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Abstract 

Picture and video coding developments have progressed by leaps and bounds in recent years. However, as image and 

video acquisition devices become more prevalent, the growth rate of image and video data is outpacing the compression 

ratio increase. It's been widely acknowledged that seeking more coding performance enhancement within the 

conventional hybrid coding paradigm is becoming increasingly difficult. Deep convolution neural network (CNN) is a 

form of neural network that has seen a resurgence in recent years and has seen a lot of success in the fields of artificial 

intelligence and signal processing. also offers a novel and promising image and video compression solution. We present 

a systematic, thorough, and up-to-date analysis of neural network-based image and video compression techniques in this 

paper. For images and video, the evolution and advancement of neural network-based compression methodologies are 

discussed. More precisely, cutting-edge video coding techniques based on deep learning and the HEVC system are 

introduced and addressed, with the goal of significantly improving state-of-the-art video coding efficiency. In addition, 

end-to-end image and video coding frameworks based on neural networks are examined, revealing intriguing 

explorations on next-generation image and video coding frameworks. The most important research works on image and 

video coding related topics using neural networks are highlighted, as well as future developments. The joint compression 

of semantic and visual information, in particular, is tentatively investigated in order to formulate high-efficiency signal 

representation structures for both human and machine vision. In the age of artificial intelligence, which are the two most 

popular signal receptors. 

Index Terms—Neural network, deep learning, CNN, image compression, video coding.  

I. INTRODUCTION 

 IMAGE and video compression is critical for delivering high-quality image/video services when transmission 

networks and storage capacity are small. Redundancies in photographs and videos, such as spatial redundancy, visual 

redundancy, and statistical redundancy, are critical for image and video compression. Furthermore, the presence of 

temporal redundancy in video sequences allows video compression to achieve higher compression ratios than image 

compression. 

 Huffman coding [1], Golomb code [2], and arithmetic coding [3] are examples of early image compression 

methods that rely on direct entropy coding to minimise statistical redundancy within the image. The Fourier transform [4] 

and Hadamard transform [5] were proposed in the late 1960s for image compression by encoding the spatial frequencies.  
Ahmed et al. proposed the Discrete Cosine Transform (DCT) for image coding in 1974 [6], which compacts image 

energy in the low frequency domain, allowing for much more effective compression in the frequency domain. 

 In addition to entropy coding and transform techniques for reducing statistical redundancy, prediction and 

quantization techniques for reducing spatial and visual redundancy in images are proposed. JPEG, the most widely used 

image compression format, is an effective image compression scheme that incorporates previous coding techniques. It 
divides an image into blocks, which are then transformed into the DCT domain. The differential pulse code modulation 

(DPCM) [7] is applied to the DC components of each block, compressing the prediction residuals of DC components 

between neighbouring DCT blocks rather than the DC value directly. Since humans are less susceptible to information 

loss in high frequency bits, a special quantization table is designed to retain low-frequency information while discarding 

more high-frequency (noise-like) data to minimise visual redundancy [8]. JPEG 2000 [9], a well-known still image 
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compression standard, uses the 2D wavelet transform rather than the DCT to represent images in a compact form, and 

EBCOT [10], an effective arithmetic coding process, to reduce the statistical redundancy in wavelet coefficients. 

 Due to the high similarity between successive frames recorded in a very short time period, temporal continuity, 

which could be eliminated by inter-frame prediction, becomes the dominant factor in video coding. The block based 

motion prediction was proposed in the 1970s to obtain inter-prediction efficiently [11]. Motion compensation transform 

system [12], which is now known as the hybrid prediction/transform coder, was proposed by Netravali and Stuller in 

1979. The reader presented an overview of the first generation methods' historical evolution [13]. 

 

Fig. 1. Illustration of HEVC intra prediction. (a) different intra modes; (b) angular prediction instance. 

  

 Hybrid prediction/transform coding methods have had a lot of success after decades of growth. MPEG-1/2/4, 

H.261/2/3, and H.264/AVC [14], as well as AVS (Audio and Video Coding Standard in China) [15] and HEVC [16], 

have all been developed and are widely used in various applications. As an example, the most recent video coding 

standard, HEVC, used neighbouring reconstructed pixels to predict the current coding block, with 33 angular intra 

prediction modes, including the DC mode and the planar mode, as shown in Fig. 1. In terms of inter-frame coding, 

HEVC builds on its ancestor, H.264/AVC, by improving it from a variety of angles. For example, increasing the PU 

division's diversity, using more interpolation filter taps for sub-sample motion compensation [17], and refining the side 

information coding, including more most probable modes (MPMs) for intra mode coding [18], advanced motion vector 

prediction (AMVP), and merge mode for motion vector predictor coding [19]. Loop filtering is another modern video 

coding technique in today's video coding framework, and several loop filters [20]–[25] have been proposed since 2000. 

