Of (Y, Σ) And *F* Be A Δ -Closed Subset Of (X, T) With $F^{-1}(B) \subseteq F$. Since *F* Is Contra-Weakly $B\delta g$ Open And F^c is Δ -Open Subset Of (X, T), $F(F^c)$ Is $B\delta g$ -Closed Subset Of (Y, Σ) . Then $[F(F^c)]^C$ is $B\delta g$ -Open Subset Of (Y, Σ) . Put $U = [F(F^c)]^C$. Then *U* Is $B\delta g$ -Open Subset Of (Y, Σ) And Since $F^{-1}(B) \subseteq F$. We Get $F(F^c) \subseteq B^c$ And Hence $B \subseteq U$. Moreover $F^{-1}(U) = F^{-1}(F(F^c))^C \subseteq F$.

(Ii) \Rightarrow (Iii). It Is Sufficient But $B = \{Y\}$. (Iii) \Rightarrow (I). Let *A* Be A \triangle -Open Subset Of (X, T) And $Y \in (F(A)^C)^C$ And Let $F = A^c$. Then *F* Is A \triangle -Closed Subset Of (X, T). BY (Iii), There Exist An $B\delta g$ -Open Subset U_y Of (Y, Σ) With $Y \in U_y$ And $F^{-1}(U_y) \subseteq F$. Then We See That $Y \in U_y \subseteq (F(A))^C$. Hence $(F(A))^C = \bigcup \{U_y/Y \in (F(A))^C\}$ Is $B\delta g$ -Open. Therefore F(A) Is $B\delta g$ Closed Subset Of (Y, Σ) . Hence *F* Is Contra-Weakly $B\delta g$ -Open.

Remark 2.3.18. The Composition Of Two Contra- $B\delta g$ -Closed Maps Need Not Be Contra- $B\delta g$ -Closed As Shown In The Following Example.

Example 2.3.19. Let $X = \{A, B, C\} = Y = Z$; With The Topologies $T = \{\Phi, \{A, B\}, X\}, \Sigma = \{\Phi, \{A\}, Y\}$ And

 $H = \{\Phi, \{A\}, \{B\}, \{A, B\}, \{B, C\}, Z\}$. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be The Identity Functions. Then *F* And *G* Are Contra-*B* δ *g*-Closed Maps But $G \circ F : (X, T) \to (Z, H)$ Is Not Contra-*B* δ *g*-Closed Map Because $(G \circ F)(\{A\}) = \{B\}$ Is Not $B\delta g$ -Open In (Z, H) Where $\{C\}$ Is Closed In (X, T).

Remark 2.3.20. The Composition Of Two Contra-Weakly $B\delta g$ -Closed Maps Need Not Be Contra-Weakly $B\delta g$ -Closed Map.

Theorem 2.3.21. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Any Two Maps.

(I) If $G \circ F : (X, T) \to (Z, H)$ Is Contra-Bδg-Closed Map And G Is Bδg-Irresolute, Injective Then F Is Contra-Bδg-Closed Map. (Ii) If $G \circ F : (X, T) \to (Z, H)$ Is Contra-Weakly Bδg-Closed And G Is Bδg-Irresolute, Injective Then F Is Contra-Weakly Bδg-Closed.

Proof. (I) Let U Be Closed In (X, T). Since $G \circ F$ Is Contra-B δg -Closed Map, $(G \circ F)(U)$ Is $B\delta g$ -Open In (Z, H). Since G Is $B\delta g$ -Irresolute Injective $G^{-1}(G \circ F)(U) = F(U)$ Is $B\delta g$ -Open In (Y, Σ) . Hence F Is Contra-B δg -Closed Map.

(Ii) Let U Be The \triangle -Closed In (X, T). Since $G \circ F$ Is Contra Weakly $B\delta g$ -Closed Map, $(G \circ F)(U)$ Is $B\delta g$ -Open In (Z, H). Since G Is $B\delta g$ -Irresolute, $G^{-1}(G \circ F)(U) = F(U)$ Is $B\delta g$ -Open In (Y, Σ) . Hence

F Is Contra-Weakly $B\delta g$ -Closed Map.

Theorem 2.3.22. If $G \circ F : (X, T) \to (Z, H)$ Is Contra-Weakly Bδg Closed Map And $G : (Y, \Sigma) \to (Z, H)$ Is Contra-Bδg-Irresolute, Injec Tion Then $F : (X, T) \to (Y, \Sigma)$ Is Weakly-Bδg-Closed.

