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Abstract 

Repackaged apps are the biggest challenge in the Android ecosystem. Many tools are available in the market 

to detect the repackaged apps. Most of the tools and recent researches comparing the original apps with 

suspected apps to detect the repackaged apps. Into this one more biggest challenge to choose the original. 

The solution to this problem to make an official android store for all original apps. However, the pairwise 

comparison is not the optimum solution because it is time-consuming and inefficient to repackage detection 

apps. 

This paper proposes an approach to detect the repackaged apps using network traffic-based clustering using 

Fog Computing. The main observation to collect the network traffics to trace the plaintext for original and 

repackaged app detection. During analyzing of traffics, extracting the statistical feature, calculate the 

similarity between app. Here, the clustering automatically separates both types of apps, such as a 

repackaged and original app. The experiment analyses the performance of the proposed approach with 

minimum complexity and high precision and reduces the effort of mobile computing to resolve the malware. 

Keywords: Network Traffic, Cluster analysis, Repackage app, feature Extraction, Mobile Fog Computing, 

Android Malware 

1.  INTRODUCTION 

Presently, Android devices (tablet, smartwatch, and smartphone) have speedy popularity worldwide. As 

per one website survey of Statista, The Android mobile OS is counted more than 73.48% on Dec 2020 in 

the Global market [1]. The leading cause of the popularity of Android OS, it is open source and 

conveniently downloads android apps from various play store. The most famous app store is the Google 

play store, which has approx. Three million apps by Feb 2021 [2]. These feature-rich apps types make 

the Android ecosystem more attractive and vibrant. 

Android app has the extension *.APK (Android Package Kit) in ZIP format, including Share Object(SO), 

manifest, class.DEX. Developer byte code. Android apps are easily de-assembled or repackaged by some 

popular tools such as apktool1 and Jadx2 , which can quickly add malicious code or add some extra ad’s 

ware. The malicious code is used to steal sensitive information, and ad code is used to earn financial 

gain. Therefore, repackaging app has become a significant threat to the android ecosystem [3]. 

In [4-6], apps embedded with malicious code, detect as repackaged apps. The majority of malware are 

repackaged apps. Authors observed that repackaging becomes a substantial threat to secure Android 

environments. Several approaches have been proposed to investigate the detection of repackaged apps [7-

14]. Previous work has two categories to detect malware, such as off-device and In-device. Off-devices 

dynamic run the APK in the virtual environment. It extracts the signature of APK and records the 

behaviors of apps. If any malicious code or unpredictable behaviors are diagnosed, treat it as malware.  

Those approaches are designed as network traffic-based detection of malware. 

On-device detection, These techniques judged the app's behavior on local user devices; it recognizes the 

malware during the installation process of APK. If we compare between off-device and the On-device 

approach, the on-device approach has limited space, resources to detect the malware. However, in off-
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device approach have extensive resources, power, and space. Nevertheless, on-device is more 

challenging than off-devices due to limited resources. 

Several approaches have been proposed to detect malware on mobile devices. The first approach to 

observing the operating system behavior, API calls, and application network behavior should be 

extracted and defined—the subsequent detection of malware based on feature extraction. Current 

approaches are divided into client and server-side detection; client-side approaches detect the malware on 

mobile devices, and server-side approaches detect the malware into apps on the remote server. In 

practice, client-side approaches have restrictions due to limited resources and power to detect malware 

into apps [8]. However, server-side approaches have extensive resources, more power, and high 

performance [15]. The reason, detection feature is collected and processed on mobile devices. 

This paper proposed an approach to detect the repackage malware based on clustering via Mobile Fog 

Computing (MFC). The main strategy of our method to extract the feature of apps and pre-evaluate 

offload to Fog. Therefore, the workload of mobile devices is reduced. Our proposed architecture has 

three components to detect Android Malware: Mobile devices, Fog Server, and cloud. The Fog server 

extracts the detection feature from mobile network traffic; this approach does preprocess, which helps to 

reduce the workload of mobile devices, minimize the amount of data to send, and protect mobile users' 

privacy. The extracted feature from network traffics are sent to the cloud for result processing. The app's 

similarity is evaluated based on extractive features on the cloud, deciding the app is the original app or 

repackaged malware.  The based on similarities of the app, automatically clustering separated the original 

app and repackaged malware. We designed the comprehensive set of experiments, found an average 

accuracy rate of 97.7%. 

