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Abstract 

 
This article is about the recent complications faced by the people and government of the entire world. 

Thecomplication is all about an infectious disease caused by Anewlydiscoveredviruscalledcoronavirus 

(covid- 19). This has caused heavy damage to people in the society and also to the government. It took 

over lakhsofpeople‘slivesanddreams.Insuchcasesthegovernmentneedstotakeprecaution.Theyshould be 

able to predict the future using the statistical report. Here in this article we have used a 

VectorAutoRegression algorithm for time series data to predict the future which shows how many 

people ofIndia are going to be affected, recovered and etc in the next five days. We have done this 

using the statistical report of India. We have proved this with good accuracy. This article is highly 

useful to predict the future and using this government can take precaution before the outbreak of an 

pandemic may cause damage or loss to the society. 
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1.Introduction 

First of all let us know what Vector Auto Regression is. Vector Auto Regression (VAR) 

which is mentioned as VAR in many cases is an multivariate forecasting algorithm and is a 

scholastic process model used to capture the linear among the multiple time series variables. 

We call it as autoregressive because each variable is represented as a consequence of a past 

value,that is the predictors are time delayed values of the series. This is used when one 

wants to predict multiple series variables. This was developed by Sims in the year 1980. 

This algorithm is used in many 

industry,supply,economic,constructions,consumption,savingandetc.So,ifweuseanautoregress

ive algorithm in cases of Covid-19 it will be very appropriate. Here in this article we have 

collected the data of covid-19 in India from the website kaggle.com. So now by 

implementing the algorithm in the collected data we will reach an accuracy which may help 

us to predict the future, that is we are going to predict the number of fatality, recovery, and 

also the new cases to be affected due toCovid-19. 

2.VectorautoRegression: 

Vector autoregression(VAR) model is an augmentation of univariateautoregression model 

to multiple time series data. Here all the variables are dependent on itself, that is they are 

treated as endogenous. This is the most successful, flexible and easy model used for the 

analysis of multivariate time series data. It often provides superior prediction to those from 

univariate time series. In addition to data illustration and forecasting, this model is also 

used for analysis and structural intervention. The struc- ture of this model allows us to test 

restriction around multiple equations and it also tests whether the coefficients on all 

regression of the lagpare zero. This corresponds to testing the null value in the lag order. 
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Before adding the variables to the VAR model we should recheck it carefully because 

adding unrelatedvariablestothe VAR 

modelreducesaccuracybyincreasingtheestimationerrors.Thetypical AR model equation is 

givenbelow 

Table 1. Data Format 
Date Confirmed Deaths Recovered 

2020-04-21 20080 645 3975 

2020-04-22 21370 681 4370 

2020-04-23 23077 721 5012 

2020-04-24 24530 780 5498 

2020-04-25 26283 825 5939 

 

 
 

Figure 1. Graphical Representation of Covid Data 
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3.Experimentalresults: 

Thissectionisintendedtodiscuss the resultswhichisgeneratedusingthemethodsgiveninsection4.1 

and4.2. 

3.1 Granger’s causality test: 

This is a statistical hypothesis test in deciding whether one time series is useful in forecasting the 

other. This is a technique that seeks the direction of causality between the import and export files. 

According to the Granger causality test, if a signal in X1―Granger-causes‖ (g-causes) signals 

X2then 

thepastvaluesofX1shouldcontaininformationthathelpstopredictX2.Thistechniquewasdeveloped by 

Granger in 1960. Its formula is based on the linear regression model of scholarly process. The 

illustration of formula is given below,Consider a bivariate linear autoregressive models whose 

variables are X1 and X2 : 

 

p 
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Here, 

a. p is the maximum number of lagged observation included in themodel 

b. Matrix A contains the coefficients of themodel 

c. X1and X2arevariables 

d. E1and E2areresiduals 

WhereifthevarianceofE1isreducedbytheinsertionoftheX2termsinthefirstequationthenitis said 

that X2g-causes X1. This can also be said as X2g-causes X1if the coefficients in matrix A12are 

different fromzero. 

We have tested the Granger‘s causality for the data collected by us and the resulted output is 

given in Table 2 

Table 2. Granger’s Casuality Matrix 

Confirmed_x Deaths_x

 Recovered_xConfirmed_y 1.0 0.0

 0.0 

Deaths_y 0.0 1.0 0.0 

Recovered_y 0.0 0.0 1.0  
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3.2 Cointegration Test: 

Cointegration test is a statistical property of a time series variable. To know more about 

cointegration first let us know what is ‗order of integration‘. The order of integration means the 

differentiation done to convert the non-stationary time series to stationary. Now, in multiple series 

there exists a linear combination of multiple series that has order of integration less than that of 

individual series, and 

hencethecollectionofsuchseriesiscalledcointegration.Whenmultivariateseriesiscointegratedthat 

means they will have a long runsignificantly. 

Now by implementing the formula of cointegration by Johansen in the data collected we will 

get the result as shown in Table 3. 