Proof. Let *V* Be \triangle -Closed In (*X*, *T*). Since $G \circ F$ Is Contra-Weakly $B\delta g$ -Closed Map, $(G \circ F)(V)$ Is $B\delta g$ -Open In (*Z*, *H*). Since *G* Is Contra $B\delta g$ -Irresolute, $G^{-1}(G \circ F)(V)$ Is $B\delta g$ -Closed In (*Y*, Σ). That Is F(V)

Is $B\delta g$ -Closed In (*Y*, Σ). Hence *F* Is Weakly- $B\delta g$ -Closed Map. **2.4 Applications**

Theorem 2.4.1. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Two Functions. Let (Y, Σ) Be $_{Bt_{\delta g}}$ -Space. Then

- (I) $G \circ F : (X, T) \rightarrow (Z, H)$ Is Bog-Closed Map If G Is Bog-Closed And F Is Bog-Closed Map.
- (Ii) $G \circ F : (X, T) \rightarrow (Z, H)$ Is Weakly Bδg-Closed Map If G Is Weakly Bδg-Closed And F Is Weakly Bδg-Closed.
- **Proof.** (I) Let *V* Be Closed In (*X*, *T*). Since *F* Is $B\delta g$ -Closed Map, F(V) Is $B\delta g$ -Closed Set In (*Y*, Σ). Also Since (*Y*, Σ) $_{Bt_{\delta g}}$ -Space, F(V) Is Δ -Closed In *Y*. Since *G* Is $B\delta g$ -Closed Map, G(F(V)) Is $B\delta g$ -Closed in (*Z*, *H*). That Is ($G \circ F$)(V) Is $B\delta g$ -Closed In (*Z*, *H*). Hence ($G \circ F$) Is $B\delta g$ -Closed Map.

(Ii) Let U Be Δ -Closed In (X, T). Since F Is Weakly $B\delta g$ Closed Map, F(U) Is $B\delta g$ -Closed In $(Y \Sigma)$. Since (Y, Σ) Is ${}_{B}t_{\delta g}$ -Space, F(U) Is Δ -Closed In Y. Since G Is Weakly $B\delta g$ -Closed G(F(U)) Is $B\delta g$ Closed In (Z, H). That Is $(G \circ F)(U)$ Is $B\delta g$ -Closed In (Z, H). Hence

 $G \circ F$ Is Weakly $B\delta g$ -Closed Map.

We Introduce The Following Definition.

Definition 2.4.2. A Space (X, T) Is Said To Be $B\delta g$ -Regular If For Each Closed Set F Of X And Each Point $X \in F$ There Exists Disjoint $B\delta g$ -Open Sets U And V Such That $F \subset U$ And $X \in V$.

Theorem 2.4.3. In A Topological Space (X, T) The Following State Ments Are Equivalent.

- (i) (X, T) Is $B\delta g$ -Regular.
- (ii) (Ii) For Every Point Of (X, T) And Every Open Set V Containing X There Exists An $B\delta g$ -Open Set A Such That $X \in A \subset Cl_{\delta}(A) \subset V$.

Proof. (I) \Rightarrow (Ii) Let $X \in X$ And V Be An Open Set Containing X. Then X - V Is Closed And $X / \in X - V$. By (I) There Exists An $B\delta g$ -Open Sets A And B Such That $X \in A$ And $X - V \subset B$. That Is $X - B \subset V$. Since Every Open Set Is B-Set, V Is B-Set, X - B Is $B\delta g$ -Closed. Therefore $Cl_{\delta}(X - B) \subset V$. Since $A \cap B = \Phi$, $A \subset X - B$. Hence $X \in A \subset Cl_{\delta}(A) \subset Cl_{d}(X - B) \subset V$. Thus $X \in A \subset Cl_{\delta}(A) \subset V$.

(Ii) \Rightarrow (I) Let *F* Be A Closed Set And $X/\in F$. This Implies That X - F Is Open Set Containing *X*. By (Ii), There Exists An $B\delta g$ -Open Set *A* Such That $X \in A \subset Cl_{\delta}(A) \subset X - F$. That Is $F \subset X - Cl_{\delta}(A)$. Since Every \triangle -Closed Set Is $B\delta g$ -Closed, $Cl_{\delta}(A)$ Is $B\delta g$ -Closed And $X - Cl_{\delta}(A)$ Is $B\delta g$ -Open. Therefore *A* And $X - Cl_{\delta}(A)$ Are The Required $B\delta g$ -Open Sets.