Deblock filtering [26], [27], and sample adaptive offset (SAO) [28] have been incorporated into HEVC in this paper. The 

refinement techniques for conventional hybrid video coding frameworks based on image and video local correlations, on 

the other hand, are based on image and video local correlations. are becoming increasingly difficult to increase coding 

quality. 

 Neural networks, especially convolutional neural networks (CNN), have recently achieved considerable success 

in a variety of fields, including image/video comprehension, encoding, and compression. One or more convolutional 

layers are normally present in a CNN. Some activities, in particular, add several completely connected layers after the 

convolution layers. In an end-to-end approach, the parameters in these layers can be well trained using large image and 

video samples labelled for specific tasks. With high adaptability, the qualified CNN can be used to solve classification, 

recognition, and prediction tasks on test data. The efficiency of CNN-generated prediction signals has surpassed that of 

rule-based predictors. Furthermore, CNNs can be viewed as feature extractors that convert images and videos into feature 

space with compact representations, which is advantageous for image and video compression. CNN has also been 

identified as a promising alternative for compression tasks based on these excellent characteristics. This paper offers a 

thorough analysis of image and video compression using neural networks in order to better understand the current 
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progress of CNN on image and video compression. We divided the main body of the paper into four sections to make the 

analysis more transparent due to the broad nature of this study. The basic concepts of neural networks and image/video 

compression are introduced in section II. Section III examines the evolution of neural network-based image compression 

techniques in depth. In section IV, we go through video compression techniques based on neural networks. In section V, 

we return to neural network-based image and video compression optimization techniques. The next part of the rationale 

follows the timeline of network evolution in order to implement neural network-based image compression based on 

representative network architectures. In section IV, we primarily discuss the CNN-based video coding techniques 

embedded in the state-of-the-art hybrid video coding system, HEVC, as well as some modern CNN-based video coding 

frameworks. Section VI, which concludes the paper, discusses the major challenges in deep learning-based image/video 

compression. 

II. INTRODUCTION OF NEURAL NETWORK AND IMAGE/VIDEO COMPRESSION 

 First, we'll go through some basic concepts and the history of neural networks in this section. The frameworks 

and basic methodology implementation for block based image coding and hybrid video coding platform are then 

introduced. 

A. Neural Network 

 The neural network (NN) was invented as a result of interdisciplinary neuroscience and mathematics studies, 

and it has shown strong abilities in the sense of non-linear transform and classification. The network, on the surface, 

appears to be made up of multiple layers of simple processing units called neuron (perceptron), which communicate with 

one another through weighted connections. Weighted associations from previously active neurons unlock the neurons. 

The activation functions are often extended for all intermediate layers to achieve non-linearity [29].  

 

Fig. 2. Illustration of the neural network architecture. 

 Figure 2 depicts a basic neural network architecture with one input layer, one output layer, and several hidden 

layers, each with a different number of neurons. In the 1960s, the basic perceptron learning protocol was proposed and 

studied [30]. During the decade of the 1970s, Backpropagation procedures [31], [32], inspired by the chain rule for 

derivatives of the training goals, were proposed to solve the multilayer perceptron training problem in the 1970s and 

1980s (MLP). Then, stochastic gradient descent with backpropagation is used to train multi-layer architectures, despite 

the fact that it is computationally intensive and suffers from bad local minima. The dense connections between adjacent 

layers in neural networks, on the other hand, cause the number of model parameters to quadratically increase, preventing 

the creation of neural networks in terms of computational efficiency. The implementation of parameter-sharing for MLP 

1990 [33] was a game-changer. Convolutional neural networks are a lighter-weighted variant of neural networks that 

have been proposed and used in document recognition, allowing for large-scale neural network training. 
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Fig. 3. Image and video compression framework (a) JPEG compression, (b) hybrid video compression 

 

 

Fig. 4. The technical roadmap of neural network based compression algorithms 

 Backpropagation procedures [31], [32], inspired by the chain rule for derivatives of the training goals, were 

proposed to solve the multilayer perceptron training problem in the 1970s and 1980s (MLP). Then, stochastic gradient 

descent with backpropagation is used to train multi-layer architectures, despite the fact that it is computationally 

intensive and suffers from bad local minima. The dense connections between adjacent layers in neural networks, on the 

other hand, cause the number of model parameters to quadratically increase, preventing the creation of neural networks 

in terms of computational efficiency. With the advent of parameter-sharing for MLP 1990 [33], a lighter-weighted 

version of neural network known as convolutional neural network was proposed and used in document recognition, 

allowing for large-scale neural network training. 