Table 3.Johansen cointegration test  

Name  TeststatC(95%)SignifConfirmed 

129.4 24.2761 True 

Deaths 52.74 12.3212 True 

Recovered 9.21 4.1296 True  

 

3.3 Splitting The Series Into Test And Train Data 

Toreducethecomplicationtheseriesissplitintotrainandtestdata.Herewehavesplittedthedatafrom 2020-

01-22 to 2020-04-20 as train data and data from 2020-04-21 to 2020-04-25 as test data.After 

splitting the series into train and test data is fitted and the algorithm is implemented. Here we have 

dividedtheseriesintotrainandtest.Wehavegot90trainingdataand5testingdata.Andthereforethe shape 

of the train and test data are (90, 3) and (5,3). 

 

3.4 Test For Stationary To Make The Series Stationary: 

The time series we have collected should be stationary in case of the VAR model as it is going to 

be forecasted. It is complicated to check all the series according to stationarity. So, to reduce this 

com- plication we have this technique of test for stationary. Now to check stationarity without 

complication we have used a popular method namely Augmented Dickey-Fuller Test(ADF), 

these methods are also called unit root tests or suite of tests. 

If a series is found non-stationary we make use of the suite of tests. ADF tests the null value 

inthe time series. This is the large and complicated set of time series models. The ADF test 

statistic usesthenegativenumber. 

Formula of ADF test is given in Equation 4 

Oyt= α + βt + γyt−1 + δ1Oyt−1 + · · · + δp−1Oyt−p+1 + εt  (3) 

 

Here, 

a. y(t) =variable 

b. y(t-1) = lag1 of timeservice 

c. ∆y(t-1) = first difference of the time series at time(t-1) 

d. β = coefficient of the timetrend 

e. α =constant 

f. p = lag order of autoregressiveprocess 
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g. Υ = nullhypothesis 

Implementing ADF test in the collected data we will get the result shown in Table 4, Table 5, 

Table6 respectively. 

 

Table 4.Augmented Dickey-Fuller Test forConfirmed. 

 

Augmented Dickey-Fuller Test on "Confirmed" 

Null Hypothesis: Data has unit root. Non-Stationary. 

Significance Level = 0.05 

Test Statistic = 2.7015 

No. Lags Chosen = 11 

Critical value 1% =-3.517 

Critical value 5% =-2.899 

Critical value 10% = -2.587 

=> P-Value = 0.9991. Weak evidence to reject the Null Hypothesis. 

=> Series is Non-Stationary. 

 

Table 5. Augmented Dickey-Fuller Test for Death  

Augmented Dickey-Fuller Test on "Deaths" 

Null Hypothesis: Data has unit root. Non-Stationary. 

Significance Level = 0.05 

Test Statistic = -2.5725 

No. Lags Chosen = 12 

Critical value 1% = -3.518 

Critical value 5% = -2.9 

Critical value 10% = -2.587 

=> P-Value = 0.0988. Weak evidence to reject the Null Hypothesis. 

=> Series is Non-Stationary. 

 

 

Table 6. Augmented Dickey-Fuller Test forRecovered  

Augmented Dickey-Fuller Test on "Recovered" 

Null Hypothesis: Data has unit root. Non-Stationary. 

Significance Level = 0.05 

Test Statistic = 8.2093 

No. Lags Chosen = 9 

Critical value 1% =-3.515 

Critical value 5% =-2.898 

Critical value 10% = -2.586 

=> P-Value = 1.0. Weak evidence to reject the Null Hypothesis. 

=> Series is Non-Stationary. 

 

So this shows us that none of our time series is stationary so to convert these non-stationary series to 

stationary we need to differentiate the series. 

On differentiating the series for the first time we got all the output as non-stationary so now 

we havetwochoiceseithertopursuewith1stdifferenceorweneedtodifferentiatetheseriesoneormore 

times until the series may get converted tostationary.On differentiating the series for the fifth time 

we will get the following output, 
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Table 7. Augmented Dickey-Fuller Test on"Confirmed" after fifth difference  

Augmented Dickey-Fuller Test on "Confirmed" 

Null Hypothesis: Data has unit root. Non-Stationary. 

Significance Level = 0.05 

Test Statistic = -4.3026 

No. Lags Chosen = 12 

Critical value 1% =-3.525 

Critical value 5% =-2.903 

Critical value 10% = -2.589 

=> P-Value = 0.0004. Rejecting Null Hypothesis 

=> Series is Stationary. 

 

Table 8. Augmented Dickey-Fuller Test on "Death"after fifth difference  

Augmented Dickey-Fuller Test on "Deaths" 

Null Hypothesis: Data has unit root. Non-Stationary. 

Significance Level = 0.05 

Test Statistic = -10.1675 

No. Lags Chosen = 8 

Critical value 1% = -3.519 

Critical value 5% = -2.9 

Critical value 10% = -2.587 

=> P-Value = 0.0. Rejecting Null Hypothesis 

=> Series is Stationary. 

 

Table 9. Augmented Dickey-Fuller Test on "Recovered"after fifth difference  

Augmented Dickey-Fuller Test on "Recovered" 

Null Hypothesis: Data has unit root. Non-Stationary. 

