
International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1105

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Software Defect Prediction based on Random Forest Classifier with

Artificial Neural Networks

R.Janarthanan

Research Scholar

Department of BCA

Kongunadu College of Arts and Science
 janarthanan.raju@gmail.com

Dr.A.Hema

Associate Professor & Head

Department of BCA

Kongunadu College of Arts and Science
hemasrgm@yahoo.com

Abstract

Software is playing an increasingly essential role in many industries. However, defects are not only

inconvenient and aggravating, but can also have serious cost for software systems, especially for mission-

critical systems. Therefore, software defect prediction models are useful for understanding, evaluating

and improving the quality of a software system. Machine learning techniques have been working to make

predictions about the defectiveness of software components by exploiting historical data of software

components and their defects. In order to predict software defects, many studies using Random forest

classifier with Artificial Neural networks (RF-ANN) have been proposed. The effectiveness of our

proposed method is evaluated using historical data from the NASA and PROMISE software engineering

repository, by comparing it with a k-nearest neighbor, SVM and Random Forest baseline. Our evaluation

on a widely used data set shows that our method significantly improves the performance of the proposed

classifier.

Keywords: Software defect, Random forest, Artificial Neural networks, code metrics, complexity.

I. INTRODUCTION

Improving unwavering quality of the ideal programming is quite possibly the most searched out

exploration territories in computer programming. Programming engineers lay accentuation on

planning dependable programming, so that inadequately planned programming can be

recognized in the starter phases of the Software Development life cycle (SDLC) to try not to

convey inferior quality programming item to the partner. In this manner, programming quality

goes about as a significant factor in deciding the dependability of programming. In this way,

there is a requirement for plan of forecast models to anticipate shortcoming inclined modules or

classes in programming created dependent on item situated advancement system.

 In writing it is seen that, few quality models have been proposed also, concentrated, for

example, McCall’s quality model [1], Boehm’s quality model [2], Dromey’s quality model [3],

and so on to assess the nature of a product item. A huge programming comprises of enormous

number of lines of code in go prompting the presence of a colossal number of modules. It is very

difficult to do unit testing of every single module. To check the usefulness and to guarantee

mailto:janarthanan.raju@gmail.com
mailto:hemasrgm@yahoo.com

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1106

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

unwavering quality of the product, a set number of significant intelligent ways in a module

ought to be chosen and testing ought to be practiced on those modules, where likelihood of

deficiencies are high [4].Software measurements assume an essential job in foreseeing the nature

of the product. They give a quantitative premise, and a cycle for approving the models during

SDLC [5]. The convenience of these measurements lies in their capacity to foresee the

unwavering quality of the created programming. Practically defined, programming nature of a

product framework can be best decided dependent on the FURPS model, which describes

boundaries, for example, Functionality, Usability, Reliability, Performance and Acceptability

[6]. Nature of any item is generally settled based on a significant boundary like unwavering

quality. Dependability is for the most part estimated by the number of flaws identified in the

created programming during a time frame. Engineers expect to foresee issues in modules apriori

in order to convey a product with least number of shortcomings. Various models have been

created for issue forecast as accessible in writing. In any case, issue expectation stays as a testing

task in programming. There is a requirement for planning efficient models to anticipate

programming inclined modules all the more precisely.

II. SOFTWARE DEFECT PREDICTION PROCESS WITH METRICS

 The exceptionally basic cycle of foreseeing programming deserts is to utilize AI strategies that

give PC frameworks the capacity to gain from information without being expressly customized. Right off

the strike, informational collections are created from programming stores including deformity global

positioning frameworks, source code changes, mail chronicles, information extraction and performance

control frameworks. Those informational indexes comprise of examples, which can be programming

segments, documents, classes, capacity and modules. In view of specific measurements like static code

describe extricated from the product storehouses, an occasion is marked as deficient or imperfection free.