B. Image and Video Compression 

 The key techniques in image and video compression are transform and prediction, which can be used in a 

variety of coding frameworks. The most widely used image compression format is JPEG [34], which is made up of the 

simple transform/prediction modules shown in Fig. 3. (a). The input image is divided into 88 non-overlapping blocks in 

JPEG, each of which is translated into the frequency domain using block-DCT. The DCT coefficients are then 
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compressed into a binary stream for each transformed block using quantization and entropy coding. Most common video 

coding standards, such as MPEG-2, H.264/AVC, and HEVC, use a transform-prediction based hybrid video coding 

system, as shown in Fig. 3(b). Unlike JPEG, HEVC makes use of more intra prediction modes from neighbouring 

reconstructions of blocks. instead of DC estimation in the spatial domain, as shown in Fig. 1. Aside from intra prediction, 

high-efficiency inter prediction, which uses motion estimation to find the most similar blocks as a prediction for the to-

be-coded block, provides more video compression coding benefits. Furthermore, HEVC uses two loop filters to eliminate 

compression artefacts sequentially: the deblocking filter and the SAO. 

 The compression in the above block-based image and video coding standards is typically block-dependent and 

must be implemented block by block sequentially, limiting the parallelism of compression using parallel computing 

platforms, such as GPUs. Furthermore, as compared to end-to-end compression, the separate optimization technique for 

each individual coding method limits the compression efficiency improvement. In essence, as seen in Fig. 4, there is 

another technical development trajectory focused on neural network techniques for image and video compression. The 

marriage of conventional image/video compression and CNN accelerates their success with the resurgence of neural 

networks. The development of neural network-based image/video compression and related representative techniques will 

be discussed in the sections that follow. 

 

Fig. 5. The Neural Network based image codec [38]. 

 

III. PROGRESS OF NEURAL NETWORK BASED IMAGE COMPRESSION 

 In this section, we introduce image compression using machine learning methods, especially from the 

perspective of neural networks, which has been around since the late 1980s [35]. The Multilayer Perceptron (MLP), 

Random Neural Network (RNN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) are 

among the neural network techniques covered in this portion. In the final segment, we'll discuss how generative 

adversarial networks have recently advanced image coding techniques (GAN). 

A. Multi-layer Perceptron based Image Coding 

 MLP [36] is made up of multiple hidden layers of neurons, an input layer of neurons (or nodes, units), and a 

final layer of output neurons. Each neuron i's output hi inside the MLP is an abbreviation for Multi-Level Programming. 

 Theoretical research has shown that an MLP with more than one hidden layer can accurately approximate any 

continuous computable function to any precision [37]. This property provides proof for situations such as data 

compression and dimension reduction. The aim of using MLP to compress images is to create unitary transformations for 

the entire spatial data set. 

 Chua and Lin introduced an end-to-end image compression method in 1988, based on high parallelism and a 

powerful compact representation of a neural network [35], which could be useful as a model of human brain-like coding 

functions. They devised the standard image compression steps, i.e. as an integrated optimization problem to minimise the 
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following cost function, the unitary transform of spatial domain image data, quantization of transform coefficients, and 

binary coding of quantized coefficients 

 Back propagation was used to train a completely connected neural network with 16 hidden units to compress 

each 808 patch of an image in 1989 [39]. This technique, however, set the neural network parameters for a fixed number 

of binary codes, making it difficult to adjust to a variable compression ratio in the ideal state. To compress the input 

image, Sonehara et al. proposed training a dimension reduction neural network, with quantization and entropy coding as 

separate modules [38]. The auto-encoder bottleneck structure is used in the design of the dimension reduction neural 

network (Fig. 5).  

 

Fig. 6. Illustration of MLP-based predictive coding for image compression [42]. 

 However, the adaptivity of the aforementioned algorithms is calculated by manually changing the number of 

hidden neurons rather than using networks with more layers and complex connections, which could limit MLP's 

compression efficiency [41]. To address this problem, an MLP-based predictive image coding algorithm [42] was 

investigated, which took advantage of spatial background information. To produce the non-linear predictor of the 

bottom-right pixel X in Fig. 6(a), the spatial information to the left and above (points A, B, and C, each small block 

orresponds to one pixel in Fig. 6(a)) was used (a). The MLP predictor has three input nodes, 30 hidden nodes, and one 

output node, as shown in Fig. 6. (b), The MLP model is trained by minimising the mean square errors between the initial 

and expected signals using the back propagation algorithm [32]. According to their findings, the MLP-based non-linear 

predictor improves error entropy from 4.7 to 3.9 bits per pixel (bpp) as compared to the linear predictor. 