Theorem 2.4.4. Let $F : (X, T) \to (Y, \Sigma)$ Is Continuous And Bôg Closed, Bijective Map And (X, T) Is A Regular Space Then (Y, Σ) Is Bôg-Regular.

Proof. Let $Y \in Y$ And V Be An Open Set Containing Y Of (Y, Σ) . Let X Be A Point Of (X, T) Such That

Y = F(X). Since *F* Is Continuous, $F^{-1}(V)$ Is Open In (X, T). Since (X, T) Is Regular, There Exists An Open Set *U* Such That $X \in U \subset Cl(U) \subset F^{-1}(V)$. Hence $Y = F(X) \in F(U) \subset F(Cl(U)) \subset V$. Since *F* Is A *B* δg -Closed Map, F(Cl(U)) Is An *B* δg -Closed Set Contained In The Open Set *V*, Which Is *B*-Set. Hence We Have $Cl_{\delta}(F(Cl(U))) \subset V$. Therefore $Y \in F(U) \subset Cl_{\delta}(F(U)) \subset Cl_{\delta}(F(Cl(U))) \subset V$. This Implies $Y \in F(U) \subset Cl_{\delta}(F(U)) \subset V$. Since *F* Is *B* δg -Closed Map And *U*^c is Closed In *X*, $F(U^c)$ Is *B* δg -Closed In (Y, Σ) . But $F(U^c) = [F(U)]^c$ is *B* δg -Closed In (Y, Σ) . Hence F(U) Is *B* δg -Open In (Y, Σ) . Thus For Every Point *Y* Of (Y, Σ) And Every Open Set *V* Containing *Y* There Exists An *B* δg -Open Set F(U) Such That $Y \in F(U) \subset Cl_{\delta}(F(U)) \subset V$. Hence By The Theorem 4.5.3 (Y, Σ) Is *B* δg -Regular.

Theorem 2.4.5. If $F : (X, T) \to (Y, \Sigma)$ Is A Continuous And Weakly Bδg-Closed Bijective Map And If (X, T) Is $_{Bt_{\delta g}}$ -Space And Regular Space Then (Y, Σ) Is Bδg-Regular.

Proof. Let $Y \in (Y, \Sigma)$ And *V* Be An Open Set Containing *Y*. Let *X* Be A Point Of (X, T), Such That Y = F(X). Since *F* Is Continuous, $F^{-1}(V)$ Is Open In (X, T). BY Assumptions And Theorem 4.5.3, There Exists An $B\delta g$ -Open Set *U* Such That $X \in U \subset Cl_{\delta}(U) \subset F^{-1}(V)$. Then $Y \in F(U) \subset F(Cl_{\delta}(U)) \subset V$. We Know That $Cl_{\delta}(U)$ Is Δ -Closed. Since *F* Is Weakly $B\delta g$ -Closed, $F(Cl_{\delta}(U))$ Is $B\delta g$ -Closed Set In (Y, Σ) . Every Open Set Is *B*-Set And Hence *V* Is *B*-Set. Therefore We Get $Cl_{\delta}(F(Cl_{\delta}(U))) \subset V$. This Implies $Y \in F(U) \subset Cl_{\delta}(F(U)) \subset Cl_{\delta}(F(Cl_{\delta}(U))) \subset V$. That Is $Y \in F(U) \subset Cl_{\delta}(F(U)) \subset V$. Now *U* Is $B\delta g$ -Closed Map, $F(U^c)$ Is $B\delta g$ -Closed In (X, T). Since (X, T) Is $_Bt_{\delta g}$ -Space And *F* Is Weakly $B\delta g$ -Closed In (Y, Σ) . That Implies F(U) Is $B\delta g$ -Closed In (Y, Σ) . Thus For Every Point Y Of (Y, Σ) And Every Open Set *V* Containing *Y*, There Exists An $B\delta g$ -Open Set F(U) Such That $Y \in F(U) \subset Cl_{\delta}(F(U) \subset Cl_{\delta}(F(U)) \subset Cl_{\delta}(F(U)) \subset Cl_{\delta}(F(U)) \subset Cl_{\delta}(F(U))$.

Theorem 2.4.6. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Any Two Maps Such That $G \circ F : (X, T) \to (Z, H)$ Where (Y, Σ) Is ${}_{Bt_{\delta g}}$ -Space.

- (i) If F Is Weakly-Bδg-Closed And G Is Contra-Weakly Bδg-Closed Then G ° F Is Contra-Weakly Bδg-Closed Map.
- (ii) If F Is Contra-Weakly-B δ g-Closed And G Is Weakly-B δ g-Open Then $G \circ F$ Is Contra-Weakly B δ g-Closed Map.

