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Abstract: 

This paper presents an approach to systematically design sliding mode control and manifold to 

stabilize nonlinear uncertain systems. It also deals with the fuzzy logic controller to increase the 

process of negative output converter. The objective is also accomplished to enlarge the inner bound of 

region of attraction for closed-loop dynamics. The method is proposed to design a control that 

guarantees both asymptotic and finite time stability given helped by (bilinear) sum of squares 

programming. The approach introduces an iterative algorithm to search over sliding mode manifold 

and Lyapunov function simultaneity. In the case of local stability it concludes also the subset of 

estimated region of attraction for reduced order sliding mode dynamics. The sliding mode manifold 

and the corresponding Lyapunov function are obtained if the iterative SOS optimization program has 

a solution. Results are demonstrated employing the method for several examples to show potential of 

the proposed technique.  

keywords: Sliding mode control, Finite time controller, Matched perturbation, Sum of 

squares, Lyapunov function, asymptotic, stability. 

1.Introduction 
Sliding mode control is one of the most effective control methodologies in dealing 

with a large class of uncertain systems. The controller consists of a high-frequency switching 

term that completely compensates matched perturbations (i.e. perturbations acting in the 

direction of control input). [1] This action takes place when state trajectory remains on the 

subspace of the state space called “sliding manifold”. Much work has been done in the 

literature to define several sliding mode manifold; the linear sliding manifold is investigated 

for linear and nonlinear system in [2] nonlinear sliding manifold known as a “terminal sliding 

mode” also have been introduced in [3] to obtain finite time stability [6]; the problem of 

singularity of this type of sliding manifold is alleviated and thus “nonsingular terminal sliding 

mode” have been defined [5]; in order to increase the speed of reaching fast terminal sliding 

manifold is presented .  

Several sliding mode manifold have been introduced by many articles[6], but 

selecting a sliding manifold, and determining its parameters is nevertheless an open problem 

in SMC theory, especially in the case that a complex nonlinear manifold is required. In some 

applications, linear sliding manifold fails to stabilize the sliding mode dynamics. Fuzzy logic 

can be conceptualized as a generalization of classical logic. Modernfuzzy logic was 

developed by LotfiZadeh in the mid-1960s to model thoseproblems in which imprecise data 

must be used or in which the rules of inferenceare formulated in a very general way making 

use of diffuse categories. In fuzzy logic, which is also sometimes called diffuse logic, there 

are notjust two alternatives but a whole continuum of truth values for logical propositions.A 

proposition A can have the truth value 0.4 and its complement Ac the truth value 0.5. 

According to the type of negation operator that is used,the two truth values must not be 

necessarily add up to 1. 

mailto:r.thamaraiselvi75@gmail.com


International Journal of Future Generation Communication and Networking 

Vol. 14, No. 1, (2021), pp. 824–831 
                                                                                                                                                                              

     

825 
ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2021 SERSC 

 
 

 This paper presents a systematic approach utilizing SOS technique, an approach 

based on Semi-definite programming to deal with polynomial systems to obtain sliding mode 

controller. The approach involves iterative search over sliding manifold and lyapunov 

function. The proposed method contains SOS optimization program that determine sliding 

manifold and controller to enlarge the inner bound of region of attraction for the sliding mode 

dynamics, in case of local stability. Since, pragmatic engineering applications requires finite 

time stability rather than asymptotic stability, we extend our results to these cases. We 

introduce a general framework to obtain sliding manifold that ensures finite time stability for 

sliding mode dynamics. This approach contains all types of terminal sliding mode which are 

proposed in several papers. 

 

2. Classical Sliding Mode Control 
Consider the following uncertain dynamical system 

˙x(t) = Ax(t)+Bu(t)+ f (t;x;u) 

y(t) = Cx(t) (1) 

wherex ∈IRn, u ∈IRmand y ∈IRpwith m ≤ p ≤ n represent the usual state, input and output. 