The gathered informational collections are then cleaned utilizing preprocessing techniques, for example,

commotion recognition and decrease, information standardization, and characteristic choice .After that,

the preprocessed informational indexes are utilized for building an imperfection expectation model that is

to foresee if new occasions contain absconds. Aside from the parallel order, this model can assess the

quantity of imperfections in each occurrence. As far as AI, this assessment is additionally called

regression.

Fig-1 Software Defect Prediction process

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1107

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

 Software metrics can be considered as a quantitative measurement that assigns symbols or

numbers to features of predicted instances. In fact, they are features, or 13 attributes, that describe many

properties such as reliability, effort, complexity and quality of software products. These metrics play a

key role in building an effective software defect predictor. They can be divided into two main categories:

code metrics and process metrics.

Figure 1 – Halstead basic measurements

Figure 2 – Halstead Metrics

 McCabe features are Cyclomatic measurements representing to the unpredictability of a product

item. The features proposed dependent on the presumption that “the intricacy of pathways between

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1108

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

module images is more smart that simply a tally of the images”. Varying from Halstead ascribes, McCabe

credits measure the unpredictability of source code structure. They are gotten by processing the quantity

of associated parts, circular segments and hubs in control stream graphs of source code. Every hub of the

stream outline speaks to a program proclamation while a circular segment is the progression of 15

controls from an assertion to another. The basic features are Cyclomatic complexity, essential complexity

and design complexity. The object oriented metrics are represented figure 3.

Figure 3- Object oriented metrics

 McCabe features are used to predict the quality prediction based on Cyclomatic Complexity

metrics the general form

V (G) = E – N + 2p

Where N–Nodes, E–Edges, P–connected procedures Extended Cyclomatic complexity (ECC):

McCabe measures the program complexity based on conditional statement. Extended Cyclomatic

complexity that may be defined as:

ECC=eV(G)=Pe+1

Where, Pe=number of predicate nodes in flow graph G weighted by number of compound

statements. Information flow metrics may be finding by count the number of local information flows

input (fan-in) and flows output (fan-out). The procedure may be defined as:

C=[procedure length]*[(fan-in)*(fan-out)]2

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1109

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

III. METHODOLOGY

 The proposed methodology is systematically presented in figure4. The methodology consists of

data collection, feature selection & Extraction, classification and performance evaluation. For this

software defect process approach, ANN is used for train the data without imbalance class criteria and get

the optimal values for the weights. The main aim of this process is to minimize the error. Random Forest

algorithm will select the small subset of available attributes at random. It splits the node with the best

variable among the available features. The embedded classifier based on Random forest with the help of

artificial neural networks. The performance evaluation is carried out to evaluate and distinguish classes

namely defectiveness and non-defective. The proposed algorithm is described in figure 5.

Figure 4 Proposed frameworks

 Data Collection

Feature Selection Phase

Perform Random Forest

Classifier

Performance Measures

Accuracy, Precision, recall, F-Measure

Defective

Non- Defective

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1110

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Pseudo code of RF-ANN Algorithm

Figure 5 – Pseudo code of Proposed Algorithm

IV. RESULTS AND DISCUSSION

In this section, we design experiments to verify the effectiveness of RF-ANN. two research questions are

needed to be answered as follows

1. Do the machine learning methods improve the performance of defect prediction compared to

traditional methods based on static code metrics?

2. Compared with features generated by the classical unsupervised learning methods, do features

learned by the machine learning methods better represent syntax and semantics of programs?

 4.1 Experimental Datasets

 In order to evaluate the software quality we consider the following dataset for empirical study. In this

paper we are discuss four open datasets in NASA, PROMISE which are used for defect prediction based

quality assessment.

Define the ANN Architecture – number of input, hidden and output neurons.

Identify the fitness function which returns the error as difference of actual and

predicted output for the ANN.