 The hierarchical neural network and its Nested Training Algorithm (NTA) were proposed for machine learning 

in 1996. picture compression [44], which resulted in a significant reduction in training time. [45], [46] provide more 

information on MLP-based image compression techniques that increase compression efficiency by developing different 

link structures. 

B. Random Neural Network based Image Coding 

 In 1989, a new form of random neural network [47] was introduced. The above-mentioned MLP-based methods, 

in which signals are in the spatial domain and optimised by the gradient backpropagation process, perform differently 

than the random neural network. The signals in a random neural network are transmitted as unit amplitude spikes. 
Positive signals represent excitatory signals and negative signals represent inhibition in the communication between these 

neurons, which is modelled as a Poisson mechanism. In [47], some theoretical findings for analysing the behaviour of 

random neural networks were presented. To update the parameters, a "backpropagation" style training method is used, 

which involves the solution of n linear and n non-linear equations each time with a new input-output pair. 

 Some researchers looked at combining the random neural network with image compression and came up with 

some interesting findings. The random neural network was first used in an image compression task by Gelenbe et al. 

[48]. A feedforward encoder/decoder random neural network with one intermediate layer is used in the architecture. The 

first layer, for example, accepts an image as input, the last layer produces a reconstructed image, and the intermediate 

layer produces compressed bits. Cramer et al. expand on their previous work in [48] by developing an adaptive block-by-

block random neural network compression/decompression system [49]. There are several different neural compression 
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networks: C1, ... ,CL which are intended to achieve varying levels of compression Each of these networks compresses 

the block simultaneously, and the networks are chosen based on the consistency of the decompressed data. Hai enhanced 

image compression efficiency even further by incorporating a random neural network into the wavelet domain [50]. 

 

Fig. 7. The parameterized architecture of the CNN based end-to-end image compression proposed in [52]. 

 

C. Convolutional Neural Network based Coding 

 CNN recently outperformed conventional algorithms in high-level computer vision tasks such as image 

recognition and object detection by a large margin [51]. It also performs admirably for a variety of low-level computer 

vision tasks, such as super-resolution and compression artefact elimination. The convolution operation is used by CNN to 

describe the association between adjacent pixels, and the cascaded convolution operations are well-suited to the 

hierarchical statistical properties of natural images. Furthermore, the convolution operations introduce local receptive 

fields and mutual weights, which reduce CNN's trainable parameters. As a result, the probability of over-fitting is greatly 

reduced. Many studies have been conducted to investigate the feasibility of CNN-based lossy image compression, 

inspired by the powerful representation of CNN for images. 

  In 2016 [52], [53], Balle et al. published an end-to-end optimised CNN architecture for image 

compression under the scalar quantization assumption. Figure 7 shows the structure, which is made up of two modules: 

encoder and decoder analysis and synthesis transforms. Since the synthesis transform is the inverse operation of the 

analysis transform, all of the parameters in all three stages, h, c, and e, will be optimised in an end-to-end manner using 

the rate-distortion objective function. Balle et al. used an additive i.i.d uniform noise to simulate the quantizer in the 

CNN training protocol to deal with the zero derivatives caused by quantization. The stochastic gradient descent approach 

to the optimization problem is now possible. PSNR and MSSSIM metrics show that this approach outperforms 

JPEG2000. Furthermore, Balle and his colleagues expanded this model by using scale hyper priors for entropy estimation 

[54], which resulted in HEVC-like objective coding results. Minnen et al. improved the background model of entropy 

coding for end-to-end image compression [55], outperforming HEVC intra coding. Since the autoregressive portion is 

not easily parallelizable, both hardware-end support and energy-efficiency analysis should be further investigated for 

potential functional utility. Zhou et al. increase image compression efficiency by using a pyramidal feature fusion 

structure at the encoder and a CNN-based post-processing filter at the decoder [56]. Other end-to-end image compression 

work involving quantization and entropy coding can be found in [57], [58], and CNN prediction-based image 

compression in [59]. 

D. Recurrent Neural Network based Coding 

 RNN is a type of neural network that has memory to store recent behaviours, unlike the CNN architecture 

described above. RNN memory modules, in particular, have links to themselves that relay transformed information from 
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previous executions. RNN adjusts the actions of the current forward mechanism to adjust to the current context by using 

the stored information. To solve the decayed error backflow's insufficiency, Hochreiter et al. suggested the Long Short-

Term Memory (LSTM) [60]. More advanced improvements, such as the Gated Recurrent Unit (GRU) [61], are proposed 

to simplify recurrent evolution processes while maintaining the recurrent network's efficiency in specific tasks [62].  
RNN, like CNN, struggles to spread the gradients of the rate estimation for image compression tasks. 

