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Abstract 

Software is playing an increasingly essential role in many industries. However, defects are not only 

inconvenient and aggravating, but can also have serious cost for software systems, especially for mission-

critical systems. Therefore, software defect prediction models are useful for understanding, evaluating 

and improving the quality of a software system. Machine learning techniques have been working to make 

predictions about the defectiveness of software components by exploiting historical data of software 

components and their defects. In order to predict software defects, many studies using Random forest 

classifier with Artificial Neural networks (RF-ANN) have been proposed. The effectiveness of our 

proposed method is evaluated using historical data from the NASA and PROMISE software engineering 

repository, by comparing it with a k-nearest neighbor, SVM and Random Forest baseline. Our evaluation 

on a widely used data set shows that our method significantly improves the performance of the proposed 

classifier. 

Keywords:  Software defect, Random forest, Artificial Neural networks, code metrics, complexity. 

 

I. INTRODUCTION 

Improving unwavering quality of the ideal programming is quite possibly the most searched out 

exploration territories in computer programming. Programming engineers lay accentuation on 

planning dependable programming, so that inadequately planned programming can be 

recognized in the starter phases of the Software Development life cycle (SDLC) to try not to 

convey inferior quality programming item to the partner. In this manner, programming quality 

goes about as a significant factor in deciding the dependability of programming. In this way, 

there is a requirement for plan of forecast models to anticipate shortcoming inclined modules or 

classes in programming created dependent on item situated advancement system. 

 In writing it is seen that, few quality models have been proposed also, concentrated, for 

example, McCall’s quality model [1], Boehm’s quality model [2], Dromey’s quality model [3], 

and so on to assess the nature of a product item. A huge programming comprises of enormous 

number of lines of code in go prompting the presence of a colossal number of modules. It is very 

difficult to do unit testing of every single module. To check the  usefulness and to guarantee 
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unwavering quality of the product, a set number of  significant intelligent ways in a module 

ought to be chosen and testing ought to be  practiced on those modules, where likelihood of 

deficiencies are high [4].Software measurements assume an essential job in foreseeing the nature 

of the product. They give a quantitative premise, and a cycle for approving the models during 

SDLC [5]. The convenience of these measurements lies in their capacity to foresee the 

unwavering quality of the created programming. Practically defined, programming nature of a 

product framework can be best decided dependent on the FURPS model, which describes 

boundaries, for example, Functionality, Usability, Reliability, Performance and Acceptability 

[6]. Nature of any item is generally settled based on a significant boundary like unwavering 

quality. Dependability is for the most part estimated by the number of flaws identified in the 

created programming during a time frame. Engineers expect to foresee issues in modules apriori 

in order to convey a product with least number of shortcomings. Various models have been 

created for issue forecast as accessible in writing. In any case, issue expectation stays as a testing 

task in programming. There is a requirement for planning efficient models to anticipate 

programming inclined modules all the more precisely. 

II. SOFTWARE DEFECT PREDICTION PROCESS WITH METRICS 

 The exceptionally basic cycle of foreseeing programming deserts is to utilize AI strategies that 

give PC frameworks the capacity to gain from information without being expressly customized. Right off 

the strike, informational collections are created from programming stores including deformity global 

positioning frameworks, source code changes, mail chronicles, information extraction and performance 

control frameworks. Those informational indexes comprise of examples, which can be programming 

segments, documents, classes, capacity and modules. In view of specific measurements like static code 

describe extricated from the product storehouses, an occasion is marked as deficient or imperfection free. 

The gathered informational collections are then cleaned utilizing preprocessing techniques, for example, 

commotion recognition and decrease, information standardization, and characteristic choice .After that, 

the preprocessed informational indexes are utilized for building an imperfection expectation model that is 

to foresee if new occasions contain absconds. Aside from the parallel order, this model can assess the 

quantity of imperfections in each occurrence. As far as AI, this assessment is additionally called 

regression. 

 

Fig-1 Software Defect Prediction process 
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 Software metrics can be considered as a quantitative measurement that assigns symbols or 

numbers to features of predicted instances. In fact, they are features, or 13 attributes, that describe many 

properties such as reliability, effort, complexity and quality of software products. These metrics play a 

key role in building an effective software defect predictor. They can be divided into two main categories: 

code metrics and process metrics. 

 

Figure 1 – Halstead basic measurements 

 

Figure 2 – Halstead Metrics 

 McCabe features are Cyclomatic measurements representing to the unpredictability of a product 

item. The features proposed dependent on the presumption that “the intricacy of pathways between 



International Journal of Future Generation Communication and Networking 

Vol. 14, No. 1, (2021), pp. 1105-1119 

 

1108 

ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

module images is more smart that simply a tally of the images”. Varying from Halstead ascribes, McCabe 

credits measure the unpredictability of source code structure. They are gotten by processing the quantity 

of associated parts, circular segments and hubs in control stream graphs of source code. Every hub of the 

stream outline speaks to a program proclamation while a circular segment is the progression of 15 

controls from an assertion to another. The basic features are Cyclomatic complexity, essential complexity 

and design complexity. The object oriented metrics are represented figure 3. 

