
International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2824

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Network Traffic Based Detection of Repackaged Android Apps via Mobile Fog

Computing

*MA Rahim Khan1

*Khan_rahim@rediffmail.com

Dr. Shivani Dubey2

shivanidubey@lingayasvidyapeeth.edu.in

Dr. RC Tripathi3

rctripathig@gmail.com
123Department of Computer Science and Engineering Lingaya’s Vidyapeeth, Faridabad, Haryana India
1College of Computer and Information Sciences Majmaah University Almajmaah,11952 Saudi Arabia

Abstract

Repackaged apps are the biggest challenge in the Android ecosystem. Many tools are available in the market

to detect the repackaged apps. Most of the tools and recent researches comparing the original apps with

suspected apps to detect the repackaged apps. Into this one more biggest challenge to choose the original.

The solution to this problem to make an official android store for all original apps. However, the pairwise

comparison is not the optimum solution because it is time-consuming and inefficient to repackage detection

apps.

This paper proposes an approach to detect the repackaged apps using network traffic-based clustering using

Fog Computing. The main observation to collect the network traffics to trace the plaintext for original and

repackaged app detection. During analyzing of traffics, extracting the statistical feature, calculate the

similarity between app. Here, the clustering automatically separates both types of apps, such as a

repackaged and original app. The experiment analyses the performance of the proposed approach with

minimum complexity and high precision and reduces the effort of mobile computing to resolve the malware.

Keywords: Network Traffic, Cluster analysis, Repackage app, feature Extraction, Mobile Fog Computing,

Android Malware

1. INTRODUCTION

Presently, Android devices (tablet, smartwatch, and smartphone) have speedy popularity worldwide. As

per one website survey of Statista, The Android mobile OS is counted more than 73.48% on Dec 2020 in

the Global market [1]. The leading cause of the popularity of Android OS, it is open source and

conveniently downloads android apps from various play store. The most famous app store is the Google

play store, which has approx. Three million apps by Feb 2021 [2]. These feature-rich apps types make

the Android ecosystem more attractive and vibrant.

Android app has the extension *.APK (Android Package Kit) in ZIP format, including Share Object(SO),

manifest, class.DEX. Developer byte code. Android apps are easily de-assembled or repackaged by some

popular tools such as apktool1 and Jadx2 , which can quickly add malicious code or add some extra ad’s

ware. The malicious code is used to steal sensitive information, and ad code is used to earn financial

gain. Therefore, repackaging app has become a significant threat to the android ecosystem [3].

In [4-6], apps embedded with malicious code, detect as repackaged apps. The majority of malware are

repackaged apps. Authors observed that repackaging becomes a substantial threat to secure Android

environments. Several approaches have been proposed to investigate the detection of repackaged apps [7-

14]. Previous work has two categories to detect malware, such as off-device and In-device. Off-devices

dynamic run the APK in the virtual environment. It extracts the signature of APK and records the

behaviors of apps. If any malicious code or unpredictable behaviors are diagnosed, treat it as malware.

Those approaches are designed as network traffic-based detection of malware.

On-device detection, These techniques judged the app's behavior on local user devices; it recognizes the

malware during the installation process of APK. If we compare between off-device and the On-device

approach, the on-device approach has limited space, resources to detect the malware. However, in off-

mailto:Khan_rahim@rediffmail.com

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2825

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

device approach have extensive resources, power, and space. Nevertheless, on-device is more

challenging than off-devices due to limited resources.

Several approaches have been proposed to detect malware on mobile devices. The first approach to

observing the operating system behavior, API calls, and application network behavior should be

extracted and defined—the subsequent detection of malware based on feature extraction. Current

approaches are divided into client and server-side detection; client-side approaches detect the malware on

mobile devices, and server-side approaches detect the malware into apps on the remote server. In

practice, client-side approaches have restrictions due to limited resources and power to detect malware

into apps [8]. However, server-side approaches have extensive resources, more power, and high

performance [15]. The reason, detection feature is collected and processed on mobile devices.

This paper proposed an approach to detect the repackage malware based on clustering via Mobile Fog

Computing (MFC). The main strategy of our method to extract the feature of apps and pre-evaluate

offload to Fog. Therefore, the workload of mobile devices is reduced. Our proposed architecture has

three components to detect Android Malware: Mobile devices, Fog Server, and cloud. The Fog server

extracts the detection feature from mobile network traffic; this approach does preprocess, which helps to

reduce the workload of mobile devices, minimize the amount of data to send, and protect mobile users'

privacy. The extracted feature from network traffics are sent to the cloud for result processing. The app's

similarity is evaluated based on extractive features on the cloud, deciding the app is the original app or

repackaged malware. The based on similarities of the app, automatically clustering separated the original

app and repackaged malware. We designed the comprehensive set of experiments, found an average

accuracy rate of 97.7%.

Our main contribution in proposed works is significantly less complex and effective frameworks based

on fog computing for detecting repackaged malware. This is the server-side approach, which is reduced

the workload of mobile devices. In addition, it has network traffics-based feature extraction; it has a

reasonable accuracy rate of detection and protection of mobile user’s privacy—the identification or

detection of repackaged Android malware done through the network traffic clustering approach.