 

Fig. 8. A single iteration of our shared RNN architecture [63]. 

 

Fig. 9. The overall architecture of GAN based image compression [65] 

 Toderici et al. proposed the first RNN-based image compression scheme [63], which used a scaled-additive 

coding framework to limit the number of coding bits rather than the approximation of rate estimation in CNN [52]. In 

more detail, the proposed approach in [63] is a multi-iteration compression architecture that supports progressive 

variational bitrate compression.. 

  

E. Generative Adversarial Network based Coding 

 One of the most appealing advancements in deep neural network application is the generational adversarial 

network. GAN optimises both the generator and discriminator network models at the same time. Discriminator employs a 

deep neural network to determine whether or not the samples were created by the generator. Simultaneously, the 

generator is taught how to beat the discriminator and generate samples that pass inspection. Adversarial loss has the 
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benefit of assisting the generator in improving the subjective quality of images while still being adaptable to various 

tasks. Some research works in the image compression challenge based on the perceptual consistency of the decoded 

images and used GAN to improve it. 

 Rippel and Bourdev proposed an integrated and well optimised GAN based image compression in 2017 [65], 

which not only achieves incredible compression ratio improvements but can also run in real-time by leveraging the huge 

parallel computing cores of GPU. The input image is compressed into a very compact feature space by networks, as 

shown in Fig. 9. The decoded image is reconstructed from the features using the generative network. The introduction of 

adversarial loss, which greatly improves the subjective quality of the restored image, is the most noticeable difference 

between GAN-based image compression and those of CNN or RNN-based schemes. The generative network and 

adversarial network are trained together to significantly improve the generative model's efficiency. On generic images of 

all quality standards, the GAN-based approach in [65] achieves substantial compression ratio improvement, generating 

compressed files 2.5 times smaller than JPEG and JPEG2000, 2 times smaller than WebP, and 1.7 times smaller than 

BPG. . The consistency is calculated using MS-SSIM in this case, but the process is still ineffective when using the 

PSNR metric. The advancements in GAN-based view have inspired me. With the sampled background views in LF [66], 

the light field (LF) image compression may achieve substantial coding gain with generating the missing views. 

Specifically, The semantics of the original content are more consistent with the contents produced by GAN than the 

specific textures. We can see the material difference in particular textures when enlarging the reconstructed images. 

 In addition, Gregor et al. applied the image compression task to a homogeneous deep generative convolutional 

model called DRAW [67]. Gregor et al., unlike previous studies, aimed for conceptual compression by producing as 

much image semantic information as possible [68]. A GAN-based architecture for extreme image compression with 

bitrates below 0.1 bpp is investigated in depth, allowing for various levels of content generation [69]. At the moment, 

GAN-based compression works well in narrow-domain images like faces, but further research is needed to develop 

models for natural images in general. 

IV. ADVANCEMENT OF VIDEO CODING WITH NEURAL NETWORKS 

 The use of the state-of-the-art video coding standard HEVC to analyse deep learning-based video coding has 

been a hot topic in recent years. Almost all of the HEVC modules have been investigated and developed by using 

different deep learning models. From the five key modules in HEV, we will review the creation of video coding works 

with deep learning models in this section .i.e., intra-prediction, inter-prediction, quantization, entropy coding, and loop 

filtering are all examples of intra-prediction techniques. Finally, we will discuss a number of novel video coding 

paradigms that are distinct from hybrid video coding system for coding. 

 

Fig. 10. The network structure of IPFCN [70]. 

 

A. Intra Prediction Techniques using Neural Networks 

 Li et al. proposed a new intra prediction mode using completely connected network (IPFCN) [70] instead of 

CNN to increase the accuracy of best HEVC intra prediction. competes with the 35 HEVC intra prediction modes that are 

currently available. IPFCN, like IPCNN, takes contextual feedback from adjacent multiple reference lines of 

reconstructed pixels. However, the current block's prediction version from HEVC intra prediction is not used. The 

IPFCN structure is shown in Figure 10, which is an intra prediction mapping from reconstructed neighbouring pixels to 
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the current block. With the exception of theEach connected layer is followed by a nonlinear activation layer, which 

employs the parametric rectified linear unit (PReLU). Each pixel is represented by a node in the output layer.  

