
International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

435 
 

An Improved Framework for Bitmap Indexes and their Use in 

Data Warehouse Optimization 

Dr. J. Preetha, Dr. S. Lavanya, Dr. T. Kowsalya, Dr. C. Selvi, M. Ganthimathi 
 

1,2Department of Computer Science and Engineering  

3,4Department of Electronics and Communication Engineering 
5Department of Computer Science and Engineering 

Muthayammal Engineering College(Autonomous),Rasipuram,Tamilnadu 

 

Abstract 

Compression technique is basically used to compress the size of table or reduce the storage area. 

Oracle already gives this feature for the table compression as well as for the index compression. when 

index is created on particular column of a table then it contain some space, which require some stor-

age or disk space by this technique we can save our disk space because in industry the company have 

to purchase the disk space  according to the size of the their data and pay according to their disk 

space. To utilize this disk space for useful records data rather than wasting it. In this paper used the 

data pump utility for the compression of Bitmap index and table. Data pump utility performed for the 

logical backups in database.in this paper implemented data pump for compression, to release the 

space and change the index pointing location. It will not release the space even after deletion of rec-

ords. This is of special interest for the case to compress the bitmap index and table space along with 

the’S (Data Manipulation Language). 

Keywords: Bitmap Index, Compression, Data Pump, DML, DML, Query Performance. 

1 Introduction 

Index is the most suitable technique for fast query processing. Here bitmap index is most efficient 

index in oracle database. This topic basically includes the compression of index. When index is creat-

ed in oracle database then it occupies the disk space as like other objects in oracle database. Here, the 

purpose behind compression technique to use data pump and make the index size more efficient. 

Compression technique is basically used to reduce the size of objects [1]. This technique is used in 

various fields to save the disk space, compression doesn’t reduce the efficiency of object it only re-

duce the size of objects. 

Data pump technique is eligible to reduce all the database objects like table and index. Normally data 

pump is used in oracle database to take the logical backup of various objects like tables, index, sche-

ma, view [2]. But here data pump is using to compress the size of index for this process user will in-

clude the import export facility of object. Firstly create the table in the database, insert millions of 

records and then create index on a particular object [3]. Now, calculate the size of index and size of 

table in MB, this is the size before the compression. Now, delete some millions of records from the 

table then commit the statement for permanent changes in database. Now, check the size of index and 

table. We configure that Index and table is still occupying same space as before, because index is still 

pointing to same location and those segment which had been occupied by the data is free but pointing 

of index location is same. So release the space which is occupied by the free segment. Perform logical 

backup or export the object thorough data pump and now space would be release by free segments. 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

436 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

Now, import the table then find the space occupied by the index or table that would be compressed up 

to twenty percent according to size of index or table. Now, index would be pointing to new location 

and the free segment would release the space[4]. Bitmap index is created for the low cardinality that 

means where the number of distinct values is minimum. So this technique of compression will also 

apply in the bitmap index. 

 

1.1 Compression 

In the present situation the whole world is dependent on the internet, large amount of data are required 

to run the various organizations successfully. Bulk amount of information are maintaining over a pe-

riod of time and there is rich content loaded on the internet. Day by day the data is increasing and the 

growth of the data is almost two times to four times in every years [5]. This sudden increment of data 

is very challenging task for the administrator. Client has to purchase the space for their data. For man-

age this problem oracle introduces compression technique. Technologies help the administrator to 

manage the large amount of data and it provide the resources to the administrator.   

This compression technique is useful for almost all objects; basically it is used for OLTP table space 

where the maximum number of queries and the size of the query is small [6]. In OLTP (online trans-

action processing) the minimum size of buffers are allocated on the ram suppose if size of data buffer 

cache is 4GB and db_block_size=2k then 4*1024*1024/2=2097152 buffer would be allocate in RAM. 

Using compression technique we can compress the RMAN backups, relational data (tables), unstruc-

tured data (file). 