We cluster the network traffics that generated the app to conclude which app has been repackaged.

A proposed approach for network traffic clustering to detect the repackaged android malware. Here, the

main aim to generate network traffic by the same app to determine that the app has been repackaged or

not. Primary, we determine the similarities between app by statistical flow feature and plaintext contents.

Then, automatically similarities rate is clustering to separate the benign and repacked app. Some models

extract from network behaviors the signature matching process in advance for malware detection; it is

not deal with encryption and zero-day attack. So our approach more efficient and less complex in

practice.

2. PRELIMINARIES

We are introducing Android malware and Fog Computing from the primary concept of detecting the

repackaged app.

2.1 Repackaged App

Android Apk is very easy to repackage. As shown in Figure 1(a),1(b), the 1.APK was dissembled by

reverse engineering tools JADX. The JADX is the power tool for reverse engineering.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2826

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 1(a): Reverse Engineering by JADX tool, Total File structure of APK and related code

Most Android malware generates repackaged apps from benign apps; the most popular app is embedded

in the malicious code [4]. As proof [16], a community of android security shown 80% of apps are

repacked app—the repackaged app launched on the third-party app store. Third-party app stores did not

require any integrity evolution of uploaded app [17]. In F-Droid, found some of the app repackaged by

the same developer [18]. The Repackaged app is remarked by evaluating by same network traffic app

[7,14].

An Android app always has a remote connection to the server to interact, Android app request command

to the server, and receives sensitive data from the server. If there is malicious code in the app, network

behavior will be differing from the benign app.

Therefore, benign apps lot of network traffic differences from repackaged apps. Inspired by this kind of

comparison, a proposed an approach based on network traffic clustering to separate the benign app and

repackaged app.

Figure 1(b) Reverse Engineering of Com. Android. vendling.Billing.AppbillingServices

2.2 Fog Computing

Fog computing is technology, which uses the edge of the network on downstream data on behalf of the

Internet of Things (IoT) amenities [19]. The important thing in Fog computing, it has the edge, consist

computation and network resources between mobile-device/IoT and cloud. Figure 2 represents the

paradigm of edge computing. Edges network deployed by Fog server. It is used for preprocessing and

foreword the extracted feature of network traffic to the cloud.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2827

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

The transfer of the service on fog server, fog server is updated online. In most scenarios, the device is

connected to the Fog server and cloud simultaneously. In this works, it represents a solid and dotted line.

Because in this scenario, all data are not preprocessed by the fog server. The fog computing paradigm

represents in Figure 2 for Android malware detection.

Figure 2: Paradigm of Fog computing

3. RELATED WORK:

The repackaged Android app is the biggest source of malware; many approaches have been proposed to

detect them. Similarly, DroidMoss and ResDroid proposed an approach to detecting repackaged apps in

the Android Market [20,21]. DroidMoss focused on code and pairwise similarity comparison. ResDroid

extracted structure feature and event handler information from code and core resources. Later on, the

extracted feature was used to detect the repackaged android app. It used the dividend- conquer strategy to

reduce the computation time and have a parallel processing approach.

Assuming Google play store were benign apps, Massvet [22] downloaded all the apps in advance and

constructed the V-Score and M-Score database to detect the repackaged android app. In addition, code

similarities comparison, behavior, and UI-based approaches are more emerging—DroidChain [23]

composed the typical behaviors of the app to detect the repackaged malware. In DroidChain, models

composed of typical behavior have some issues, due to this leakage the privacy, escalating privilege,

malware installation.

According to an Approach [24], it cannot detect the repackaged partly due to their behavioral similarities

of original apps. To overcome this issue, I designed a new technique based on code heterogeneity

analysis to detect repackaged Android malware. The hole app structure is partitioned into multiple

dependent regions, each region independently classified on its behavioral features.

Techniques used the VizMal[25] for visualizing the app execution to trace to detect the repackaged

Android malware and noticed the expected malicious behaviors. A proposed approach used the static UI

feature [26]; it detected 3723 and 15956 repackaged apps in the Anzhi market and MI Market,

respectively. Results have shown that repackaged malware is a severe threat to the security of mobile.

Even the Android market [27] uses the server approached to detect the repackaged app.

Presently, several approaches are proposed to detect the repackaged Android malware based on network

traffic behaviors. Arora et al. proposed an approach based on usefulness network traffic to detect

Android Malware [28]. One more technique based on network traffic divided app HTTP into two

categories: primary and Nonprimary modules. Primary modules used the HTTP flow distance algorithm

and the Hungarian method to determine the traffic and pairs similarity. CREDROID [29] proposed an

approach to detect the malicious app based on domain name system(DNS) requests and data transmitted

to remote servers by performing the in-depth analysis of network traffic logs in offline mode.