Significance Level = 0.05 

Test Statistic = -10.6075 

No. Lags Chosen = 12 

Critical value 1% =-3.521 

Critical value 5% =-2.903 

Critical value 10% = -2.589 

=> P-Value = 0.0. Rejecting Null Hypothesis 

=> Series is Stationary. 

 

And the above stated output is the resultant output of the series in differentiating it for the fifth time. 

3.5 Selection Of The Order [P] VarModel : 

Now, we need to select the right order of the VAR model. We fit increasing orders of VAR models 

and pick any one order which gives a model with least Akaike information criterion (AIC). We can 

also check other best fitting comparison estimations and they are Bayesian Information Criterion 

(BIC),Final Prediction Error (FPE) and Hannan-Quinn Information Criterion (HQIC). 

Given below is the resultant output we got by fitting the correct order, 

 

 

Table 10. Best Fitting Comparison Estimations 
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Σ 
e 

 

AIC BIC FPE HQIC 

0 22.03 22.12 3.7e+09 22.07 

1 21.19 21.55 1.5e+09 21.33 

2 20.37 21.00 7.0e+08 20.62 

3 20.14 21.04 5.1e+08 20.50 

4 19.48 20.65 2.9e+08 19.95 

5 18.21 19.65 8.2e+07 18.78 

6 15.83 17.54 7.6e+06 16.51 

7 13.61 15.59 8.4e+05 14.40 

8 12.59 14.84 3.1e+05 13.49 

9 11.56 14.08 1.1e+05 12.57  

 

4.Check For Serial Correlation Of Residual [Errors] Using Durbin Watson 

Statistic: 

Thisisusedtocheckifthereareanyleftoverpatternsintheerrors.Thatmeanstherearesomepatterns that are 

still left to be explained by the model. In such cases, we have three choices that can be done either 

we can increase the order of the model or we can induce more predictors or we can look for 

differentalgorithmstomodelthetimeseries.TocheckcorrelationoferrorswecanuseDurbinWatson 

Statistics. 

Formula we use to check the correlation is mentioned below, 

 

 

DW = 
T 

t=

2 

((et− et−1)
2) 

T 2 

t=1  t 

The resultant value from the implemented formula may vary between 0 to 4.   If the value is closer   

to 0 that means it contains positive correlation, if the value is closer to 4 that means it has negative 

correlation and if the value is closer to 2 that means there is no serial correlation in theseries. 

Now let us implement the formula in the data we have collected, 

Confirmed : 2.18 

Deaths : 2.17 

Recovered : 2.34 

TheabovementionedvaluesaretheresultantoutputwegotfromimplementingtheformulaDurbin 

Watson Statistic. So, now the output value is closer to 2 and so we may not have any significant 

correlation in the multivariate time series data we havecollected. 

4.1 Forecasting Var Model: 

Inordertoforecast,themodelexpectsthelagordernumberofobservationsfromthepastdata.Thisisbecauset

hemodellagsvarioustimeseriesinthedataset.So,weneedtoprovidemanypreviousvaluesas indicated by 

the lag order used by themodel.The fitted lag order of the collected data is given below,  

array([ [ -1388., -175., -1244.], 

[ 2024., 128., 1232.], 

[-1652., -34., -930.], 

[-1008., -18., 631.] ]) 

The above described data has been forecasted but it is on the scale of training data used by the 

model. To bring it back to its original form we need to de-differentiate it as many times we have 

Σ 
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differentiatedtheoriginalinputdata.Herewedifferentiatedtheoriginalinputdata5times,sonowwe 

need to de-differentiate this resulted forecasted data 5times. 

 

4.2 Inverting The Transformation To Get The Real Forecast: 

Now, let us de-differentiate the forecasted data to get the original data. The de-differentiation of 

the forecasted data is given below, 

Table 11.Forecasting Covid19 dataset 

 

Date Confirmedforecast Deathsforecast Recoveredforecast 

2020-04-21 20246 635 3685 

2020-04-22 21232 674 4249 

2020-04-23 22873 708 4695 

2020-04-24 24451 762 5303 

2020-04-25 26299 799 5744 

And finally the original input data is resulted by de-differentiation which is mentioned above. 

 

 
 

Figure 2. Plotting ForecastVs Actual
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5. Evaluating forecast: 

To evaluate the forecast we need to compute a comprehensive set of metrics. The metric we have  

usedheretoevaluatetheaccuracyisMAE(MeanAbsoluteError).MAEisthesimplesterrormetricin 

regression that is understandable. On evaluating the forecast in the collected data according to 

MAE we will get the followingoutput, 

Forecast Accuracy of: Confirmed Cases mae : 120.5973 

Forecast Accuracy of: Deaths mae : 14.2689 

Forecast Accuracy of: Recovered mae : 223.0366 

6.Conclusion: 

In this article we have studied about the efficiency vector auto regression from its scratch to the 

end detail. Using the collected data of covid-19 pandemic in India we have evaluated the 

successfulmodel using Vector Auto Regression algorithm with good accuracy. So, now we can 

predict the future cases, 

deathsandrecoveryusingthismodelwhichhelpsgovernmenttotakenecessaryactionsin precautionary. 
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