Our main contribution in proposed works is significantly less complex and effective frameworks based 

on fog computing for detecting repackaged malware. This is the server-side approach, which is reduced 

the workload of mobile devices. In addition, it has network traffics-based feature extraction; it has a 

reasonable accuracy rate of detection and protection of mobile user’s privacy—the identification or 

detection of repackaged Android malware done through the network traffic clustering approach. 

We cluster the network traffics that generated the app to conclude which app has been repackaged. 

A proposed approach for network traffic clustering to detect the repackaged android malware. Here, the 

main aim to generate network traffic by the same app to determine that the app has been repackaged or 

not. Primary, we determine the similarities between app by statistical flow feature and plaintext contents. 

Then, automatically similarities rate is clustering to separate the benign and repacked app. Some models 

extract from network behaviors the signature matching process in advance for malware detection; it is 

not deal with encryption and zero-day attack. So our approach more efficient and less complex in 

practice. 

2.  PRELIMINARIES 

We are introducing Android malware and Fog Computing from the primary concept of detecting the 

repackaged app. 

2.1  Repackaged App 

Android Apk is very easy to repackage. As shown in Figure 1(a),1(b), the 1.APK was dissembled by 

reverse engineering tools JADX. The JADX is the power tool for reverse engineering. 
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Figure 1(a): Reverse Engineering by JADX tool, Total File structure of APK and related code 

Most Android malware generates repackaged apps from benign apps; the most popular app is embedded 

in the malicious code [4].  As proof [16], a community of android security shown 80% of apps are 

repacked app—the repackaged app launched on the third-party app store. Third-party app stores did not 

require any integrity evolution of uploaded app [17]. In F-Droid, found some of the app repackaged by 

the same developer [18]. The Repackaged app is remarked by evaluating by same network traffic app 

[7,14]. 

An Android app always has a remote connection to the server to interact, Android app request command 

to the server, and receives sensitive data from the server. If there is malicious code in the app, network 

behavior will be differing from the benign app. 

Therefore, benign apps lot of network traffic differences from repackaged apps. Inspired by this kind of 

comparison, a proposed an approach based on network traffic clustering to separate the benign app and 

repackaged app. 

 

Figure 1(b) Reverse Engineering of Com. Android. vendling.Billing.AppbillingServices 

2.2  Fog Computing 

Fog computing is technology, which uses the edge of the network on downstream data on behalf of the 

Internet of Things (IoT) amenities [19]. The important thing in Fog computing, it has the edge, consist 

computation and network resources between mobile-device/IoT and cloud. Figure 2 represents the 

paradigm of edge computing. Edges network deployed by Fog server.  It is used for preprocessing and 

foreword the extracted feature of network traffic to the cloud. 
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The transfer of the service on fog server, fog server is updated online. In most scenarios, the device is 

connected to the Fog server and cloud simultaneously. In this works, it represents a solid and dotted line.  

Because in this scenario, all data are not preprocessed by the fog server. The fog computing paradigm 

represents in Figure 2 for Android malware detection. 

 

Figure 2: Paradigm of Fog computing 

3.  RELATED WORK: 

The repackaged Android app is the biggest source of malware; many approaches have been proposed to 

detect them. Similarly, DroidMoss and ResDroid proposed an approach to detecting repackaged apps in 

the Android Market [20,21]. DroidMoss focused on code and pairwise similarity comparison. ResDroid 

extracted structure feature and event handler information from code and core resources. Later on, the 

extracted feature was used to detect the repackaged android app. It used the dividend- conquer strategy to 

reduce the computation time and have a parallel processing approach. 

Assuming Google play store were benign apps, Massvet [22] downloaded all the apps in advance and 

constructed the V-Score and M-Score database to detect the repackaged android app. In addition, code 

similarities comparison, behavior, and UI-based approaches are more emerging—DroidChain [23] 

composed the typical behaviors of the app to detect the repackaged malware. In DroidChain, models 

composed of typical behavior have some issues, due to this leakage the privacy, escalating privilege, 

malware installation. 