The exposition is deliberately formulated as an output feedback problem in order to describe 

the constraints imposed by the availability of limited state information but the analysis 

collapses to state feedback when C is chosen as the identity matrix. Assume that the nominal 

linear system (A;B;C) is known and that the input and output matrices B and C are both of 

full rank. The system nonlinearities and model uncertainties are represented by the unknown 

function f : IR+×IRn×IRm→IRn, which is assumed to satisfy the matching condition 

whereby 

f(t;x;u) = Bξ(t;x;u)                                                                    (2) 

The bounded function ξ : IR+×IRn×IRm→IRmsatisfiesfor some known function α : 

IR+×IRp→ IR+ and positive constant k1 <1. The intention is to develop a control law which 

induces an ideal sliding motion on the surfacefor some selected matrix F ∈IRm×p. A control 

law comprising linear and discontinuous feedback is sought 

∥ξ (t;x;u)∥< k1∥u∥+α(t;y)                                  (3) 

S = {x ∈IRn:FCx= 0} (4) 

u(t) = −Gy(t)−νy(5) 

whereG is a fixed gain matrix and the discontinuous vector is given by 

νy= {ρ(t;y) Fy(t)∥Fy(t)∥if Fy̸= 0 0 otherwise (6) 

 

whereρ(t;y) is some positive scalar function. The motivating example presented in 

Section I clearly demonstrates that two systems with different dynamics, the double 

integrator and the scaled pendulum, exhibit the same first order dynamics when in the sliding 

mode. It is thusintuitively obvious that the effective control action experienced by what are 

two different plants must be different. The so-called equivalent control represents this 

effective control action which is necessary to maintain the ideal sliding motionon S. The 

equivalent control action is not the control action applied to the plant but can be thought of as 

representing, on average, the effect of the applied discontinuous control. Fig 1 illustrates the 

phase control system in sliding mode.To explore the concept of the equivalent control more 

formally, consider equation (5) and suppose at time tsthe systems states lie on the surface S 

defined in (8). It is assumed an ideal sliding motion takes place so that FCx(t)= 0 and ˙ s(t) = 

FC˙ x(t) = 0 for all t ≥ ts. Substituting for ˙ x(t) 

 

x(t) = FCAx(t)+FCBu(t)+FC f (t;x;u) = 0                              (7) 

 



International Journal of Future Generation Communication and Networking 

Vol. 14, No. 1, (2021), pp. 824–831 
                                                                                                                                                                              

     

826 
ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2021 SERSC 

 
 

 
Fig. 1: Phase plane portrait showing the response of the double integrator (a1 = 0) and 

the scaled pendulum system (a1 = 1) with initial conditions y(0) = 1; ˙ y(0) = 0:1 

 

Figure 2 shows a plot of 0:1sin(t) in relation tothe smooth control signal applied to the 

plant. It is seen that the applied (smooth) control signal replicates very closely the applied 

perturbation, even though the control signal is not constructed with a priori knowledge of the 

perturbation. This property has resulted in great interest in the use of sliding mode 

approaches for condition monitoring and faultdetection . A key feature of the sliding mode 

control approach is the ability to specify desired plant dynamics by choice of the switching 

function. Whilst sliding s = FCx= 0 for all t >tsand it follows that exactly m of the states can 

be expressed in terms of the remaining n−m. It can be shown that the matrix (13) defining the 

equivalent system dynamics has at most n−m nonzero eigenvalues and these are the 

poles of the reduced order dynamics in the sliding mode. 

 
 

Fig. 2: The relationship between the smooth control signal applied and the external 

perturbation once the sliding mode is reached 

 

 

3. The fuzzy set concept: 
Fuzzy logic can be used as an interpretation model for the properties ofneural 

networks, as well as for giving a more precise description of their performance.[7,8]We will 

show that fuzzy operators can be conceived as generalized output functions of computing 

units. Fuzzy logic can also be used to specify networks directly without having to apply a 

learning algorithm. An expert in a certain field can sometimes produce a simple set of control 

rules for a dynamical system with less effort than the work involved in training a neural 
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network. A classic example proposed by Zadeh to the neural network community is 

developing a system to park a car. It is straightforward to formulate a set of fuzzy rules for 

this task, but it is not immediately obvious how to build a network to do the same nor how to 

train it. Fuzzy logic is now being used in many products of industrial and consumer 

electronics for whicha good control system is sufficient and where the question of optimal 

control does not necessarily arises.[9] 

The difference between crisp (i.e., classical) and fuzzy sets is established 

byintroducing a membership function. Consider a finite set X = {x1, x2, . . . ,xn}which will be 

considered the universal set in what follows. The subset A of X consisting of the single 

element x1 can be described by the n-dimensional membership vector Z(A) = (1, 0, 0, . . . , 0), 

where the convention has been adopted that a 1 at the i-th position indicates that xi belongs to 