Initialize a neuron of x particles with random weights of n dimension where n

dimension where n is the total number of weights that needs to be optimized for the

ANN

To generate c classifiers

For i=1 to c do

Randomly sample the training data D with replacement to produce Di

Create a root node, Ni containing Di

Call Build Tree (Ni)

End for

Build Tree (N):

If N Contains instances of only one class then

Return

else

Randomly select x% of the possible splitting features in N

Select the feature F with the highest information gain to split on

Create f child nodes and f possible values (F1……….Fn)

For i=1 to f do

Set the contents of Ni to Di, where Di is all instances in N that match

Fi

Call Build Tree (Ni)

End for

End IF

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1111

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

a) NASA Dataset- this dataset was collected by NASA metrics data program (Table 1). This dataset

contain 40 features may contain both Hallstead features and McCabe features.

Data Modules/

instances

Language Description

CM1

498

C

Space craft instrument

PC1

1109

C Earth orbiting satellite

KC1

2109

C++
Storage management for
ground data

KC2

522

C++ Science data processing

PC4

1458

C Flight software for earth
orbiting satellite

Table 1 –NASA Dataset

PROMISE Dataset – it is open source java projects which contain different metrics such as lines of code,

Response for class, Average method complexity, coupling between object classes etc. this metrics is used

for evaluation of software quality effectiveness. The fig 6 describes the metrics and attributes of the

PROMISE Data set

Figure 6 PROMISE Data set

4.2 Evaluation Metrics

The proposed system is evaluated several performance metrics such as true positive rate, false positive rate,

precision, recall, F-Measure and accuracy.

True positive rate: This measure is projected by the modules that are predicted positively as the results

specified at the end. The general for that is represented below equation.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1112

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

True positive rate = true positive rate / (true positive rate + false negative rate

False Positive rate: This measure is projected by the modules that are predicted incorrectly categorized ad

class x/ actual total of all classes, except x.

False positive rate = false positive rate / (true negative + true negative rate

Precision: precision gives positive predicate values and it process values or product quality or exactness.

Precision = True positive / (True Positive + False positive)

Recall: recall gives sensitive of problem and it process values or product quantity or completeness. This

measure is used to recognize total number of modules.

Recall = true positive / (true positive + false negative)

F-Measure: it is one of the quality measures of the modules. The general formula is represented as given

below

F-Measure = 2* Precision * recall / (precision + recall)

Accuracy: it is calculated as a number of instances predicted positively divided by total number of

instances

Accuracy = (true positive + true negative) / (P+N)

Table 1: classified Instances for CM1

Fig- 4 Performance Analysis for CM1 Data set

Table 2: Performance analysis for CM1

Method/ Performance

measures

Random Forest

Proposed

TP Rate 0.85 0.90

FP Rate 0.61 0.70

Precision 0.83 0.85

Recall 0.85 0.87

F-Measure 0.85 0.86

Accuracy 0.83 0.88

Method Approximately Classified

Instances

Inaccurately classified

instances

Total

instances

K-Means

425 73 498

Proposed 445 53 498

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1113

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig- 4 Performance Analysis for CM1 Data set

Table 3: classified Instances for PC1

Method

Approximately Classified

Instances

Inaccurately classified

instances

Total

instances

K-Means

965 144 1109

Proposed 1025 84 1109

Table 4: Performance analysis for PC1

Method/ Performance

measures

Random Forest

Proposed

TP Rate 0.92 0.96

FP Rate 0.65 0.69

Precision 0.88 0.90

Recall 0.89 0.90

F-Measure 0.89 0.91

Accuracy 0.89 0.92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random Forest Proposed

TP

FP

Precision

Recall

F-Measure

Accuracy

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1114

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig- 5 Performance Analysis for PC1 Data set

Table 5: classified Instances for KC1

Method

Approximately Classified

Instances

Inaccurately classified

instances

Total

instances

K-Means

965 144 1109

Proposed 1025 84 1109

Table 6: Performance analysis for KC1

Method/ Performance

measures

Random Forest

Proposed

TP Rate 0.92 0.96

FP Rate 0.65 0.69

Precision 0.88 0.90

Recall 0.89 0.90

F-Measure 0.89 0.91

Accuracy 0.89 0.92

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Proposed

TP

FP

Precision

Recall

F-Measure

Accuracy

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1115

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig- 6 Performance Analysis for KC1 Data set