According to an Approach [24], it cannot detect the repackaged partly due to their behavioral similarities 

of original apps. To overcome this issue, I designed a new technique based on code heterogeneity 

analysis to detect repackaged Android malware. The hole app structure is partitioned into multiple 

dependent regions, each region independently classified on its behavioral features. 

Techniques used the VizMal[25] for visualizing the app execution to trace to detect the repackaged 

Android malware and noticed the expected malicious behaviors. A proposed approach used the static UI 

feature [26]; it detected 3723 and 15956 repackaged apps in the Anzhi market and MI Market, 

respectively. Results have shown that repackaged malware is a severe threat to the security of mobile. 

Even the Android market [27] uses the server approached to detect the repackaged app. 

Presently, several approaches are proposed to detect the repackaged Android malware based on network 

traffic behaviors. Arora et al. proposed an approach based on usefulness network traffic to detect 

Android Malware [28]. One more technique based on network traffic divided app HTTP into two 

categories: primary and Nonprimary modules. Primary modules used the HTTP flow distance algorithm 

and the Hungarian method to determine the traffic and pairs similarity. CREDROID [29] proposed an 

approach to detect the malicious app based on domain name system(DNS) requests and data transmitted 

to remote servers by performing the in-depth analysis of network traffic logs in offline mode. 

Zulkifli et al. [30] designed an approach to detect the repackaged malware app, which used seven 

network traffic features with the J48 decision tree algorithm. This proposed approach [31] to detect the 

repackaged Android malware app based on comparing network behaviors of similar apps. This paper 

used lightweight mobile edge computing. In this worked not consider repackaged apps in our knowledge. 

Our worked-based network traffic-based repackaged Android malware app detection. In our work, 

consider the network traffic only. In previous work such as [6,12], we do not need the compare each 
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evaluated app to all apps in the Android store. We used MFC sever to collect network traffic of apps to 

determine the repackaged Android malware. In the process, we compare only the network traffic set. The 

statistical flow feature of the app also helps to deal with encrypted network traffic. 

Father improves the performance of the proposed approach; Crowdroid [10] sends the detected feature to 

on central server for processing.  This approach recoded the system call for processing to detect its 

feature; it is a very lightweight process. The Proposed methods used the permission base malware 

detection approach. This method divided the system into three categories: Signature Database, Android 

Client, and Central Server.  The android app delivers to the central server by the client Android. The 

central server extracts all permission requests, calculates permission malware score etc. 

Table 1: Download Malicious APK from ANDOZOO with size and Detection from TotalVirus.com 