 

Figure 3- Object oriented metrics 

 

 McCabe features are used to predict the quality prediction based on Cyclomatic Complexity 

metrics the general form 

V (G) = E – N + 2p 

 

Where N–Nodes, E–Edges, P–connected procedures Extended Cyclomatic complexity (ECC): 

McCabe measures the program complexity based on conditional statement.  Extended Cyclomatic 

complexity that may be defined as:  

 

ECC=eV(G)=Pe+1 

 

Where, Pe=number of predicate nodes in flow graph G weighted by number of compound 

statements. Information flow metrics may be finding by count the number of local information flows 

input (fan-in) and flows output (fan-out). The procedure may be defined as:  

          

C=[procedure length]*[(fan-in)*(fan-out)]2 
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III. METHODOLOGY 

  The proposed methodology is systematically presented in figure4. The methodology consists of 

data collection, feature selection & Extraction, classification and performance evaluation. For this 

software defect process approach, ANN is used for train the data without imbalance class criteria and get 

the optimal values for the weights. The main aim of this process is to minimize the error. Random Forest 

algorithm will select the small subset of available attributes at random. It splits the node with the best 

variable among the available features. The embedded classifier based on Random forest with the help of 

artificial neural networks. The performance evaluation is carried out to evaluate and distinguish classes 

namely defectiveness and non-defective. The proposed algorithm is described in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Proposed frameworks 

 

    Data Collection 

Feature Selection Phase 

Perform Random Forest 

Classifier 

Performance Measures 

Accuracy, Precision, recall, F-Measure 
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Non- Defective 
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Pseudo code of RF-ANN Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Pseudo code of Proposed Algorithm 

IV. RESULTS AND DISCUSSION 

In this section, we design experiments to verify the effectiveness of RF-ANN. two  research questions are 

needed to be answered as follows 

1. Do the machine learning methods improve the performance of defect prediction compared to 

traditional methods based on static code metrics? 

2. Compared with features generated by the classical unsupervised learning methods, do features 

learned by the machine learning methods better represent syntax and semantics of programs? 

    4.1 Experimental Datasets 

      In order to evaluate the software quality we consider the following dataset for empirical study. In this 

paper we are discuss four open datasets in NASA, PROMISE which are used for defect prediction based 

quality assessment. 

Define the ANN Architecture – number of input, hidden and output neurons. 

Identify the fitness function which returns the error as difference of actual and 

predicted output for the ANN. 

Initialize a neuron of x particles with random weights of n dimension where n 

dimension where n is the total number of weights that needs to be optimized for the 

ANN 

To generate c classifiers 

For i=1 to c do 

Randomly sample the training data D with replacement to produce Di 

Create a root node, Ni containing Di 

Call Build Tree (Ni) 

End for 
 

Build Tree (N): 

If N Contains instances of only one class then 

Return 

else 

Randomly select x% of the possible splitting features in N 

Select the feature F with the highest information gain to split on 

Create f child nodes and f possible values (F1……….Fn) 

For i=1 to f do 

Set the contents of Ni to Di, where Di is all instances in N that match 

Fi 

Call Build Tree (Ni) 

End for 

End IF 
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a)  NASA Dataset- this dataset was collected by NASA metrics data program (Table 1). This dataset 

contain 40 features may contain both Hallstead features and McCabe features.  
 

Data Modules/ 

instances 

Language Description 

 

CM1 
 

498 
 

C 
 

Space craft instrument 
 

PC1 
 

1109 
 

C Earth orbiting satellite 

 

KC1 
 

2109 
 

C++ 
Storage management for 
ground data 

 

KC2 
 

522 

 

C++ Science data processing 

 

PC4 
 

1458 

 

C Flight software for earth 
orbiting satellite 

 

Table 1 –NASA Dataset 
 

PROMISE Dataset – it is open source java projects which contain different metrics such as lines of code, 

Response for class, Average method complexity, coupling between object classes etc. this metrics is used 

for evaluation of software quality effectiveness. The fig 6 describes the metrics and attributes of the 

PROMISE Data set 
 

 

Figure 6 PROMISE Data set 

4.2 Evaluation Metrics 

 

The proposed system is evaluated several performance metrics such as true positive rate, false positive rate, 

precision, recall, F-Measure and accuracy. 
 