Table 7: classified Instances for KC2

Method

Approximately Classified

Instances

Inaccurately classified

instances

Total

instances

K-Means

470 52 522

Proposed 501 21 522

Table 8: Performance analysis for KC2

Method/ Performance

measures

Random Forest

Proposed

TP Rate 0.90 0.94

FP Rate 0.63 0.67

Precision 0.80 0.90

Recall 0.87 0.90

F-Measure 0.88 0.91

Accuracy 0.86 0.94

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Proposed

TP

FP

Precision

Recall

F-Measure

Accuracy

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1116

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig- 7 Performance Analysis for KC2 Data set

Table 9: classified Instances for PC4

Method

Approximately Classified

Instances

Inaccurately classified

instances

Total

instances

K-Means

1280 178 1458

Proposed 1325 155 1458

Table 10: Performance analysis for PC4

Method/ Performance
measures

Random Forest

Proposed

TP Rate 0.91 0.95

FP Rate 0.70 0.75

Precision 0.89 0.91

Recall 0.87 0.93

F-Measure 0.85 0.95

Accuracy 0.90 0.98

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random Forest Proposed

TP

FP

Precision

Recall

F-Measure

Accuracy

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1117

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig- 8 Performance Analysis for PC4 Data set

V. CONCLUSION

 The main intention of this work is to analyze the performance of Random Forest classifier with

RF-ANN algorithm using different metrics of NASA datasets. Based on this performance analysis we

conclude that our proposed approach is suitable for small and large data set. The complexity factor is low

when compared to the existing approach. The future enhancement of this work is planned to measure

different similarity measures with Fuzzy logic approach based on Equivalence and Composite relations.

References

[1] A Kaur, et. al. (2009),‖ Early software fault prediction using real time defect data‖ , 2009 Second

International Conference on Machine Vision, pp 243-245

 [2] Rashid, Ekbal, Patnayak S, Bhattacherjee V. Estimation and evaluation of change in software quality

at a particular stage of software development. Indian Journal of Science and Technology. 2013;

6(10):5370-9.

 [3] Sathyaraj R, Prabu S. A survey-quality based object oriented software fault prediction. International

Journal of Engineering and Technology. 2013 Jun–Jul; 5(3): 2349-51.

[4] Catal C, Diri B. Investigating the effect of dataset size, metrics sets and feature selection techniques

on software fault prediction problem. Information Sciences. 2009; 170(8):1040-58.

 [5] Jiang Y, Cukic B, Ma Y. Techniques for evaluating fault prediction models. Empirical Software Eng.

2008; 13(5):561– 95.

 [6] Kaur S, Kumar D. Software fault prediction in object oriented software systems using density based

clustering approach. International Journal of Research in Engineering and Technology (IJRET). 2012

Mar; 1(2):111-7.

 [7] Moeyersoms J, Fortuny EJ, Dejaeger K, Baesens B. Comprehensible software fault and effort

prediction: A datamining approach. The Journal of Systems and Software. 2015 Feb; 100:80-90.

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest Proposed

TP

FP

Precision

Recall

F-Measure

Accuracy

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1118

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

[8] Boetticher G. Improving credibility of machine learner models in software engineering. Advanced

Machine Learner Applications in Software Engineering. Hershey, PA, USA: Idea Group Publishing;

2006.

[9] NASA Metrics Data Program. 2015 Apr 15.

Availablefrom:http://promise.site.uottawa.ca/SERepository/datase ts-page.html

 [10] Catal C, Sevim U, Diri D. Practical development of an Eclipsebased software fault prediction tool

using Naive Bayes algorithm. Expert Systems with Applications. 2011; 38(3):2347-53.