Proof. (I) Let U Be Δ -Closed In (X, T). Since F Weakly- $B\delta g$ -Closed, F(U) Is $B\delta g$ -Closed In (Y, Σ) . Since (Y, Σ) Is $_{B}t_{\delta g}$ -Space, F(U) Is Δ -Closed In (Y, Σ) . Since G Is Contra-Weakly- $B\delta g$ -Closed, G(F(U)) Is $B\delta g$ -Open In (Z, H). Hence $G \circ F$ Is Contra-Weakly $B\delta g$ -Closed Map. (Ii) Let U Be A Δ -Closed In (X, T). Since F Is Contra-Weakly $B\delta g$ -Closed Map, F(U) Is $B\delta g$ -Open In (Y, Σ) . Since (Y, Σ) Is $_{B}t_{\delta g}$ Space And G Is Weakly- $B\delta g$ -Open, G(F(U)) Is $B\delta g$ -Open In (Z, H). Hence $G \circ F$ is Contra-Weakly $B\delta g$ -Closed Map.

Theorem 2.4.7. Let $F : (X, T) \to (Y, \Sigma)$ And $G : (Y, \Sigma) \to (Z, H)$ Be Any Two Maps Such That

ISSN: 2233-7857IJFGCN Copyright ©2021SERSC $G \circ F : (X, T) \rightarrow (Z, H)$ Where (Y, Σ) Is ${}_{B}t_{\delta g}$ -Space.

(I) If F Is Weakly-Bδg-Open And G Is Contra-Weakly Bδg-Open Then G ° F Is Contra-Weakly Bδg-Open.

(Ii) If F Is Contra-Weakly $B\delta g$ -Open And G Is Weakly- $B\delta g$ -Closed Then $G \circ F$ Is Contra-Weakly $B\delta g$ -Open.

Proof. (I) Let *U* Be Δ -Open In (*X*, *T*). Since *F* Weakly-*B* δ *g*-Open, *F*(*U*) Is *B* δ *g*-Open In (*Y*, Σ). Since (*Y*, Σ) Is $_{Bt_{\delta g}}$ -Space, *F*(*U*) Is Δ -Open In (*Y*, Σ). Since *G* Is Contra-Weakly *B* δ *g*-Open, *G*(*F*(*U*)) Is *B* δ *g*-Closed In (*Z*, *H*). Hence *G* \circ *F* Is Contra-Weakly *B* δ *g*-Open Map.

(Ii) Let U Be A Δ -Open In (X, T). Since F Is Contra-Weakly $B\delta g$ -Open Map, F(U) Is $B\delta g$ -Closed In (Y, Σ) . Since (Y, Σ) Is $_{Bt\delta g}$ Space And G Is Weakly- $B\delta g$ -Closed, G(F(U)) Is $B\delta g$ -Closed In (Z, H). Hence $G \circ F$ Is Contra-Weakly $B\delta g$ -Open Map.

Theorem 2.4.8. If $G \circ F : (X, T) \to (Z, H)$ Is Contra-B δ g-Irresolute And $G : (Y, \Sigma) \to (Z, H)$ Is Contra-Weakly B δ g-Closed, Injective Where (Y, Σ) Is ${}_{B}t_{\delta g}$ -Space Then F Is B δ g-Irresolute.

Proof. Let *V* Be A $B\delta g$ -Closed In (Y, Σ) . Since (Y, Σ) Is ${}_{B}t_{\delta g}$ -Space And *G* Is Contra-Weakly $B\delta g$ -Closed, G(V) Is $B\delta g$ -Open In (Z, H). Since $G \circ F$ Is Contra- $B\delta g$ -Irresolute, $(G \circ F)^{-1}(G(V))$ Is $B\delta g$ -Closed In (X, H). That Is $F^{-1}(V)$ Is $B\delta g$ -Closed In (X, H). Hence *F* Is $B\delta g$ -Irresolute Map.

REFERENCES:

1. Veera Kumar M.K.R.S, Bg-Closed Sets In Topological Spaces, Bull.Allah. Math. Soc, 18 (2003), 99{112.

2. Malghan S.R., Generalized Closed Maps, J.Karnatak Univ, Sci., 27 (1982), 82{88.

3. Noiri T., On _-Continuous Functions, J. Korean Math.Soc., 18(1980), 161{166.

4. Devi R., Balachandran K. And Maki H., On Generalized _- Continuous And _-Generalized Continuous Functions, East J. Math Sci., Special Volume, Part I (1997), 1{15.