Zulkifli et al. [30] designed an approach to detect the repackaged malware app, which used seven

network traffic features with the J48 decision tree algorithm. This proposed approach [31] to detect the

repackaged Android malware app based on comparing network behaviors of similar apps. This paper

used lightweight mobile edge computing. In this worked not consider repackaged apps in our knowledge.

Our worked-based network traffic-based repackaged Android malware app detection. In our work,

consider the network traffic only. In previous work such as [6,12], we do not need the compare each

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2828

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

evaluated app to all apps in the Android store. We used MFC sever to collect network traffic of apps to

determine the repackaged Android malware. In the process, we compare only the network traffic set. The

statistical flow feature of the app also helps to deal with encrypted network traffic.

Father improves the performance of the proposed approach; Crowdroid [10] sends the detected feature to

on central server for processing. This approach recoded the system call for processing to detect its

feature; it is a very lightweight process. The Proposed methods used the permission base malware

detection approach. This method divided the system into three categories: Signature Database, Android

Client, and Central Server. The android app delivers to the central server by the client Android. The

central server extracts all permission requests, calculates permission malware score etc.

Table 1: Download Malicious APK from ANDOZOO with size and Detection from TotalVirus.com

S.N. APK Date Size

MB

Score

Detection by

engines

1 939b53399a59b34d839dc055682db549.APK 2019-04-02 53.02 6/59

2 092b3663cb136f5192bfa7e1dc147420.APK 2019-08-17 93.02 5/59

3 093db22b159645d0d7201d9048f0541b.APK 2019-07-25 197.56 11/60

4 194adfa70978e2828a9397204b33bc51.APK 2019-05-27 120.47 3/60

5 220c905d9f1286285356c9511be9d581.APK 2019-05-20 93.80 12/61

6 271e7feb283bd249755be37c7ebf717a.APK 2019-04-01 98.41 14/57

7 293d5e8a0faf770cd00367e6e84ce2a8.APK 2018-09-07 118.26 23/62

8 349f4cf8ce6ab7652da35a89aaa10b3e.APK 2020-05-18 93.87 0/63

9 508e82e3ec3944ce257f126363d4ea7d.APK 2019-07-30 234.41 9/59

10 698b81d63841362c35be0543870b4a5d.APK 2021-02-05 121.37 8/61

11 718e60ac1ad4bd6e9e3ee46994ac8d68.APK 2019-05-17 127.33 6/59

12 814e01e693bea00db481dc30be5aeb1f.APK 2018-09-01 138.87 25/62

13 916a1677ec6fd9798a82381d921a5b9b.APK 2019-06-23 100.26 16/62

14 1317f0080e1b5d0a55876116e1dfd22b.APK 2019-08-04 108.43 3/59

15 642ec177fa7db0bb206b1fd2746798db.APK 2019-07-13 129.24 0/51

16 98f4b2087b408ee174fd07f7898b9127e.APK 2020-03-26 6.81 0/58

17 87b179e18c1947e365a7c9db4f0a3052.APK 2019-05-11 85.85 6/61

18 87b6994c27f474b9874f292ee27bda76.APK 2019-04-02 91.84 4/57

19 408f5eca5cd8be5623fe2fcbfb84d093.APK 2018-08-30 91.61 1/61

20 986ad626e433d8c7f9533fd33540ef1b.APK 2020-05-18 82.76 5/58

As Table 1 Reports, all engines cannot find all kinds of malicious apps; some engines can catch the malicious

app. Even some apps did not catch by a single-engine.

4. MOTIVATION:

Most popular apps are chosen for repackaged apps and spread across the world. Therefore, existing

techniques compare the vetted app with the official android market app such as google play store to

distinguish the repackaged app. The main hypothesis of google play has benign and original apps.

Official android app market deployed extensive security measures to protect from attackers. Every day,

Google playtest the security of millions of apps, after that appeared in the play store. Awkwardly, there is

a comparison between different apps, which is not appropriate as per complexity. Assume that we have N

suspected malicious apps and M number official Android market apps. It requires N*M comparisons to

detect the malicious app. Google play store has approximately 3 million apps. So that, offline comparison

requires downloading millions of apps; it is a time-consuming process. Therefore, existing approaches

have very high complexity and very difficult to apply in practice.

Our proposed approach has a special kind of network traffic management used to detect the repackaged

malware apps. Figure 4 shown the MFC Server to manage specific user requests directly at network

edges. Fog Server manages network traffic and forewords only specific information to the cloud instead

of all remote traffic. Our main aim here to reduce the number of comparisons, same app run of different

Android devices to produce network traffics for analyses and compared.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2829

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

In proposed approach doing the traffic labeling and identifying app by using network traffic. Meanwhile,

due to changes in a resource file or added malicious code, partially network traffic would be different

from the original app network traffic. A repackaged app can easily identify. That is shown in Figure 5.