True positive rate: This measure is projected by the modules that are predicted positively as the results 

specified at the end. The general for that is represented below equation. 
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True positive rate = true positive rate / (true positive rate + false negative rate 
 

False Positive rate:  This measure is projected by the modules that are predicted incorrectly categorized ad 

class x/ actual total of all classes, except x. 
 

False positive rate = false positive rate / (true negative + true negative rate 
 

Precision: precision gives positive predicate values and it process values or product quality or exactness. 
 

Precision = True positive / (True Positive + False positive) 
 

Recall:  recall gives sensitive of problem and it process values or product quantity or completeness. This 

measure is used to recognize total number of modules.   
 

Recall = true positive / (true positive + false negative) 
 

F-Measure:  it is one of the quality measures of the modules. The general formula is represented as given 

below 
 

F-Measure = 2* Precision * recall / (precision + recall) 
 

Accuracy: it is calculated as a number of instances predicted positively divided by total number of 

instances 
 

Accuracy = (true positive + true negative) / (P+N) 

 
 

Table 1: classified Instances for CM1 

 

 

 

 

 

Fig- 4 Performance Analysis for CM1 Data set 

 

Table 2: Performance analysis for CM1 

Method/ Performance 

measures 

 

Random Forest 

 

Proposed 

TP Rate 0.85 0.90 

FP Rate 0.61 0.70 

Precision 0.83 0.85 

Recall 0.85 0.87 

F-Measure 0.85 0.86 

Accuracy 0.83 0.88 

Method Approximately Classified 

Instances 

Inaccurately classified 

instances  

Total  

instances 

K-Means 
 

425 73 498 

Proposed 445 53 498 
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Fig- 4 Performance Analysis for CM1 Data set 

  

Table 3: classified Instances for PC1 

 

 

Method 

 

Approximately Classified 

Instances 

 

Inaccurately classified 

instances  

 

Total  

instances 

K-Means 
 

965 144 1109 

Proposed 1025 84 1109 

                                                                                          

Table 4: Performance analysis for PC1 

Method/ Performance 

measures 

 

Random Forest 

 

Proposed 

TP Rate 0.92 0.96 

FP Rate 0.65 0.69 

Precision 0.88 0.90 

Recall 0.89 0.90 

F-Measure 0.89 0.91 

Accuracy 0.89 0.92 
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Random Forest Proposed
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Fig- 5 Performance Analysis for PC1 Data set 

 

Table 5: classified Instances for KC1 

 

 

Method 

 

Approximately Classified 

Instances 

 

Inaccurately classified 

instances  

 

Total  

instances 

K-Means 
 

965 144 1109 

Proposed 1025 84 1109 

 
 

Table 6: Performance analysis for KC1 

 
 

Method/ Performance 

measures 

 

Random Forest 

 

Proposed 

TP Rate 0.92 0.96 

FP Rate 0.65 0.69 

Precision 0.88 0.90 

Recall 0.89 0.90 

F-Measure 0.89 0.91 

Accuracy 0.89 0.92 

 

0
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0.4

0.6

0.8

1
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Random Forest Proposed
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Recall

F-Measure
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Fig- 6 Performance Analysis for KC1 Data set  

 

Table 7: classified Instances for KC2 

 

 

 

Method 

 

Approximately Classified 

Instances 

 

Inaccurately classified 

instances  

 

Total  

instances 

K-Means 

 

470 52 522 

Proposed 501 21 522 

 

Table 8: Performance analysis for KC2 

 

Method/ Performance 

measures 

 

Random Forest 

 

Proposed 

TP Rate 0.90 0.94 

FP Rate 0.63 0.67 

Precision 0.80 0.90 

Recall 0.87 0.90 

F-Measure 0.88 0.91 

Accuracy 0.86 0.94 
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Fig- 7 Performance Analysis for KC2 Data set 
 

Table 9: classified Instances for PC4 

 

 

 

Method 

 

Approximately Classified 

Instances 

 

Inaccurately classified 

instances  

 

Total  

instances 

K-Means 
 

1280 178 1458 

Proposed 1325 155 1458 

 

Table 10: Performance analysis for PC4 

 

Method/ Performance 
measures 

 
Random Forest 

 
Proposed 

TP Rate 0.91 0.95 

FP Rate 0.70 0.75 

Precision 0.89 0.91 

Recall 0.87 0.93 

F-Measure 0.85 0.95 

Accuracy 0.90 0.98 

 

0
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Fig- 8 Performance Analysis for PC4 Data set  

 

 

V. CONCLUSION 

 

 The main intention of this work is to analyze the performance of Random Forest classifier with 

RF-ANN algorithm using different metrics of NASA datasets. Based on this performance analysis we 

conclude that our proposed approach is suitable for small and large data set. The complexity factor is low 

when compared to the existing approach. The future enhancement of this work is planned to measure 

different similarity measures with Fuzzy logic approach based on Equivalence and Composite relations. 
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