 [71] proposes a CNN-based chroma intra prediction that uses both the reconstructed luma block and 

neighbouring chrom blocks to boost intra chroma prediction efficiency. Pfaff et al. suggested a more high-efficiency intra 

prediction network under JEM programme in [72], and the simplification version's running time only increased by 74% 

and 38% for intra encoding and decoding processes, respectively, with a 2.26 percent BD-rate saving. Li et al. 

investigated CNN-based down/upsampling techniques as a new intra prediction mode for HEVC [73], and its extension 

for inter frame prediction is proposed in [74]. Unlike previous image-level down/upsampling techniques [75], [76], Li et 

al. developed a down/upsampling approach at the CTU level, as shown in Fig.11. Each CTU is first down-sampled into a 

low-resolution version, which is then coded using the HEVC intra coding method in down/up-sampling mode. To 

preserve the original resolution of the restored low resolution CTU, upsampling is used. When the entire frame has been 

restored, a second stage upsampling CNN network is applied to eliminate the boundary objects. Then there's the 

upsampling in the second level. CNN has access to all of the down/upsampling CTUs in the region. A flag is signalled 

into the bitstream to indicate whether down/upsampling is turned on to ensure coding quality. The flag is set in this case 

based on the encoder's rate distortion optimization. 

 

Fig. 11. The framework of neural network based intra prediction using upsampling [73]. 

 This work achieves significant coding benefit, particularly at low bitrate scenarios, thanks to the high efficiency 

of CNN-based upsampling techniques, saving about 5.5 percent bitrate on average. HEVC stands for High Efficiency 

Video Coding. The bitrate saving for QPs (=22, 27, 32, 37) used in common HEVC test conditions is only 0.7 percent for 

the luma portion due to the limitations of the up-sampling algorithm. 

 We introduced a dual-network dependent super-resolution strategy by bridging the low-resolution image and 

upsampling network using an enhancement network to minimise the effects of compression noise on upsampling CNN 

[78]. Compressed noise reduction is the goal of the enhancement network. High-quality input is fed into the upsampling 

network. The proposed method improves coding performance at low bitrate scenarios, particularly for ultra high 

resolution videos, when compared to a single upsampling network. In the year 2019, Li et al. developed a compact 

representation CNN model to boost the super-resolution CNN-based compression system by limiting information loss in 

low-resolution images [79]. Other CNN-based intra coding strategies can be found in [80], [81], with [80] introducing the 

CTU level CNN enhancement model for intra coding. in addition [81] introduces RNN-based intra prediction using 

adjacent reconstructed samples. 

B. Neural Network based Inter Prediction 

 Inter prediction is realised in hybrid video coding by motion estimation on previously coded frames against the 

current frame, and in HEVC, motion estimation precision is up to quarter-pixel, with the value determined through 

interpolation, e.g., discrete cosine transform dependent interpolation filter (DCTIF) [17]. Intuitively, the better the coding 

accuracy, the more similar the inter predicted block and the current block are. This is because there are less prediction 
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residuals left. Huo et al. proposed CNN-based motion compensation refinement (CNNMCR) as a simple method [82] to 

increase inter prediction performance by using the current variable-filter-size residue-learning CNN (VRCNN) [83]. The 

motion compensated prediction and its neighbouring reconstructed blocks are fed into the CNNMCR by VRCNN, which 

is trained by minimising the mean square errors between the input and its corresponding original signal. In reality, 

CNNMCR's improved inter prediction quality is due to the built network's ability to reduce compression noise and the 

boundary artifacts improve inter prediction quality. Yan et al. proposed a Fractionalpixel Reference generation CNN 

(FRCNN) to predict fractional pixels, recognising the importance of fractional-pixel motion compensation in inter 

prediction [85]. This research differs from previous interpolation or super-resolution studies that predicted pixel 

sizes. high-resolution picture values, FRCNN, on the other hand, is used to create fractional-pixels from a reference 

frame in order to reach the current coding frame. As a result, fractional-pixel generation is expressed as a regression 

problem with the loss function, 

 As a result, for each fractional-pixel location, a separate CNN is educated. A training example for three half-

pixel CNN models is shown in Fig.12. The theory of FRCNN is essentially the same as that of adaptive learning. The 

parameters of interpolation filters [86], which are derived by minimising prediction errors at fractional-pixel positions 

and must be transmitted to the decoder side, are derived by minimising prediction errors at fractional-pixel positions. 

 

Fig. 12. Framework of the FRCNN in [85] 

 

Fig. 13. Illustration for the proposed DVRF mode in [87]. 

 Rather than improving fractional-pixel prediction efficiency, we use CNN-based frame rate up conversion 

(FRUC) techniques to investigate inter prediction block generation. In the CTU stage, a CNN-based FRUC method is 

used. [87], [88] proposed to build a virtual reference frame FV irtual, which is used as a new reference frame and is 

called direct virtual reference frame (DVRF). As shown in Figure 13, the current coding block can use the co-located 

block in FV irtual as an inter prediction block without having to transfer it. vectors are a type of data. The network is fed 

with the two closest bidirectional reference frames in the reference list, using the state-of-the-art deep FRUC method 

Adaptive Separable Convolution [89]., this approach achieves very promising compression efficiency, saving around 4.6 

percent bitrate compared to HM-16.9 and 0.7 percent bitrate compared to JEM7.1 [90]. JEM (Joint Exploration Model) is 
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the reference programme for the JVET group, which is working on the exploration of next-generation video coding 

standards, and is focused on the HEVC reference model. 