5. METHODOLOGY

Every device containing the android OS has limited resources; therefore, the detection of Android

malware on the device has a very challenging task. We proposed an approach to detect the repackaged

malware App at run time. The proposed framework of detection of repackaged Android App is illustrated

in figure 4. Our frameworks are divided into three layers such Android devices, MFC Server, and Cloud

layer. Figure 4, 𝑖 repackaged apps install on 𝑢 different android devices. MFC client installed on android

devices to foreword the network traffic to MFC server for preprocessing. MFC server primarily labels the

network traffics generated by 𝑖 apps, 𝑢 traffic set are captured. At that point, 𝑢 traffic set filtered and get

rid of the expected traffic from the set. In Figure 4 represent the labeling and filtering in step 1-3, traffic

behaviors and similarity calculation in step 4-5, In step applying clustering approach to separate the

repackaged app and original app—the technical detail of the steps discussed in the next section.

5.1 Traffic Labeling, filtering, and Feature extraction:

Traffic labeling planned to recognized all traffic produced by the app 𝑖 for every android device. We

have Extensive approaches to identify the app and flow of network traffics [32]. In MFC Server, traffic

labeling is directed by accumulating HTTP signature[33] and correlation [34] of traffics. Every HTTP

header has a unique key-value pair in the HTTP signature, and every app has a unique set shown in

figure 6. In proposed approaches found that 90% of apps identify from HTTP signature. While HTTP

signature matching could not identify by in encrypted apps, further identify the unknown traffic using the

traffic correlation methods.

Figure 4: The main procedure of the proposed method for repackaged Android Malware detection

Figure 5: Illustrate the app identification and repackaged malware detection by comparing network traffic.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2830

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 6: Example of identification of HTTP Traffic flow

Androids app use multiple connections simultaneously; we have a strong correlation network flow

generated by the same app [34]. Therefore, exhibit unknown traffics identification feature—namely

unknown flows labeled by correlation traffic. The traffic correlation reveals by DNS clustering and

retrieves similar traffic. After labeling the network flows, the MFC server extracts the detection feature

of labeled traffic.

Feature extraction is divided into two groups, behavior and content feature. Content feature extracted

from HTTP Signature and behavior feature extracted from statistics of network traffic flows. In figure 4,

in the step of traffic filtering, discard the common traffic and accept uncommon traffic from 𝑢 traffic set.

The common traffic in traffic sets such as port number, server IP address. The common traffic generates

the similarity calculation among apps. Similarity can increase the complexity level and exhibit any

benefit to detect the repackaged malware.

5.2 Similarity calculation of traffic content

We observe that in Android app used two types of protocol, such as HTTP and HTTPS. HTTP flows

only the plaintext content. We used to determine the similarity of different sets produced by the same

app. Further precisely, we first reassemble HTTP flows, extract the content of HTTP, storing the packet

content of HTTP into a text file as ASCII code.

The similarity is determining by two algorithms such enhanced TF-IDF [35] and cosine similarity. The

term frequency deal to calculate the word count in documents. In eq. 1 document denoted as 𝑑𝑖 and

word count as denoted as 𝑤𝑗 and term frequency represents as 𝑇𝐹(𝑤𝑗, 𝑑𝑖).

 𝑇𝐹(𝑤𝑗, 𝑑𝑖) = 0.5 +
0.5×𝑓(𝑤𝑗,𝑑𝑖)

max {𝑓(𝑤𝑗,𝑑𝑖) ∶𝑤∈𝑑𝑖}
 (1)

where 𝑓(𝑤𝑗, 𝑑𝑖) the number of occurrence of words 𝑤𝑗 in the document 𝑑𝑖.

In the eq. 2 to use inverse document frequencies(IDF) determine, amount of information a word carries.

Usually, it is applied the logarithm scale function of inverse to determine the words contained in the

document.

𝐼𝐷𝐹(𝑊𝑗) = log (
𝑢

|{𝑑, 𝑤𝑗∈𝑑 }|
) (2)

where 𝑢 is the number of documents, and |{𝑑, 𝑤𝑗 ∈ 𝑑 }| is the number of documents was the exhibit 𝑤𝑗

The product of 𝑇𝐹(𝑤𝑗, 𝑑𝑖) and 𝐼𝐷𝐹(𝑤𝑗) determine in Eq.3.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2831

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

𝑇𝐹 − 𝐼𝐷𝐹(𝑤𝑗, 𝑑𝑖) = 𝑇𝐹(𝑤𝑗, 𝑑𝑖) × 𝐼𝐷𝐹(𝑤𝑗) (3)

After product, all document transforms into the exact size of numeric vectors. Here, we applied the

cosine similarity between two document vectors. The two different document vectors, such as 𝑑𝑖 𝑎𝑛𝑑 𝑑𝑘

And the length of the vector is 𝑡. The similarity determines between two vectors in eq. 4.

𝐶𝑆𝑑𝑖 𝑘
=

∑ 𝑉(𝑑𝑖)𝑙 × ∑ 𝑉(𝑑𝑖)𝑙
𝑡
𝑙=1

𝑡
𝑙=1

√∑ 𝑉(𝑑𝑖) 𝑙
2𝑡

𝑙=1 × √∑ 𝑉(𝑑𝑘) 𝑙
2𝑡

𝑙=1

 (4)

Finally, for each set 𝑑𝑖 compare with remaining sets 𝑢 − 1, and the similarity values would be 𝐶𝑆𝑑𝑖𝑖 = 1

we represent similarity vectors { 𝐶𝑆𝑑𝑖1, , 𝐶𝑆𝑑𝑖1,, 𝐶𝑆𝑑𝑖2,, 𝐶𝑆𝑑𝑖3, … . . 𝐶𝑆𝑑𝑖𝑢 }.