 
Fig. 1. Compression Technique of Data 

2 Literature Review 

The idea of object compression was proposed in 9i database. Firstly, in 9i database oracle introduced 

the table compression [7] feature for high amount of data. Due to the bulk amount of data, there was a 

requirement of more disk space. Then compression method was successfully implemented to save the 

disk space. But in 9i database, the compression was possible on the loaded data in database. We can-

not implement this technique or compress data along with DML’S applied in database. This features 

only enabled the compression technique only on the stored data.  

Oracle basically develops this technique for the following purpose: 

• Improve the query performance on bulk amount of data. 

• To propose minimum input /output operation 

• For compressed data, buffer cache would be more efficient. 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

437 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

• Efficient compression algorithm for relational database management. 

• Compression is performed on the table or partition. 

• Data compression is possible on block level. 

 

2.1 Compression Behavior 

For selection of some records in oracle database, the simplest way evaluating a query is to scan all 

data records to specific condition. Full table scan sometimes affect the query performance [8,9]. A 

typical query condition to calculate the number of distinct values in particular column which require 

full table scan. Indexes accelerate the searching procedure such as variation with Bitmap, Kd-Trees or 

B-Trees and Bitmap Index on Data Warehouse environment. In database as number of column in-

creases, the number of index possible combination also increases. Bitmap index is widely used in the 

data warehouse environment [10]. Data pump allows efficient compression [11] of bitmap index after 

deletion. In this chapter we discuss bitmap index on large table which contains at least millions of 

records. When user applies bulk deletion from the database and even after fire commit .the index is 

still pointing to before location. Data pump is utility which basically import export the database ob-

ject, in industrial application which supports huge amount of data and allow the DML’s very frequent-

ly [12]. Large table in database contains the space in Giga bytes. Even the bulk deletion from table, 

Index pointing location doesn’t change due to the by default behavior of oracle and table and index 

object still occupying the same space as before deletion. For industry its drawback is that object is still 

occupying space after deletion. Our objective behind this study is to release the disk space after dele-

tion of records from table. 

Bitmap index is the most widespread methodology for fast query handling and is used primarily in 

data warehouses. We also checked current techniques of data compression and then use the bitmap 

index technique by data pump. The expert supposition that bitmap index is more effective than stand-

ard index. Any bitmap index is created on high level of cardinality or low level of cardinality. We 

suggest utility for freeing the storage space on database after deletion of documents. Bitmap index 

also points to the location of records even after deletion of records from chart. 

 

2.2 Bitmap Index Structure 

Bitmap index [14] has most efficient structure for single dimensional queries as well as multi-

dimensional queries. Logical operations are evaluated with queries, where Individual bitmap value is 

assigned to each data value. Computer hardware also supports bitmap logical operations. Normally, 

these operations performed on the bit values which refer data. Here bitmap index with three different 

values represents the three unique column value.  

 
Fig. 2. Representation of Bitmaps of Unique Attribute Value 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

438 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

3 Methodology 

3.1 Bitmap Index 

A data structure which is used to access large database efficiently is known as bitmap index. The main 

concept of index is to allot pointers for every row of table [15]. In bitmap index the particular row-id 

is allotted for every row, in bitmap index the row-id sequentially started from 1.if value is set to 1 then 

row with correspond row-id contains the key value. Otherwise it is set to zero. Bitmap index are de-

signed for the efficient query processing, queries are processed using bitwise operations like AND, 

Union, OR operation. For each operation required two same size key value and operator is applied on 

between them.  

This process is used to fast the query like-“sql>select count(*) from the hybrid;” 

  

 
Fig. 3. The Fast Query Execution for the Select Count (*) Query 

In this select…count (*) query the query processing speed is fast due to two same size of bitmap val-

ue. This process fast execute only those query in which data is not return from the  database only 

counting of database, how many records in the table and how many records with particular identity. 

Where….or, and….clause. 

3.2 Select Query Execution 

Sql>select count (*) from the hybrid 

Where salary=12000; 

For example, to find how many male cricketers, who got the man of the match. 