A. The setB composed of the elements x1 and xnis described by the vector Z(B) = (1, 0, 0, ..., 

1). Any other crisp subset of X can be represented in the same way by an n-dimensional 

binary vector. But what happens if we lift the restriction to binary vectors? In that case we 

can define the fuzzy set C with the following vector description: 

Z(C) = (0.5, 0, 0, ...,0)  (8) 

 

In classical set theory such a set cannot be defined. An element belongs to a subset or 

it does not. In the theory of fuzzy sets we make a generalization and allow descriptions of this 

type. In our example the element x1 belongs to the set C only to some extent. 

  

Figure 3 shows three examples of a membership function in the interval0 to 70 years. 

The three functions define the degree of membership of any given age in the sets of young, 

adult, and old ages.[10] If someone is 20 years old, for example, his degree of membership in 

the set of young persons is 1.0, in the set of adults 0.35, and in the set of old persons 0.0. If 

someone is 50 years old the degrees of membership are 0.0, 1.0, 0.3 in the respective sets. 

Figure 3 illustrates the Membership functions for the concepts young, mature and old 

 

 
Fig. 3.Membership functions for the concepts young, mature and old 

 

4. Canonical form for design: 
This section will consider synthesis of a sliding mode control for the system in . It is assumed 

that p ≥ mand rank(CB) = m where the rank restriction is required for existence of a unique 

equivalent control. The first problem which must be considered is how to choose F so that the 

associated sliding motion is stable. A control law will then be defined to guarantee the 

existence of a sliding motion [11]. 
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4.1. Switching Function Design 

In view of the fact that the outputs will be considered, it is first convenient to introduce a 

coordinate transformation to make the last p states of the system the outputs. Define 

Tc= [ NTcC]                                                                                                         (9) 

whereNc∈IRn×(n−p) and its columns span the null space of C. The coordinate 

transformation x 7→ Tcxis nonsingular by construction and, as a result, in the new coordinate 

system 

C = [ 0Ip]                                                                                                             (10) 

From this starting point a special case of the so-called regular form defined for the state 

feedback case [14] will be established. Suppose 

B = [ Bc1Bc2] ↕n−p↕p(11) 

Then CB = Bc2 and so by assumption rank(Bc2) = m. Hence the left pseudo-inverse  

B†c2 = (BTc2Bc2)−1BTc(12) 

2 is well defined and there exists an orthogonal matrix T ∈IRp×psuch that 

TTBc2 = [ 0B2 ] (13) 

whereB2 ∈IRm×mis nonsingular. Consequently, the coordinate transformation x 7→ 

Tbxwhere Tb =[In−p −Bc1B†c2 0 TT]                                                                         (14) 

isnonsingular and the triple (A;B;C) is in the form A = [ A11 A12 A21 A22 ]   B = [ 0 B2] C =[ 

0 T ] (15) 

whereA11 ∈IR(n−m)×(n−m) and the remaining sub-blocks in the system matrix are 

partitioned accordingly. Let p−m ↔ m↔[F1 F2] = FT 

whereT is the matrix from equation. As a result FC = [ F1C1F2 ]                           (16) 

whereC1 Δ= [ 0(p−m)×(n−p) I(p−m)]   (17) 

Therefore FCB=F2B2 and the square matrix F2 is nonsingular. By assumption the 

uncertainty is matched and thereforethe sliding motion is independent of the uncertainty. 

 

5. Geometric representation of fuzzy sets: 
 

Bart Kosko introduced a very useful graphical representation of fuzzy sets. Figure 

11.2 shows an example in which the universal set consists only of the two elements x1 and 

x2. Crisp sets are a special case of fuzzy sets, since the range of the functionis restricted to the 

values 0 and 1. Operations defined over crisp sets, such as union or intersection, can be 

generalized to cover also fuzzy sets. [12]Assume as an example that X = {x1, x2, x3}. The 

classical subsets A = {x1, x2} and B = {x2, x3} can be represented as A = 1/x1 + 1/x2 + 0/x3 B 

= 0/x1 + 1/x2 + 1/x3.The union of A and B is computed by taking for each element xi the 

maximumof its membership in both sets, that is: A ∪B = 1/x1 + 1/x2 + 1/x3. The fuzzy union 

of two fuzzy sets can be computed in the same way. The union of the two fuzzy sets C = 