S.N. APK Date Size  

MB 

Score 

Detection by 

engines 

1 939b53399a59b34d839dc055682db549.APK 2019-04-02 53.02 6/59 

2 092b3663cb136f5192bfa7e1dc147420.APK 2019-08-17 93.02 5/59 

3 093db22b159645d0d7201d9048f0541b.APK 2019-07-25 197.56 11/60 

4 194adfa70978e2828a9397204b33bc51.APK 2019-05-27 120.47 3/60 

5 220c905d9f1286285356c9511be9d581.APK 2019-05-20 93.80 12/61 

6 271e7feb283bd249755be37c7ebf717a.APK 2019-04-01 98.41 14/57 

7 293d5e8a0faf770cd00367e6e84ce2a8.APK 2018-09-07 118.26 23/62 

8 349f4cf8ce6ab7652da35a89aaa10b3e.APK 2020-05-18 93.87 0/63 

9 508e82e3ec3944ce257f126363d4ea7d.APK 2019-07-30 234.41 9/59 

10 698b81d63841362c35be0543870b4a5d.APK 2021-02-05 121.37 8/61 

11 718e60ac1ad4bd6e9e3ee46994ac8d68.APK 2019-05-17 127.33 6/59 

12 814e01e693bea00db481dc30be5aeb1f.APK 2018-09-01 138.87 25/62 

13 916a1677ec6fd9798a82381d921a5b9b.APK 2019-06-23 100.26 16/62 

14 1317f0080e1b5d0a55876116e1dfd22b.APK 2019-08-04 108.43 3/59 

15 642ec177fa7db0bb206b1fd2746798db.APK 2019-07-13 129.24 0/51 

16 98f4b2087b408ee174fd07f7898b9127e.APK 2020-03-26 6.81 0/58 

17 87b179e18c1947e365a7c9db4f0a3052.APK 2019-05-11 85.85 6/61 

18 87b6994c27f474b9874f292ee27bda76.APK 2019-04-02 91.84 4/57 

19 408f5eca5cd8be5623fe2fcbfb84d093.APK 2018-08-30 91.61 1/61 

20 986ad626e433d8c7f9533fd33540ef1b.APK 2020-05-18 82.76 5/58 

As Table 1 Reports, all engines cannot find all kinds of malicious apps; some engines can catch the malicious 

app. Even some apps did not catch by a single-engine. 

4.  MOTIVATION: 

Most popular apps are chosen for repackaged apps and spread across the world. Therefore, existing 

techniques compare the vetted app with the official android market app such as google play store to 

distinguish the repackaged app. The main hypothesis of google play has benign and original apps.  

Official android app market deployed extensive security measures to protect from attackers. Every day, 

Google playtest the security of millions of apps, after that appeared in the play store. Awkwardly, there is 

a comparison between different apps, which is not appropriate as per complexity. Assume that we have N 

suspected malicious apps and M number official Android market apps.  It requires N*M comparisons to 

detect the malicious app. Google play store has approximately 3 million apps. So that, offline comparison 

requires downloading millions of apps; it is a time-consuming process. Therefore, existing approaches 

have very high complexity and very difficult to apply in practice. 

Our proposed approach has a special kind of network traffic management used to detect the repackaged 

malware apps. Figure 4 shown the MFC Server to manage specific user requests directly at network 

edges. Fog Server manages network traffic and forewords only specific information to the cloud instead 

of all remote traffic. Our main aim here to reduce the number of comparisons, same app run of different 

Android devices to produce network traffics for analyses and compared. 
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In proposed approach doing the traffic labeling and identifying app by using network traffic. Meanwhile, 

due to changes in a resource file or added malicious code, partially network traffic would be different 

from the original app network traffic. A repackaged app can easily identify. That is shown in Figure 5. 

5.  METHODOLOGY 

Every device containing the android OS has limited resources; therefore, the detection of Android 

malware on the device has a very challenging task.  We proposed an approach to detect the repackaged 

malware App at run time. The proposed framework of detection of repackaged Android App is illustrated 

in figure 4. Our frameworks are divided into three layers such Android devices, MFC Server, and Cloud 

layer. Figure 4, 𝑖 repackaged apps install on 𝑢 different android devices. MFC client installed on android 

devices to foreword the network traffic to MFC server for preprocessing. MFC server primarily labels the 

network traffics generated by  𝑖 apps, 𝑢 traffic set are captured. At that point, 𝑢 traffic set filtered and get 

rid of the expected traffic from the set.  In Figure 4 represent the labeling and filtering in step 1-3, traffic 

behaviors and similarity calculation in step 4-5, In step applying clustering approach to separate the 

repackaged app and original app—the technical detail of the steps discussed in the next section. 

5.1  Traffic Labeling, filtering, and Feature extraction: 

Traffic labeling planned to recognized all traffic produced by the app 𝑖 for every android device. We 

have Extensive approaches to identify the app and flow of network traffics [32]. In MFC Server, traffic 

labeling is directed by accumulating HTTP signature[33] and correlation [34] of traffics. Every HTTP 

header has a unique key-value pair in the HTTP signature, and every app has a unique set shown in 

figure 6. In proposed approaches found that 90% of apps identify from HTTP signature. While HTTP 

signature matching could not identify by in encrypted apps, further identify the unknown traffic using the 

traffic correlation methods. 

 

Figure 4: The main procedure of the proposed method for repackaged Android Malware detection 

 

Figure 5: Illustrate the app identification and repackaged malware detection by comparing network traffic. 
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Figure 6: Example of identification of HTTP Traffic flow 

Androids app use multiple connections simultaneously; we have a strong correlation network flow 

generated by the same app [34]. Therefore, exhibit unknown traffics identification feature—namely 

unknown flows labeled by correlation traffic. The traffic correlation reveals by DNS clustering and 

retrieves similar traffic. After labeling the network flows, the MFC server extracts the detection feature 

of labeled traffic. 