 

 

Table 1. For Bitmap (Man of the Match1)=”yes” AND Bitmap (Gender=”Male”) 

 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

439 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

 
To achieve the decision based tree on the basis of the above example for how many cricketers who are 

“male” and who won the “man of the match”. In this example the bitmap is used to improve the se-

lect…count (*) query by applying the AND operation between the two bitmap bits. Basically bitwise 

AND operation is used by the sql engine. In the above example obtain those records that are in cate-

gory of “male” and got “man of the match”. For the decision node ID3 algorithm would be applied. 

Here firstly obtain the current node and successive node and apply the AND operation between them.  

 

For obtaining the successful result at the end we count the number of “1” in the final resulting bitmap. 

Here current node of bitmap represent the value either ‘0’ or ‘1’.and successive node of bitmap also 

represents the value either ‘0’ or ‘1’. Then successively bitwise operation applied. Current bitmap 

node ‘0’ the person didn’t won the man of the match and ‘1’ means the person won the man of the 

match. Successive node of bitmap ‘0’ means person is female or successive node of bitmap ‘1’ means 

the person is male.  

 

For the desired output the result after applying bitwise AND operation should be ‘1’, which represents 

the cricketer who are male and won the man of the match. To elaborate this feature of bitmap index 

with suitable block diagram where different kind of variety of cricket and different bat style are there 

to execute how the option are selected on the basis of bitmap index design equation to show decision 

based tree [16].  

 

To show our approach, let’s take the example of cricket database. here the description of the cricket-

ers with the different attributes Game={International,Ranzi,T-20}, Bat={Left handed, Right hand-

ed},Gender={Male, Female},Man of the Match={‘yes’, ’no’}.here on the basis of following attribute 

we generate the decision based tree. 

Table: 2. Bitmap Index for Cricket Database 

 
 

Here we can see the different types of game format as International, Ranzi, T-20, IPL. Bat like left 

handed or right handed which defines that which types of batsman basically play the types of game 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

440 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

[17]. Here there are two types of player male cricket player or female cricket player at last through the 

binary number interpretation we will decide whose player have won the man of the tournament in 

which type of cricket format here ‘1’ indicate the condition is satisfying and ‘0’ indicate the condition 

is collapsing. Row-id from 1 to 7 denotes the seven player whose id from 1 to 7, whose are player of 

different kind of cricket format. 

 

3.3 Data Pump  

The oracle 10g database basically consist of the three components: 

• Expdp and impdp command line tools. 

• PL/SQL package DBMS_DATAPUMP. 

• PL/SQL package DBMS_METADATA. 

These three components by default are called when we use the data pump utility like expdp and impdp 

command line tool and it is basically introduced in the 10g database. DBMS_DATAPUMP some-

times it is called API (application programming interface) data pump. These are the packages basical-

ly consisting set of rules and functions and is automatically called when we use DBMS_DATAPUMP 

and DBMS_METADATA  Sometimes it refers API meta data. This package also consist some set of 

rules and functions. Here expdp/impdp basically used to export and import the data of particular ob-

jects. 

This data pump export and import facility represents like original export import utility when we ex-

port the data then data pump export generate the dump file and oracle logically write on the directory 

which is created by the worker. Similarly when we import data then data pump import facility actually 

generate the dump file. Each utility generates its own file, here the file generated by the export utility 

would not be useful for import utility.  

 

3.4 Bitmap Index for Data Warehouse Environment  

Bitmap index are useful for the Data Warehouse environments, the environment which contains max-

imum storage or maximum amount of data and large and complex query but minimum number of 

DML’S (data manipulation language) are applied. For this type of database environment, Bitmap in-

dex: 

• Reduces the time of response for complex and large query. 

• Minimum storage as compared to other indexing technique. 

• Performance would be considerable with relatively minimum number of Processors and the CPUs. 

• Database maintenance would be efficient during loads. 