0.5/x1 + 0.6/x2 + 0.3/x3 D = 0.7/x1 + 0.2/x2 + 0.8/x3 is given by C ∪D = 0.7/x1 + 0.6/x2 + 

0.8/x3 

The fuzzy intersection of two sets A and B can be defined in a similar way, but instead 

of taking the maximum we compute the minimum of the membership of each element xi to A 

and B. The maximum or minimum of the membership values are just one pair of possible 

definitions of the union and intersection operations for fuzzy sets. As we show later on, there 

are other alternative definitions[13]. The Geometric visualization of fuzzy sets was shown in 

the figure 4. 
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Fig. 4 Geometric visualization of fuzzy sets 

 

6. Sliding Mode Equations: 
 

So far the arguments in favor of employing sliding modes in control systems have 

been discussed at the qualitative level. To justify them strictly, the mathematical methods 

should be developed for describing this motion in the intersection of discontinuitysurfaces 

and deriving the conditions for sliding mode to exist.[14]The first problem means deriving 

differential equations of sliding mode. Note that for our second-order example the equation of 

the switching line x+ cx = 0 was interpreted as the motion equation. But even for a time 

invariant second-order relay system. 1 111 12 2 1 2 21 1 22 2 2 , 1 2; , ij, i , are x a x a x bux 

a x a x b u uMsign s s cx x M a b c const= + += + + =− = +. the problem does not look trivial 

since in sliding mode s = 0 is not a motion equation. Ts x = s x = s x sm x. 

The first problem arises due to discontinuities in control, since the relevant motion 

equations do not satisfy the conventional theorems on existence-uniqueness of solutions. In 

situations when conventional methods are not applicable, the usual approach is to employ 

regularization or replacing the initial problem by a closely similar one, for which familiar 

methods can be used. In particular, taking into account delay or hysteresis of a switching 

element, small time constants in an ideal model, replacing a discontinuous function by a 

continuous approximation are examples of regularization since discontinuity points (if they 

exist) are isolated. The universal approach to regularization consists of introducing a 

boundary layer s < Δ, Δ − constaround the manifold s = 0, where an ideal discontinuous 

control is replaced by a real one such that the state trajectories are not confined to this 

manifold but run arbitrarily inside the layer The only assumption for this motion is that the 

solution exists in the conventional sense. Fig.5 illustrates the boundary layer 

 

 
Figure 5. Boundary layer 
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7. Neuro-fuzzy systems: 
Neuro-fuzzy systems were introduced in the thesis of Jyh-Shing Roger Jang in 1992 

under the name “Adaptative-Networks-based Fuzzy Inference Systems" (ANFIS) . They use 

the formalism of neural networks by expressing the structure of a fuzzy system in the form of 

a multilayer perceptron. A multilayer perceptron (MLP) is a neural network without cycle. 

[15]The input layer is given a vector network and the network returns a result vector in the 

output layer.[16-18]Between these two layers, the elements of the input vector are weighted 

by the weights of the connections and mixed in the hidden neurons located in the hidden 

layer.[19] Figure 6 and 7illustrates an example of a feedforward neural network and structure 

of fuzzy neural network. 

 

 

 
 

 

Figure 6: Example of a feed forward neural network 

 
Figure 7: Structure of a neuro-fuzzy system 

 

8. Conclusion: 
This paper presents an approach to systematically design sliding mode control and manifold 

to stabilize nonlinear uncertain systems. It also deals with the fuzzy logic controller to 

increase the process of negative output converter. The objective is also accomplished to 

enlarge the inner bound of region of attraction for closed-loop dynamics. The method is 

proposed to design a control that guarantees both asymptotic and finite time stability given 

helped by (bilinear) sum of squares programming. The approach introduces an iterative 

algorithm to search over sliding mode manifold and Lyapunov function simultaneity. In the 

case of local stability it concludes also the subset of estimated region of attraction for reduced 

order sliding mode dynamics. The sliding mode manifold and the corresponding Lyapunov 

function are obtained if the iterative SOS optimization program has a solution. Results are 



International Journal of Future Generation Communication and Networking 

Vol. 14, No. 1, (2021), pp. 824–831 
                                                                                                                                                                              

     

831 
ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2021 SERSC 

 
 

demonstrated employing the method for several examples to show potential of the proposed 

technique. 
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