Feature extraction is divided into two groups, behavior and content feature. Content feature extracted 

from HTTP Signature and behavior feature extracted from statistics of network traffic flows. In figure 4, 

in the step of traffic filtering, discard the common traffic and accept uncommon traffic from 𝑢 traffic set. 

The common traffic in traffic sets such as port number, server IP address. The common traffic generates 

the similarity calculation among apps. Similarity can increase the complexity level and exhibit any 

benefit to detect the repackaged malware. 

5.2  Similarity calculation of traffic content 

We observe that in Android app used two types of protocol, such as HTTP and HTTPS. HTTP flows 

only the plaintext content. We used to determine the similarity of different sets produced by the same 

app. Further precisely, we first reassemble HTTP flows, extract the content of HTTP, storing the packet 

content of HTTP into a text file as ASCII code. 

The similarity is determining by two algorithms such enhanced TF-IDF [35] and cosine similarity. The 

term frequency deal to calculate the word count in documents. In eq. 1  document denoted as 𝑑𝑖  and 

word count as denoted as  𝑤𝑗  and term frequency represents as  𝑇𝐹(𝑤𝑗, 𝑑𝑖). 

 𝑇𝐹(𝑤𝑗, 𝑑𝑖) = 0.5 +
0.5×𝑓(𝑤𝑗,𝑑𝑖)

max {𝑓(𝑤𝑗,𝑑𝑖)  ∶𝑤∈𝑑𝑖}
                                                                (1) 

where 𝑓(𝑤𝑗, 𝑑𝑖) the number of occurrence of words 𝑤𝑗 in the document 𝑑𝑖. 

In the eq. 2 to use inverse document frequencies(IDF) determine, amount of information a word carries. 

Usually, it is applied the logarithm scale function of inverse to determine the words contained in the 

document. 

𝐼𝐷𝐹(𝑊𝑗) = log (
𝑢

|{𝑑, 𝑤𝑗∈𝑑 }|
)                                                                                                          (2) 

where 𝑢 is the number of documents, and |{𝑑,  𝑤𝑗 ∈ 𝑑 }| is the number of documents was the exhibit 𝑤𝑗 

The product of 𝑇𝐹(𝑤𝑗, 𝑑𝑖) and 𝐼𝐷𝐹(𝑤𝑗) determine in Eq.3. 
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𝑇𝐹 − 𝐼𝐷𝐹(𝑤𝑗, 𝑑𝑖) = 𝑇𝐹(𝑤𝑗, 𝑑𝑖) × 𝐼𝐷𝐹(𝑤𝑗)                                                                                  (3) 

After product, all document transforms into the exact size of numeric vectors. Here, we applied the 

cosine similarity between two document vectors. The two different document vectors, such as 𝑑𝑖  𝑎𝑛𝑑 𝑑𝑘 

And the length of the vector is 𝑡. The similarity determines between two vectors in eq. 4. 

𝐶𝑆𝑑𝑖 𝑘
=

∑ 𝑉(𝑑𝑖)𝑙  ×   ∑ 𝑉(𝑑𝑖)𝑙
𝑡
𝑙=1

𝑡
𝑙=1

√∑ 𝑉(𝑑𝑖)    𝑙
2𝑡

𝑙=1  × √∑ 𝑉(𝑑𝑘)    𝑙
2𝑡

𝑙=1

                                                                                                 (4) 

Finally, for each set 𝑑𝑖 compare with remaining sets 𝑢 − 1, and the similarity values would be 𝐶𝑆𝑑𝑖𝑖 = 1 

we represent similarity vectors  { 𝐶𝑆𝑑𝑖1, , 𝐶𝑆𝑑𝑖1,, 𝐶𝑆𝑑𝑖2,, 𝐶𝑆𝑑𝑖3, … . . 𝐶𝑆𝑑𝑖𝑢 }. 