Table 2: Statistical feature of network flows to calculate from traffic behavior

SN Feature Interpretation

1 DNS-Query (Queries Request) Count

2 Average-DNS-Interval (Interval between two Queries) Value

3 Distinct-DNS-Query Count

4 HTTP-Get /Post Request Count

5 HTTP-Get/Post-Request-Interval Value

6 Distinct-HTTP-Get/Post-Request Count

7 Distinct-Source-Port-Used Count

8 Send Bytes Value

9 Received Bytes Value

10 Send-Average-Length Value

11 Received-Average-Length Value

12 Send-Packet Count

13 Received-Packet Count

14 Destination Value

15 TCP-RST Count

16 No-Fail-SYN Count

5.3 Similarity calculation of traffic behaviors

Here, we calculate a similar value of contents that cannot deal with the encrypted flows. Besides, traffic

behavior must calculate to deal with the encrypted flows. We use m (m=16) in the statistical analysis

study. The statistical feature we selected is given in Table 2. Therefore, the traffic set 𝑑𝑖 has a flow

vector represented in the eq. 5 for feature extraction. In figure 7 shown the HTTPS traffics flows for

encrypted feature vectors.

𝐹𝑑𝑖

𝑗
= (𝑓𝑗

1, 𝑓𝑗
2, … . 𝑓𝑗

𝑚) (5)

Where 𝑓𝑗
𝑝

denoted the 𝑝𝑡ℎ statistical feature, 1 ≤ 𝑝 ≤ 𝑚. Set 𝑑𝑖 can be exhibit in the matrix 𝑓𝑗
𝑝

.

𝑇𝐵𝑛×𝑚 (𝑑𝑖) = (𝑓𝑑𝑖

1 , 𝑓𝑑𝑖

2 , … … . . 𝑓𝑑𝑖

𝑛)
𝑇

 (6)

where n denotes the number of encrypted flows enclosed in 𝑑𝑖

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2832

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 7: Encrypted traffic flows for behavior feature vectors.

In eq. 7, illustrate a feature set, but that is not identical in size in encrypted flows. The behavior of

𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘) are not identical in terms of dimensions. We determine the Frobenius

norm for 𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘). The procedure is presented in eq. 7, where 𝑓𝑗
1 normalized the

value into[0,1]:

𝐹𝑁(𝑑) = √∑ ∑ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 |𝑓𝑗
𝑝

|
2

𝑚
𝑝=1

𝑛
𝑗=1 (7)

After that, calculate the distance between 𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘) is determine into eq. 8.

𝑑𝑖𝑠(𝑑𝑖, 𝑑𝑗) = |𝐹𝑁(𝑑𝑖) − 𝐹𝑁(𝑑𝑘)| (8)

Finally, determine the similarity between 𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘) in Eq. 9. In the below process

𝑛𝑖 and 𝑛𝑘 Not more than 1.

𝐵𝑆𝑑𝑖𝑘 = 1 −
 𝑑𝑖𝑠(𝑑𝑖,𝑑𝑗)

max [𝑑𝑖𝑠(𝑑𝑖,𝑑𝑗),𝑟,𝑞=1,2,3…𝑢,𝑟≠𝑞]
 (9)

𝐵𝑆𝑑𝑖𝑘 Set to 1 if coming to the same behavior and otherwise set to 0. Similarity

5.4 Clustering of similarity values and repackaged malware detection

The similarity of traffic content 𝐶𝑆𝑑𝑖 𝑘
 and feature extraction (behavior) similarity 𝐵𝑆𝑑𝑖𝑘 , we determine

the final similarity 𝑆𝑑𝑖𝑘 among the 𝑑𝑖 𝑎𝑛𝑑 𝑑𝑘. Illustrate in Eq. 10. The set 𝑑𝑖 has a vector length 𝑆𝑑𝑖 =

(𝑆𝑑𝑖1, 𝑆𝑑𝑖2, 𝑆𝑑𝑖3 … 𝑆𝑑𝑖𝑢). Here {𝑆𝑑𝑖}, i = 1,2,3, … u clustering and detect the repackaged app.

𝑆𝑑𝑖𝑘 = 𝑞 × 𝐶𝑆𝑑𝑖𝑘 + (1 − 𝑞) × 𝐵𝑆𝑑𝑖𝑘 (10)

Eq. 10 used the density peak clustering approach [36]. In this approach, we have a high-density cluster in

the center from its neighbor. It keeps a significant distance from the density cluster. The density Peak

clustering approach automatically recognizes the correct cluster. This approach is suitable for detect

repackaging malware because we don’t know whether the app is repackaged or not and how many types

of repackaging malware. Density peak clustering is the optimum solution to this kind of problem.