[11] Archana Singh et. al. International Journal of Computer Applications (0975 – 8887) Volume 67–

No.10, April 2013

[12] Aditi Sanyal, Balraj Singh, International Journal of Advanced Research in Computer Science and

Software Engineering, Volume 4, Issue 1, January 2014 ,ISSN: 2277 128X

 [13]Teknomo, Kardi, Similarity Measurement Available

fromhttp:\\people.revoledu.com\kardi\tutorial\Similarity\

[14] Bray J. R., Curtis J. T., 1957. An ordination of the upland forest of the southern Winsconsin.

Ecological Monographies, 27, 325-349.

[15] G.Gan,C. Ma,J.Wu,―Data clustering: theory,algorithms, and applications‖ , Society for Industrial

and Applied Mathematics, Philadelphia, 2007.

 [16] Jiang Y. et. al., ―Fault Prediction Using Early Lifecycle Data‖ . ISSRE 2007, the 18th IEEE

Symposium on Software Reliability Engineering, IEEE Computer Society, Sweden, pp. 237-246.

 [17] Seliya N., Khoshgoftaar T.M. (2007), ―Software quality with limited fault-proneness defect data: A

semi supervised learning perspective‖ , published online pp.327-324.

[18] Jiang Y, Cukic B, Menzies T,‖ Cost curve Evaluation of fault prediction models‖ , Proceedings of

the 2008 19th International Symposium on Software Reliability Engineering, 2008,pg 197- 206

 [19] Basili, V.R., Calidiera, G., Rombach, H.D.: Goal Question Metric Paradigm.In: Marciniak, J.J. (ed.):

Encyclopaedia of Software Engineering, pp. 528-532, Wiley, New York, 1994.

 [20] Catal, Cagatay, and Banu Diri. “A systematic review of software fault prediction studies.” Expert

systems with applications 36.4 (2009): 7346-7354.

[21] Dubelaar, Chris, Amrik Sohal, and Vedrana Savic. “Benefits, impediments and critical success

factors in B2C E-business adoption.” Technovation25.11 (2005): 1251-1262.

 [22] Graves, Todd L., et al. “Predicting fault incidence using software change history.” IEEE

Transactions on software engineering 26.7 (2000): 653-661. IEEE Standard Classification for Software

Anomalies,” in IEEE Std 1044-2009 (Revision of IEEE Std 1044- 1993) , vol., no., pp.1-23, Jan. 7 2010,

doi: 10.1109/IEEESTD. 2010. 5399061.

[23] Jiang, Yue, Bojan Cukic, and Tim Menzies. “Fault prediction using early lifecycle data.” The 18th

IEEE International Symposium on Software Reliability (ISSRE’07). IEEE, 2007. Sommerville, Ian.

“Integrated requirements engineering: A tutorial.” IEEE software 22.1 (2005): 16-23.

 [24] Todd L. Graves, Alan F. Karr, J.S. Marron, and Harvey Siy, “Predicting Fault Incidence Using

Software Change History” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 26(7), 653-661,

JULY 2000.

[25] Zelkowitz, M.V., Wallace, D.R.: Experimental models for validating technology. IEEE Computer,

(31)5, pp. 23-31, May 1998.

[26] Ma, Y., Guo, L. (2006), “A Statistical Framework for the Prediction of Fault-Proneness”, West

Virginia University, Morgantown.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 1105-1119

1119

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

[27] Thomas Zimmermann, Nachiappan Nagappan, “ Predicting Defects Using Social Network Analysis

on Dependency Graphs”, International Conference on Software Engineering (ICSE 2008), Leipzig,

Germany.

 [28] Audris Mockus, Nachiappan Nagappan and Trung T.Dinh-Trong “Test Coverage and Post-

Verification Defects: A Multiple Case Study,” ACM-IEEE Empirical Software Engineering and

Measurement Conference (ESEM), Orlando, FL, 2009