 

C. Neural Network based Quantization and Entropy Coding for Video Coding 

 Quantization and entropy coding are the lossy and lossless compression procedures of video coding, 

respectively. Due to its low computational and memory costs, the scalar quantization approach has dominated hybrid 

video coding frameworks. This uniform scalar quantization does not match the features of the human visual system, and 

it is not conducive to improving perceptual efficiency. Alam et al. suggested a two-stage quantization strategy based on 

neural networks in [95]. A CNN called VNet-2 is used in the first phase to predict local visibility. The VNet-2 consists of 

894 trainable parameters in three layers, namely convolution, subsampling, and complete link, each of which includes 

one feature map, and the threshold CT for HEVC distortions of individual video frames. 

 In comparison to HEVC, the proposed adaptive quantization strategy will save on average 11% bitrate for the 

luma channel while maintaining the same perceptual efficiency. structural similarity index (SSIM) [96]. Song et al. 

enhanced the CABAC output on compressing the syntax elements of 35 intra prediction modes by leveraging the 

prediction efficiency of CNN. Instead of using handcrafted background models, CNN was used to explicitly estimate the 

probability distribution of intra modes [97]. The network architecture is based on LeNet-5 [98], which was suggested by 

LeCun et al. Puri et al. used a CNN to predict the best transform index probability distribution from quantized coefficient 

blocks, and then used the probability to binarize the transform index. To improve entropy coding accuracy, the transform 

index uses variable length instead of fixed length coding [99]. 

 

D. Neural Network based Loop Filtering 

 Since H.263+ [100], the loop filtering module has been included in video coding standards, and several different 

loop filters [21]–[23], [27], [28] have been suggested. Many CNN-based loop filters have recently been  developed to 

eliminate compression artefacts, inspired by CNN's success in the image/video restoration field. When compared to other 

video coding modules, they are much easier to execute the end-to-end instruction. [101] Zhang et al. suggested a Loop 

filtering in HEVC using a residual highway convolutional neural network (RHCNN). We improved the efficiency of the 

CNN-based loop filter and designed the spatial-temporal residue network by exploiting the coherence of the spatial and 

temporal adaptations. Loop filter based on (STResNet) [102]. 

 Furthermore, in [103], we introduced a content-aware CNN-based loop filter that improved the filtering 

efficiency even more. Multiple CNN models are iteratively trained according to their filtering output for a reconstructed 

frame, as described in [104], and a corresponding discriminative network is also trained to aid in the selection of the 

optimal filter in the test stage to eliminate coding overheads. Under the HEVC common test condition (CTC), the 

proposed multi-model CNN filters achieve major improvements over HEVC with/without ALF. Even with the GeForce 

GTX TITAN X GPU, They proposed an effective solution for memory-efficient CNN-based loop filters in [105]. By 

simply padding the scalar QPs into a matrix with the same size of input frames or patches, they combined QPs as an 

input fed into the CNN training stage. [106] proposes a residual prediction CNN model for in-loop filters, and [107] 

proposes a multi-scale CNN model for in-loop filters. To delete compression artefacts, Dong et al. suggested an end-to-

end CNN [108] that is learned in a supervised manner. The CNN architecture is derived from the SRCNN [109] super-

resolution network by adding one or more "feature enhancement" layers after the first layer of SRCNN to clean up the 

noisy features. Yang et al. suggested a multi-frame quality enhancement neural network for compressed video that uses  

neighbouring high-quality frames to improve low-quality frames. A support vector is shown here. In compressed video, a 

machine-based detector is used to locate peak quality frames [111]. In the area of multiview plus depth video coding, 

CNN-based quality enhancement also performs admirably. CNN models were created by Zhu et al. to improve 3D video 

coding efficiency by post-processing synthesised views [112]. More works [113], [114] used more complex structures to 

boost compressed images. 
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E. New Video Coding Frameworks Based on Neural Network 

 Chen et al. proposed Deep Coder, a CNN network that combined multiple CNN networks to achieve 

comparable perceptual consistency to a low-profiled x264 encoder [115]. Deep Coder is a programming language that 

allows you to create complex programmes. The intra prediction is obtained from motion estimation on previous frames 

and is implemented using a neural network to produce a feature map, denoted as fMap. By incorporating the idea of 