Clustering, we labeled the original app and repackaged the app. We predict that most android devices run

the original app. Therefore, in the clustering process, the most significant area of Voxels in the cluster is

recognized as the original and continuing cluster viewed as the suspicious app. The suspicious app may

be repackaged malware or affected by other malware. However, adware would be repackaged malware.

Original can have recognized as a suspected app due to different behaviors of the app. We minimized the

false alarm to verify the hostname name of the server. The repackaged recognize into VirusTotal by

hostname of the server in the cluster. The original app, if all hostname names of the server, was found

clean in the cluster and expected behavior, otherwise recognized as repackaged malware.

7. EVOLUTION

We downloaded the 400 original and 400 similar repackaged apps from Andozoo to run the experiment.

All downloaded 400 apps checked by Virustotal. We found the 296 apps infected by malware verified to

Virustotal, shown the result of 20 apps in Table 1. Nevertheless, we obtained a more realistic

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2833

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

performance by our experiment. We set up 8 Android 9.0 OS on VMware 16.x Pro under win 10, all

downloaded app installed on different android devices. We collected all network traffic using TCPDump.

The fog Server (assume win-10 machine) used the TCPDump to collect all network traffic. Here we

saved the pcap files. To extract the feature, we used the splitcap to reestablish TCP flow from pcap files.

To find the extracted traffic feature from HTTP used the Wireshark. The evaluate of 𝐶𝑆𝑑𝑖𝑘and 𝐵𝑆𝑑𝑖𝑘

Used the scikit-learn and NumPy. The clustering code (cluster-peak_density) was downloaded from

Github.

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (11)

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛
 (12)

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14)

In previous works [8,14] to evaluated the performance proposed approach. We have measured the

accuracy and F-measure for each app, define into eq. 11 and eq. 12. In eq. 12, evaluated by from

𝑅𝑒𝑐𝑎𝑙𝑙 (eq. 13) and 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛(eq. 14). We have calculated the F-measure and accuracy for each

repackaged app. Table 3 and figure 8 represent the HTTP and HTTPS(Encrypted) traffic flows.

Table3: Detail of description of the malicious apps with encryption and without encryption traffic

flows

S.N. AndroZoo APK App

Types

of

HTTP

Flows

of

HTTPS

Flows

1 939b53399a59b34d839dc055682db549.APK Game 353 151

2 092b3663cb136f5192bfa7e1dc147420.APK Browser 1641 1368

3 093db22b159645d0d7201d9048f0541b.APK Chat 767 1345

4 194adfa70978e2828a9397204b33bc51.APK Game 231 35

5 220c905d9f1286285356c9511be9d581.APK Game 502 398

6 271e7feb283bd249755be37c7ebf717a.APK Game 678 233

7 293d5e8a0faf770cd00367e6e84ce2a8.APK Media

Player

1226 634

8 349f4cf8ce6ab7652da35a89aaa10b3e.APK Music 227 1012

9 508e82e3ec3944ce257f126363d4ea7d.APK Game 172 381

10 698b81d63841362c35be0543870b4a5d.APK News 763 990

11 718e60ac1ad4bd6e9e3ee46994ac8d68.APK News

and

Weather

1108 548

12 814e01e693bea00db481dc30be5aeb1f.APK Fitness 1098 926

13 916a1677ec6fd9798a82381d921a5b9b.APK Online

learning

2391 1443

14 1317f0080e1b5d0a55876116e1dfd22b.APK Game 105 109

15 642ec177fa7db0bb206b1fd2746798db.APK Email 243 268

16 98f4b2087b408ee174fd07f7898b9127e.APK Chat 280 239

17 87b179e18c1947e365a7c9db4f0a3052.APK Game 1942 810

18 87b6994c27f474b9874f292ee27bda76.APK Game 622 253

19 408f5eca5cd8be5623fe2fcbfb84d093.APK Chat 2468 724

20 986ad626e433d8c7f9533fd33540ef1b.APK Game 2250 1288

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2834

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 8: Network-based encrypted and unencrypted flows of 20 apps

Table 4: Dataset for Malicious android app detection

 Number of

apps

Number of

Execution

Number of

HTTP Flows

Number of

HTTPS Flows

Original app 400 50 705780 410000

Repackaged App 400 20 315000 198000

Table 5: Detection of unknown app accuracies with different features

S. N. Accuracy(in %) With 16

Features

Accuracy(in %) with 11

features

1 80 80

2 92.6 92.6

3 82.7 81.5

4 63 62.3

5 98.9 97.3

6 99 98

7 85.3 84.3

8 96.9 88.5

9 99 98

10 98 98

11 99 98.2

12 98 98

13 99.5 98.7

14 70 70

15 98.8 98.4

16 99 99

17 66.7 66.5

18 78.8 78.6

19 98.4 98

20 89.3 87.8

Average 89.64 88.68

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2835

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 9: Comparison of accuracy with different extraction feature of 20 apps

We have designed F-measure and accuracy of original apps and repackaged apps. In the experiment, we

took 50 original app traffic sets and 20 repackaged app traffic sets in Table 4, specifically TP+FN=20

and TN+FP=50 for every app. In VirusTotal detected, 296 apps are affected by malware, and 104 apps

are safe. In this calculation, TP+FN=104*50=5200 and TN+FP=104*20=2080 for repackaged safely. For

malware app TP+FN=296*50 =14800 and 296 *20=5920.This is for in our tests. In VirusTotal, 296 apps

are recognized as malware app, and 104 apps are original apps.