Table 2: Statistical feature of network flows to calculate from traffic behavior 

SN Feature Interpretation 

1 DNS-Query (Queries Request) Count 

2 Average-DNS-Interval (Interval between two Queries) Value 

3 Distinct-DNS-Query Count 

4 HTTP-Get /Post Request Count 

5 HTTP-Get/Post-Request-Interval Value 

6 Distinct-HTTP-Get/Post-Request Count 

7 Distinct-Source-Port-Used Count 

8 Send Bytes Value 

9 Received Bytes Value 

10 Send-Average-Length Value 

11 Received-Average-Length Value 

12 Send-Packet Count 

13 Received-Packet Count 

14 Destination Value 

15 TCP-RST Count 

16 No-Fail-SYN Count 

5.3  Similarity calculation of traffic behaviors 

Here, we calculate a similar value of contents that cannot deal with the encrypted flows. Besides, traffic 

behavior must calculate to deal with the encrypted flows. We use m (m=16) in the statistical analysis 

study.  The statistical feature we selected is given in Table 2. Therefore, the traffic set 𝑑𝑖 has a flow 

vector represented in the eq. 5 for feature extraction. In figure 7 shown the HTTPS traffics flows for 

encrypted feature vectors. 

𝐹𝑑𝑖

𝑗
= (𝑓𝑗

1, 𝑓𝑗
2, … . 𝑓𝑗

𝑚)                                                                                                                      (5) 

Where 𝑓𝑗
𝑝

denoted the 𝑝𝑡ℎ statistical feature, 1 ≤ 𝑝 ≤ 𝑚. Set 𝑑𝑖 can be exhibit in the matrix  𝑓𝑗
𝑝

. 

𝑇𝐵𝑛×𝑚 (𝑑𝑖) = (𝑓𝑑𝑖

1 , 𝑓𝑑𝑖

2 , … … . . 𝑓𝑑𝑖

𝑛)
𝑇

                                                                                                 (6) 

where n denotes the number of encrypted flows enclosed in 𝑑𝑖 
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Figure 7: Encrypted traffic flows for behavior feature vectors. 

In eq. 7, illustrate a feature set, but that is not identical in size in encrypted flows. The behavior of  

𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘) are not identical in terms of dimensions. We determine the  Frobenius 

norm for 𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘). The procedure is presented in eq. 7, where 𝑓𝑗
1 normalized the 

value into[0,1]: 

𝐹𝑁(𝑑) = √∑ ∑ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 |𝑓𝑗
𝑝

|
2

𝑚
𝑝=1

𝑛
𝑗=1                                                                                         (7) 

After that, calculate the distance between 𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘) is determine into eq. 8. 

𝑑𝑖𝑠(𝑑𝑖, 𝑑𝑗) = |𝐹𝑁(𝑑𝑖) − 𝐹𝑁(𝑑𝑘)|                                                                         (8) 

Finally, determine the similarity between 𝑇𝐵𝑛𝑖×𝑚 (𝑑𝑖) and 𝑇𝐵𝑛𝑘×𝑚 (𝑑𝑘) in Eq. 9.  In the below process 

𝑛𝑖 and 𝑛𝑘 Not more than 1. 

𝐵𝑆𝑑𝑖𝑘 = 1 −
 𝑑𝑖𝑠(𝑑𝑖,𝑑𝑗)

max [ 𝑑𝑖𝑠(𝑑𝑖,𝑑𝑗),𝑟,𝑞=1,2,3…𝑢,𝑟≠𝑞]
                                                                                        (9) 

𝐵𝑆𝑑𝑖𝑘 Set to 1 if coming to the same behavior and otherwise set to 0. Similarity 

5.4  Clustering of similarity values and repackaged malware detection 

The similarity of traffic content 𝐶𝑆𝑑𝑖 𝑘
 and feature extraction (behavior)  similarity  𝐵𝑆𝑑𝑖𝑘 , we determine 

the final similarity 𝑆𝑑𝑖𝑘 among the 𝑑𝑖 𝑎𝑛𝑑 𝑑𝑘. Illustrate in Eq. 10. The set 𝑑𝑖 has a vector length 𝑆𝑑𝑖 =

(𝑆𝑑𝑖1, 𝑆𝑑𝑖2, 𝑆𝑑𝑖3  … 𝑆𝑑𝑖𝑢). Here {𝑆𝑑𝑖},   i = 1,2,3, … u clustering and detect the repackaged app. 