Index on the large table basically contains the maximum disk space. Sometimes it is also possible in 

B-Tree index that size of index is more than the table. But it is the excellent feature of bitmap index 

that it contains far minimum size then the table. Index basically derives the pointer that is generating 

the key value. Oracle basically provides the OFBR (object file block row) id here index contain the 

row-id of particular row. Here pointer or key value point to the particular row_id. Bitmap index is 

most efficient in the data warehouse, the reason is, it contains the large query which is suitable for the 

bitmap index and normally large query contains the WHERE clause, and it makes bitmap index more 

efficient for query processing [18]. When we insert millions of records in a particular table then we 

find there are millions of logs that would be generated because internally only one record is executed 

at a time. So, for the bulk insertion we should keep database on NOLOGGING mode. Normally in the 

industries, database are on the archive mode and for the bulk insertion there are lots of redo would be 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

441 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

generated so performance of the database would be slow due to the bitmap index. For the data ware-

house environment bitmap index is more efficient because it supports minimum updates.  

4 Experiments and Results 

4.1 Query Performance with the Bitmap Index 

Sometime a problem exists in the database that is physical I/O or logical I/O. This is not due to the 

creation of bitmap index on the database objects or not due to maximum number of distinct values. 

This problem arises if data is fetched from the disk means from the data file then this case condition 

would occur of hard parse or physical IO. If data would be available on the RAM then in this case 

there would be logical IO and the speed of the query would be fast.  

 

 
Fig. 4. Query Performance after Creation of Bitmap Index 

When bitmap index created on the table then table’s column degree of cardinality should be least, this 

process enhances efficient bitmap indexing. User has created a bitmap index on the table which con-

tains seventy millions records and chose appropriate column for issuing degree of cardinality. Here 

we have created bitmap index on the salary column because in the result_final table salary column 

have minimum number of distinct value range (1000,7000) and now we will fire the select query to 

find out the number of distinct value in empno column. The basic syntax is used to create the bitmap 

index on the table. 

Syntax- create bitmap index (index name) on (table name)(column name);. 

 

4.2 Features of Bitmap Index Compression  

There are two bits that is RID bits and FAST bits plays important role in the index of oracle database. 

This basically maintains the data in table. Each table is vertically divided into various parts where the 

rows and columns are stored into different files [19]. Sometimes the large table is horizontally divided 

into various parts. Different parts of table contain millions of records. This part is maintained as direc-

tory. In bitmap index particular column value is shown by the bit vector. 

Table: 3. Value of Bitmap Index Vector 

Column 

Value 

B0  B1  B2  B3  B4  B5  B6   B7  B8  

B9 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

442 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

9 

3 

4 

2 

1 

0      0     0    0     0     0     0     0    0     

1 

0      0     0    1     0     0     0     0    0     

0 

0      0     0    0     1     0     0     0    0     

0 

0      0     1    0     0     0     0     0    0     

0 

0      1     0    0     0     0     0     0    0     

0 

 

Here, length of bit vector is equal to the number of records in the table. If column value is 4 then bit 

value B4 would be respond to 1 and the rest value would be 0. Due to this feature bitmap index is 

more efficient for the compression technique. In this technique, a particular bit value is generated for 

a group of same value. A bit value represents the group of same value in bitmap index. So it decom-

poses four values and release some space. Actually, in uncompressed model, oracle index points to 

each and every location, either value is same or is different.  

 
Fig. 5. Pointing of Index on Same or Distinct Values 

4.3 Compression Technique in Oracle Database 

Oracle database is most efficient database in the world. It contains more advance features in compari-

son to other database like SQL Server, DB2 and MS-ACCESS. Compression is also advance feature 

of oracle database. Initially oracle developed the compression feature for table because in the database 

almost 90 percent objects are stored in table, remaining 10 percent are contained in the Meta data of 

oracle in the data dictionary. Bulk insertion of data is also performed in the table so its primary task to 

reduce the table size with the available records. Compression is efficient feature for oracle database in 

following terms: 

• Compression technique basically minimizes the required resources and the cost required to main-

tain the database. 

• It also reduces the storage system from which this space can be used for other operations. 

• To release or minimize available network bandwidth, as if size would be more then it will con-

sume more network bandwidth. 

• It also minimizes the memory requirements. Because for high amount of data as there is maxi-

mum requirement of RAM.  

 

Initially the compression on DML’s (data manipulation language) operation was not allowed due the 

bulk load in the database. After that oracle improves this feature and now data can be compress along 

with the DML’s also. This feature improves the query performance of large data, because there would 

be fewer inputs /output operation on the database and data buffer cache would be more efficient [20]. 