In figure 9 and Table 5 depicted that app number {5,6,9,10,11,13,15,16 and 19} have more than 98.4%

accuracy with 16 feature extraction point but with 11 feature extraction have less accuracy. However,

more feature extraction increased the complexity of the detection of the approach. The low number of the

feature has very low complexity. Table 6 depicted the average accuracy and F-Measure with 16 features

and 11 feature extraction points to detect the repackaged malware apps and original apps. We found a

97.7% good accuracy rate with 16 feature extraction points with high complexity measures and 96.9%

accuracy with 11 feature extraction points with less complexity than 16 feature extraction points.

We found that more feature extraction increased more computational time and increased the accuracy of

detecting repackaged malware. Less feature extraction decreased the computation time and decreased

accuracy of detection of the repackaged malware apps.

Table 6: Average accuracy and F-Measure detection with different feature extraction

 Average Accuracy Average F-Measure

Detection with 16 features

extraction Parameter

97.7 0.96

Detection with 11 features

extraction Parameter

96.9 0.94

8. CONCLUSION

In this paper, we enhanced proposed an approach to the detection of Android repackaged malware.

Experimental works used Fog commuting to reduce the end device (Mobile node) load for Android

malware detection. In the current scenario, most of the techniques used static analysis to detect the

repackaged apps. Here we used the dynamic approach for detection and repackaged malware with

analysis of network traffics. We used the cluster-peak_density and feature extraction of network traffics

of each app to detect the app with high accuracy of 97.7%. We found that if we increased more feature

extraction parameters for detection, malware apps also increased the CPU consumption, and low feature

extraction parameters decreased the accuracy also decreased the CPU consumption. In the future, we try

to improve the accuracy and decrease the CPU consumption.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2836

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

REFERENCES:

[1] Statista, Mobile Operating Systems’ Market Share Worldwide from January 2012 to December 2019,

Statista, Hamburg, Germany, 2009, https://www.statista.com/statistics/272698/global-market-share-

held-by-mobile-operating-systemssince-2009/.

[2] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app store analysis for software

engineering,” IEEE Transactions on Software Engineering, vol. 43, no. 9, pp. 817–847, 2017.

[3] https://www.appbrain.com/stats/number-of-android-apps,2020.

[4] L. Li, D. Li, T. F. Bissyande et al., “Understanding android app piggybacking: a systematic study of

malicious code grafting,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 6, pp.

1269–1284, 2017.

[5] M. Fan, J. Liu, X. Luo et al., “Android malware familial classification and representative sample

selection via frequent subgraph analysis,” IEEE Transactions on Information Forensics and Security,

vol. 13, no. 8, pp. 1890–1905, 2018.

[6] J. Zhang, Z. Qin, K. Zhang, H. Yin, and J. Zou, “Dalvik opcode graph-based android malware variants

detection using global topology features,” IEEE Access, vol. 6, pp. 51964–51974, 2018.

[7] S. Garg, S. K. Peddoju, and A. K. Sarje, “Network-based detection of android malicious apps,”

International Journal of Information Security, vol. 16, no. 4, pp. 385–400, 2016.

[8] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici, “Mobile

malware detection through analysis of deviations in application network behavior,” Computers &

Security, vol. 43, pp. 1–18, 2014.

[9] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu, “pBMDS: a behavior-based malware detection system for

cellphone devices,” in Proceedings of the ird ACM Conference on Wireless Network Security, ACM,

New York, NY, USA,pp. 37–48, 2010.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware detection

system for android,” in Proceedings of the 1st ACM Workshop on Security and Privacy in Smart-

phones and Mobile Devices, ACM, Chicago, IL, USA,pp. 15–26, October 2011.

[11] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “MADAM: a multi-level anomaly detector for

android malware,” in Proceedings of the International Conference on Mathematical Methods, Models,

and Architectures for Computer Network Security, vol. 12, Springer, St. Petersburg, Russia, pp. 240–

253, 2012.

[12] Y. Zhang, M. Yang, B. Xu et al., “Vetting undesirable behaviors in android apps with permission use

analysis,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security, ACM, Berlin, Germany, pp. 611–622, November 2013.

[13] S. Wang, Z. Chen, X. Li, L. Wang, K. Ji, and C. Zhao, “Android malware clustering analysis on

network-level behavior,” in Proceedings of the International Conference on Intelligent Computing,

Springer, Liverpool, UK, pp. 796–807, August 2017.