𝑆𝑑𝑖𝑘 = 𝑞 × 𝐶𝑆𝑑𝑖𝑘 + (1 − 𝑞) × 𝐵𝑆𝑑𝑖𝑘                                                                                           (10) 

Eq. 10 used the density peak clustering approach [36]. In this approach, we have a high-density cluster in 

the center from its neighbor. It keeps a significant distance from the density cluster. The density Peak 

clustering approach automatically recognizes the correct cluster.  This approach is suitable for detect 

repackaging malware because we don’t know whether the app is repackaged or not and how many types 

of repackaging malware. Density peak clustering is the optimum solution to this kind of problem. 

Clustering, we labeled the original app and repackaged the app. We predict that most android devices run 

the original app. Therefore, in the clustering process, the most significant area of Voxels in the cluster is 

recognized as the original and continuing cluster viewed as the suspicious app. The suspicious app may 

be repackaged malware or affected by other malware. However, adware would be repackaged malware. 

Original can have recognized as a suspected app due to different behaviors of the app. We minimized the 

false alarm to verify the hostname name of the server. The repackaged recognize into VirusTotal by 

hostname of the server in the cluster. The original app, if all hostname names of the server, was found 

clean in the cluster and expected behavior, otherwise recognized as repackaged malware. 

7. EVOLUTION 

We downloaded the 400 original and 400 similar repackaged apps from Andozoo to run the experiment. 

All downloaded 400 apps checked by Virustotal. We found the 296 apps infected by malware verified to 

Virustotal, shown the result of 20 apps in Table 1. Nevertheless, we obtained a more realistic 
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performance by our experiment.  We set up 8 Android 9.0 OS on VMware 16.x Pro under win 10, all 

downloaded app installed on different android devices. We collected all network traffic using TCPDump. 

The fog Server (assume win-10 machine) used the TCPDump to collect all network traffic.  Here we 

saved the pcap files. To extract the feature, we used the splitcap to reestablish TCP flow from pcap files. 

To find the extracted traffic feature from HTTP used the Wireshark. The evaluate  of 𝐶𝑆𝑑𝑖𝑘and  𝐵𝑆𝑑𝑖𝑘 

Used the scikit-learn and NumPy. The clustering code (cluster-peak_density) was downloaded from 

Github. 

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
                                                                                                         (11) 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛
                                                                                                (12) 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                      (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                             (14) 

In previous works [8,14] to evaluated the performance proposed approach. We have measured the 

accuracy and F-measure for each app, define into eq. 11 and eq. 12. In eq. 12, evaluated by from 

𝑅𝑒𝑐𝑎𝑙𝑙 (eq. 13) and 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛(eq. 14). We have calculated the F-measure and accuracy for each 

repackaged app. Table 3 and figure 8 represent the HTTP and HTTPS(Encrypted) traffic flows. 

Table3: Detail of description of the malicious apps with encryption and without encryption traffic 

flows 

S.N. AndroZoo APK App 

Types 

# of 

HTTP 

Flows 

 

# of 

HTTPS 

Flows 

 