Compression process are performed on the block level. New compression process basically includes 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

443 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

the features for the OLTP (online transaction processing) database. It supports the compression tech-

nique along with the DML’s means data would be inserted in compressed form in the database. 

4.4 Results & Analysis 

 

Fig. 6. Graphical Representation of Query Execution Time 

From the above results we have:   

1 18 percent occupied disk space of Bitmap index RESULT_FINAL_IDX is released by data pump 

after deletion of one million records. 

2 16 percent occupied disk space of table RESULT_FINAL is released by data pump after deletion 

of one million records. 

3 Execution time is calculated 11.53 seconds for five million records compressed data. 

4 Execution time is calculated 34.15 seconds for seven million records before creation of index 

5 Execution time is calculated 16.19 seconds for seven million after creation of Bitmap Index. 

6 Conclusion and Future Work 

Bitmap index is most commonly used technique for efficient query processing and mostly in the Data 

warehouse environment. Data pump is utility which basically import export the database object, in 

industrial application which supports huge amount of data and allow the DML’s very frequently. 

Large table in database contains the huge amount and occupy the space in Giga bytes. Even the bulk 

deletion from table Index pointing location doesn’t change due to the by default behavior of oracle 

and table and index object still occupying the same space as before deletion. For industry it’s draw-

back that object is still occupying space after deletion. Our objective behind this study is to release the 

disk space after deletion of records from table. This article identifies the compression technology and 

presents the bit-map index compression by data pump. According to traditional wisdom bit-map index 

is more effective than the more conventional range-based index. To do this it does not require some 

kind of checkered index heights or degrees; it does not require either. It does not require a bitset. . In 

this article, we suggest that we need data pump because we do not want to waste the disc space after 

deleting the records. Bitmap index points to the old position in the database even though records are 

removed from the table, this utility clears no disc space. In this paper we tested the bitmap index 

34.15

16.19

11.53

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8

Elapsed time in Seconds for execution

Elapsed Time for 7 millions records without Bitmap Index

Elapsed Time for 7 millions records with Bitmap Index

Elapsed Time for Compressed data



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

444 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

compression algorithm used in SQL Server and the release occupied disc space of database items in-

cluding tables and indexes contained in the table before and after deleting records. The cloud-based 

server is now enabling the bulk data addition and deletion. An auto-generated database script will 

remove millions of records from the table and will not release up the free storage space. Our future 

studies will result in the allocation of the disc space that was previously used by the removed docu-

ments. Oracle database comprises the behavior to occupy the disk space due segment related issue 

because once segment grow for available records.  

References 

1. Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better bitmap performance 

with roaring bitmaps. Software: practice and experience 46, 5 (2016), 709–719. 

2. Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently faster and smaller 

compressed bitmaps with roaring. Software: Practice and Experience 46, 11 (2016), 1547–1569. 

3. Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan. 2013. An efficient and compact indexing 

scheme for large-scale data store. In Data Engineering (ICDE), 2013 IEEE 29th International 

Conference on. IEEE, 326–337. 

4. Yogeshwari B, Dr.V.Sharmila, Dr.M.Somu, Dr.V.Vennila, Dr.J.Preetha “A Survey on Prediction 

of Building cost using k means++ Algorithm in Python Framework”, International Journal of In-

novative Research in Computer and Communication Engineering, Volume 8, Issue 12, December 

2020  

5. Apache ORC. 2018. Apache ORC, High-Performance Columnar Storage for Hadoop. (2018). Re-

trieved 2018-10-18 from https://orc.apache.org/ 

6. Lefteris Sidirourgos and Martin Kersten. 2013. Column imprints: a secondary index structure. In 

Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 

ACM, 893–904. 

7. Idreos S, Groffen F, Nes N, Manegold S, Mullender S, Kersten M. MonetDB: two decades of re-

search in column-oriented database architectures. IEEE Data Engineering Bulletin. 2012;35(1):40-

45. 