[14] G. He, B. Xu, and H. Zhu, “AppFA: a novel approach to detect malicious android applications on the

network,” in Security and Communication Networks, Wiley, Hoboken, NJ, USA, 2018.

[15] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: a user-oriented behavior-based

malware variants detection system for android,” IEEE Transactions on Information Forensics and

Security, vol. 12, no. 5, pp. 1103–1112, 2017.

[16] Y. Zhou and X. Jiang, “Dissecting android malware: characterization and evolution,” in Proceedings

of the 2012 IEEE Symposium on Security and Privacy, IEEE, San Francisco, CA, USA, pp. 95–109,

2012.

[17] N. W. Lo, S. K. Lu, and Y. H. Chuang, “A framework for third-party android marketplaces to identify

repackaged apps,” in Proceedings of the 2016 IEEE 14th International Conference on Dependable,

Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2837

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science

and Technology Congress, pp. 475–482, Auckland, New Zealand, August 2016.

[18] L. Li, J. Gao, M. Hurier et al., “Androzoo++: collecting millions of android apps and their metadata

for the research community,” 2017, https://arxiv.org/abs/1709.05281.

[19] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: vision and challenges,” IEEE Internet

of ings Journal, vol. 3, no. 5, pp. 637–646, 2016.

[20] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in third-

party android marketplaces,” in Proceedings of the Second ACM Conference on Data and Application

Security and Privacy, ACM, Antonio, TX, USA, pp. 317–326, February 2012.

[21] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scalable resource-driven approach for

detecting repackaged android applications,” in Proceedings of the 30th Annual Computer Security

Applications Conference, ACM, New Orleans, LA, USA, pp. 56–65, December 2014.

[22] K. Chen, P. Wang, Y. Lee et al., “Finding unknown malice in 10 seconds: mass vetting for new threats

at the google-play scale,” in Proceedings of the USENIX Security Symposium, vol. 15, Washington,

DC, USA, August 2015.

[23] Z. Wang, C. Li, Y. Guan, and Y. Xue, “Droidchain: a novel malware detection method for android

based on behavior chain,” in Proceedings of the 2015 IEEE Conference on Communications and

Network Security (CNS), IEEE, Florence, Italy, pp. 727-728, September 2015.

[24] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of repackaged android malware

with code-heterogeneity features,” IEEE Transactions on Dependable and Secure Computing, vol. 17,

no. 1, pp. 64–77, 2017.

[25] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and A. Santone, “Visualizing the outcome of

dynamic analysis of android malware with vizmal,” Journal of Information Security and Applications,

vol. 50, Article ID 102423, 2020.

[26] M. Lin, D. Zhang, X. Su, and T. Yu, “Effective and scalable repackaged application detection based on

user interface,” in Proceedings of the 2017 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), IEEE, Atlanta, GA, USA, May 2017.

[27] G. Meng, M. Patrick, Y. Xue, Y. Liu, and J. Zhang, “Securing android app markets via modelling and

predicting malware spread between markets,” IEEE Transactions on Information Forensics and

Security, vol. 14, no. 7, pp. 1944–1959, 2018.

[28] X. Wu, D. Zhang, X. Su, and W. Li, “Detect repackaged Android application based on HTTP traffic

similarity http traffic similarity,” Security and Communication Networks, vol. 8, no. 13, pp. 2257–

2266, 2015.

[29] J. Malik and R. Kaushal, “Credroid: android malware detection by network traffic analysis,” in

Proceedings of the 1st ACM Workshop on Privacy-Aware Mobile Computing, ACM, Paderborn,

Germany, pp. 28–36, July 2016. 18 Security and Communication Networks

[30] A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah, “Android malware detection based on

network traffic using decision tree algorithm,” in Proceedings of the International Conference on Soft

Computing and Data Mining, Springer, Senai, Malaysia, pp. 485–494, January 2018.

[31] Z. Chen, Q. Yan, H. Han et al., “Machine learning based mobile malware detection using highly

imbalanced network traffic,” Information Sciences, vol. 433-434, pp. 346–364, 2018.

[32] G. He, B. Xu, L. Zhang, and H. Zhu, “Mobile app identification for encrypted network flows by traffic

correlation,” International Journal of Distributed Sensor Networks, vol. 14, no. 12, pp. 1–17, 2018.

[33] Q. Xu, Y. Liao, S. Miskovic, Z.M. Mao, M. Baldi, A. Nucci, et al., "Automatic generation of mobile

app signatures from traffic observations", 2015 IEEE Conference on Computer Communications

(INFOCOM), pp. 1421-1489, 201

https://arxiv.org/abs/1709.05281

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 2824-2838

2838

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

[34] G. He, B. Xu and H. Zhu, "Identifying mobile applications for encrypted network traffic", 2017 Fifth

International Conference on Advanced Cloud and Big Data (CBD), pp. 279-284, 2017.

[35] L. Li and S. Qu, “Short text classification based on improved ITC,” Journal of Computer and

Communications, vol. 1, no. 4, pp. 22–27, 2013

[36] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science, vol. 344, no.

6191, pp. 1492–1496, 2014.