1 939b53399a59b34d839dc055682db549.APK Game 353 151 

2 092b3663cb136f5192bfa7e1dc147420.APK Browser 1641 1368 

3 093db22b159645d0d7201d9048f0541b.APK Chat 767 1345 

4 194adfa70978e2828a9397204b33bc51.APK Game 231 35 

5 220c905d9f1286285356c9511be9d581.APK Game 502 398 

6 271e7feb283bd249755be37c7ebf717a.APK Game 678 233 

7 293d5e8a0faf770cd00367e6e84ce2a8.APK Media 

Player 

1226 634 

8 349f4cf8ce6ab7652da35a89aaa10b3e.APK Music 227 1012 

9 508e82e3ec3944ce257f126363d4ea7d.APK Game 172 381 

10 698b81d63841362c35be0543870b4a5d.APK News 763 990 

11 718e60ac1ad4bd6e9e3ee46994ac8d68.APK News 

and 

Weather 

1108 548 

12 814e01e693bea00db481dc30be5aeb1f.APK Fitness 1098 926 

13 916a1677ec6fd9798a82381d921a5b9b.APK Online 

learning 

2391 1443 

14 1317f0080e1b5d0a55876116e1dfd22b.APK Game 105 109 

15 642ec177fa7db0bb206b1fd2746798db.APK Email 243 268 

16 98f4b2087b408ee174fd07f7898b9127e.APK Chat 280 239 

17 87b179e18c1947e365a7c9db4f0a3052.APK Game 1942 810 

18 87b6994c27f474b9874f292ee27bda76.APK Game 622 253 

19 408f5eca5cd8be5623fe2fcbfb84d093.APK Chat 2468 724 

20 986ad626e433d8c7f9533fd33540ef1b.APK Game 2250 1288 
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Figure 8: Network-based encrypted and unencrypted flows of 20 apps 

Table 4:  Dataset for Malicious android app detection 

 Number of 

apps 

Number of 

Execution 

Number  of 

HTTP Flows 

Number of 

HTTPS Flows 

Original app 400 50 705780 410000 

Repackaged App 400 20 315000 198000 

Table 5: Detection of unknown app accuracies with different features 

S. N. Accuracy(in %) With 16 

Features 

Accuracy(in %)  with 11 

features 

1 80 80 

2 92.6 92.6 

3 82.7 81.5 

4 63 62.3 

5 98.9 97.3 

6 99 98 

7 85.3 84.3 

8 96.9 88.5 

9 99 98 

10 98 98 

11 99 98.2 

12 98 98 

13 99.5 98.7 

14 70 70 

15 98.8 98.4 

16 99 99 

17 66.7 66.5 

18 78.8 78.6 

19 98.4 98 

20 89.3 87.8 

Average 89.64 88.68 
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Figure 9: Comparison of accuracy with different extraction feature of 20 apps 

We have designed F-measure and accuracy of original apps and repackaged apps. In the experiment, we 

took 50 original app traffic sets and 20 repackaged app traffic sets in Table 4, specifically TP+FN=20 

and TN+FP=50 for every app. In VirusTotal detected, 296 apps are affected by malware, and 104 apps 

are safe. In this calculation, TP+FN=104*50=5200 and TN+FP=104*20=2080 for repackaged safely. For 

malware app TP+FN=296*50 =14800 and 296 *20=5920.This is for in our tests. In VirusTotal, 296 apps 

are recognized as malware app, and 104 apps are original apps. 

In figure 9 and Table 5 depicted that app number {5,6,9,10,11,13,15,16 and 19} have more than 98.4% 

accuracy with 16 feature extraction point but with 11 feature extraction have less accuracy. However, 

more feature extraction increased the complexity of the detection of the approach. The low number of the 

feature has very low complexity. Table 6 depicted the average accuracy and F-Measure with 16 features 

and 11 feature extraction points to detect the repackaged malware apps and original apps. We found a 

97.7% good accuracy rate with 16 feature extraction points with high complexity measures and 96.9% 

accuracy with 11 feature extraction points with less complexity than 16 feature extraction points. 

We found that more feature extraction increased more computational time and increased the accuracy of 

detecting repackaged malware. Less feature extraction decreased the computation time and decreased 

accuracy of detection of the repackaged malware apps. 

Table 6: Average accuracy and F-Measure detection with different feature extraction 

 Average Accuracy Average F-Measure 

Detection with 16  features 

extraction Parameter 

97.7 0.96 

Detection with 11 features 

extraction Parameter 

96.9 0.94 

8. CONCLUSION 

In this paper, we enhanced proposed an approach to the detection of Android repackaged malware. 

Experimental works used Fog commuting to reduce the end device (Mobile node) load for Android 

malware detection. In the current scenario, most of the techniques used static analysis to detect the 

repackaged apps. Here we used the dynamic approach for detection and repackaged malware with 

analysis of network traffics. We used the cluster-peak_density and feature extraction of network traffics 

of each app to detect the app with high accuracy of 97.7%.  We found that if we increased more feature 

extraction parameters for detection, malware apps also increased the CPU consumption, and low feature 

extraction parameters decreased the accuracy also decreased the CPU consumption. In the future, we try 

to improve the accuracy and decrease the CPU consumption. 
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