8. Deliège F, Pedersen TB. Position list word aligned hybrid: optimizing space and performance for 

compressed bitmaps. In: Proceedings of the 13th International Conference on Extending Database 

Technology; 2010; Lausanne, Switzerland.  

9. Van Schaik SJ, de Moor O. A memory efficient reachability data structure through bit vector 

compression. In: Proceedings of the 2011 ACM SIGMOD International Conference on Manage-

ment of Data; 2011; Athens, Greece.  

10. Byna S, Chou J, Rübel O, et al. Parallel I/O, analysis, and visualization of a trillion particle simu-

lation. In: Proceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis; 2012; Salt Lake City, UT.  

11. Aktas MS, Plale B, Leake D, Mukhi NK. Unmanaged workflows: their provenance and use. In: 

Data Provenance and Data Management in eScience. Berlin, Germany: Springer-Verlag Berlin 

Heidelberg; 2013:59-81.  

12. Lin K-W, Byna S, Chou J, Wu K. Optimizing fastquery performance on lustre file system. In: 

Proceedings of the 25th International Conference on Scientific and Statistical Database Manage-

ment; 2013; Baltimore, MD. 

13.  Ankit Kumar, Dr. Dinesh Goyal, Pankaj Dadheech, (2018), “A Novel Framework for Performance 

Optimization of Routing Protocol in VANET Network”, Journal of Advanced Research in Dy-

namical & Control Systems, Vol. 10, 02-Special Issue, 2018, pp-2110-2121, ISSN: 1943-023X. 



International Journal of Future Generation Communication and Networking 
Vol. 14, No. 1, (2021), pp. 435–445 

 

445 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2021 SERSC 

14.  Pankaj Dadheech, Dr. Dinesh Goyal, Dr. Sumit Srivastava, Ankit Kumar, (2018), “A Scalable Da-

ta Processing Using Hadoop & MapReduce for Big Data”, Journal of Advanced Research in Dy-

namical & Control Systems, Vol. 10, 02-Special Issue, 2018, pp-2099-2109, ISSN: 1943-023X.  

15.  Preetha J , Raju S , Abhishek Kumarc, Sayyad Samee, and Vengatesan R”Data Mining Tech-

nique Based Critical Disease Prediction in Medical Field”,Intelligent Systems and Computer 

Technology, This article is published online with Open Access by IOS Press and distributed un-

der the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 

4.0).doi:10.3233/APC200126,2020. 

16.  A. Kumar and M. Sinha (2014), "Overview on vehicular ad hoc network and its security issues," 

International Conference on Computing for Sustainable Global Development (INDIACom), pp. 

792-797. doi: 10.1109/IndiaCom.2014.6828071. 

17.  Pankaj Dadheech, Ankit Kumar, Chothmal Choudhary, Mahender Kumar Beniwal, Sanwta Ram 

Dogiwal & Basant Agarwal (2019), “An Enhanced 4-Way Technique Using Cookies for Robust 

Authentication Process in Wireless Network”, Journal of Statistics and Management Systems, 

22:4, 773-782, DOI: 10.1080/09720510.2019.1609557.  

18.  Ankit Kumar, Pankaj Dadheech, Vijander Singh, Linesh Raja & Ramesh C. Poonia (2019), “An 

Enhanced Quantum Key Distribution Protocol for Security Authentication”, Journal of Discrete 

Mathematical Sciences and Cryptography, 22:4, 499-507, DOI: 10.1080/09720529.2019.1637154.  

19.  Ankit Kumar, Pankaj Dadheech, Vijander Singh, Ramesh C. Poonia & Linesh Raja (2019), “An 

Improved Quantum Key Distribution Protocol for Verification”, Journal of Discrete Mathematical 

Sciences and Cryptography, 22:4, 491-498, DOI: 10.1080/09720529.2019.1637153.  

20.  Ankit Kumar and Madhavi Sinha (2019), “Design and analysis of an improved AODV protocol 

for black hole and flooding attack in vehicular ad-hoc network (VANET)”, Journal of Discrete 

Mathematical Sciences and Cryptography, 22:4, 453-463, DOI: 10.1080/09720529.2019.1637151.  

 