Voxel CNN and exploring spatial-temporal coherence to efficiently perform video coding, Chen et al. proposed a truly 

learning-based video coding system. Within a learning network, predictive coding [116]. Srivastava et al. proposed to use 

the Long Short Term Memory (LSTM) Encoder-Decoder method to predict future frames of generative models [117], 

which was inspired by the prediction for future frames of generative models [117]. In [118], learn video representations 

that can be used to predict potential video frames. The LSTM Auto encoder Model and the LSTM Future Predictor 

Model are the two main models, both of which are based on recurrent neural networks. . Unlike Ranzato's [117] work, 

which could only predict one future frame, this model can predict a long future series. Based on the results of the 

experiments with 16 natural video frames as data, The model is capable of reconstructing these 16 frames as well as 

predicting the next 13 frames. 

V. OPTIMIZATION TECHNIQUES FOR IMAGE AND VIDEO COMPRESSION 

 HEVC, a cutting-edge video coding standard, achieves optimum compression efficiency by exhaustively 

traversing all feasible coding modes and partitions to decide the best one.  Rate-distortion costs are used to determine the 

best coding parameters. By predicting the optimal coding parameters and avoiding excessive RD calculations, the 

computational costs can be drastically reduced. On the basis of neural networks, fast mode-decision algorithms for the 

coding unit (CU) and prediction unit (PU) are proposed, which are not only parallel-friendly but also efficient. But it's 

also simple to design VLSI [119], [120]. To decide if the mode decision should be terminated early, Xu et al. used both 

CNN and LSTM to predict the entire CTU partition structure [121]. 

 

VI. CONCLUSIONS AND OUTLOOK 

 We believe that the advantages of neural networks in image and video compression are threefold, based on our 

study. First, neural networks outperform signal processing-based models in terms of content adaptively because network 

parameters are extracted from a large amount of real-world data, while models in the state of the art  coding standards are 

handcrafted based on image and video prior information. Second, larger receptive fields are commonly used in neural 

network models, which not only use neighbouring information but can also boost performance. coding efficiency by 

leveraging samples from a long distance, but conventional coding tools only used nearby samples and it's difficult to use 

samples from a long distance. Third, since the neural network can accurately represent both texture and function, it can 

be used for both human and computer vision research. However, the current state of affairs Only high compression 

efficiency for human view tasks is pursued by coding standards. 

 Image and video compression aims to reduce the size of visual signals while maintaining high quality, and is 

becoming increasingly relevant in the era of large visual data. In The neural network-based image and video compression 

techniques, especially the recent deep learning-based image and video compression techniques, have been reviewed in 

this paper. 

 We believe that deep learning-based image/video compression can play a larger role in representing and 

delivering images and videos with higher quality and lower bitrates in the future, and that the following issues must be 

addressed. to be investigated further: 

 Picture and video compression with semantic fidelity. With the rapid advancement in computer vision 

techniques and the exponential growth of photographs and videos, visual signal receivers are no longer limited to 

humans. computer vision algorithms, as well as the visual system. 
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 For the compression mission, rate-distortion (RD) optimization driven neural network training and adaptive 

switching. Traditional image and video compression relies on the rate-distortion principle, but it has limitations. Present 

neural network-based compression tasks haven't been thoroughly investigated. 

 Develop for a realistic image and video codec that is memory and computation efficient. The burdens in 

computation and memory are the most significant impediment to the implementation of deep learning-based image and 

video compression. Larger neural networks with more layers and nodes are normally considered to achieve high 

efficiency. 

 We attempted to develop a groundbreaking visual signal representation system to elegantly help both human 

vision viewing and computer vision processing for semantically friendly image and video compression. We suggested the 

hierarchical approach because of the lightweight and relevance of features for visual semantic descriptors, such as CNN 

features. [122] compresses the function descriptors and visual content together to reflect a visual signal. In [123], we 

looked into the novel visual signal representation structure in conjunction with a deep learning-based end-to-end image 

compression platform that can perform further image comprehension tasks directly from the compression domain. The 

reason for this approach is that the neural network architectures currently used for learned compression are not suitable 

for this task (in particular the encoders). The previous work [124] suggested a complexity-distortion optimization 

formulation for the video coding problem under power constraints, which can be improved upon. Combined with 

computational costs and video compression efficiency, CNN model compression optimization has been expanded. 

 Moreover, network-based end-to-end optimization techniques are more adaptable than hand-crafted methods, 

and they can be used to solve a variety of problems. The network can be quickly programmed or tuned, which gives it a 

lot of potential for future image and video compression problems, as well as other artificial intelligence problems. 
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