
International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

145
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Statistical Analysis Of Malware In Anroid With The Techniques Of Machine

Learning

 Hemant Kumar Akshay Chamoli Subodh Kuma

 Jamia Hamdard Jamia Hamdard Jamia Millia Islamia

 hemant.sscbs@gmail.com akachamoli@gmail.com subodhkumar588@gmail.com

Abstract

 The use of smartphones continues to sour, with Android leading the way. Google claims to have

around 1.4 billion active mobile devices across the globe. According to The Telecom Regulatory

Authority of India, India has become the second country globally with a user threshold of 1.03 billion

users. The massive user base has caught the eyes of cybercriminals trying to attack Android using

malware. Malware is malicious software created to destroy computer or electronic systems without the

knowledge of the user using the system. This work aim has created an efficient malware detection

system with machine learning-enabled features for Android Environment so that they can sense

malware applications with the help of static features. The system extracts various permissions and API

Tags from the Android applications. It uses these features along with five unique machine learning

techniques for classifying whether the application is malicious or benign. The experimental results are

promising as we have achieved high accuracy in detecting Android malware with all the classifiers. We

have also analyzed the effect of a number of Android applications used in the database on the accuracy

of classifiers.

1. Introduction

Android applications are generally used in cell phones as a mobile software application and are created by
Google to run on Android platforms like smartphones, tablets, Google TV, and other devices compatible

with running Android featured operating system. Android applications utilize advanced hardware and

software to bring benefits and values to their users. According to statista.com, the number of accessible
applications in the Google Play Store outperformed 1 million applications in July 2013 and was most

recently positioned at 2 million applications in February 2016 [1]. Google says there are 1.4 billion active

mobile devices [2] worldwide. According to The Telecom Regulatory Authority of India, India has
become the second country globally with a user threshold of 1.03 billion users [3]. The Android

platform's openness makes it attractive to users, but the freedom or openness users appreciate is also a

pitfall of the forum. Cybercriminals nowadays are finding more complex ways to get into android systems

and breach the security of the system. Cybercriminals exploit it by posting malware spreading apps in
deceitful attempts to steal personal information. In this case user’s mobile security is compromised. So

the users who download malicious apps unknowingly face a mobile privacy threats. The research carried

out by Pulse secure, found that 97% of malware focusses the Android operating system [4].

Malware is malicious software and is developed for damaging the computer system irrespective of the
knowledge of the user [5]. Trojan horse, worm, virus, spyware are all classified as malware. It is

necessary to analyze malicious apps to understand the risk associated and their intentions. There are

various types of analysis, including Static Analysis and Dynamic analysis as the broad domain.

Examining malicious software without performing the process is called static analysis whereas,
exploration of the infected file during its completion is known as dynamic analysis [5, 6]. It is also called

behavioral analysis. In this project, we have used static analysis of malicious apps. The disassembly

method is one of the old procedures of static analysis. Machine learning classifiers are used for
classifying malicious applications having permissions, API Tags, and a combination of both [7, 8, 9, 10,

11].

Our contribution in the paper are as follows:

mailto:hemant.sscbs@gmail.com
mailto:akachamoli@gmail.com
mailto:subodhkumar588@gmail.com

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

146
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

1. Extraction of Android App static features by using Androguard.
2. Classification of Android applications as malicious or benign by using five machine learning

classifiers: Naïve Bayes, KNN, Logistic Regression, C4.5, and SVM.

3. Analyze the effect of three sets of static features (permissions only, API Tags only, and

permissions and API tags) on the performance of the classifiers.
4. Analyze the effect of the number of Android applications on the performance of classifiers.

5. Based on our database we have also compared the top ten Android app permissions and API tags

of both benign and malicious apps and then concluded the dangerous permissions and API Tags.

2. Related Work

In the domain of static analysis for malware detection in Android applications, several studies have

already been processed. Sanz et al. [12] introduced PUMA (Permission Usage to detect Malware in

Android), a process for sensing malevolent applications using the consent usage of each application. They

used machine learning models to perceive whether an application is malicious or not. A dataset of 357
benign and 249 malicious applications was used in the technique, and Android Asset Packaging Tool

(AAPT) was used to get permissions from the APK file. Justin Sahs et al. [13] used a machine learning

process to detect Android malware. The technique used Androguard (an open-source project) to get
features from APKs and then used these features to train a One-Class SVM. The system was limited to

just permissions (built-in and non-standard) and CFGs of the input applications. One more approach

towards Permission-Based Malware Detection which is proposed by Aung et al. [14] have used K-means
clustering, Random Forest DT (decision tree) and CART (Classification and Regression Tree) algorithm.

The accuracy rate improved to 91.75% with Random Forest DT and the most efficient orignal positive

rate of 97.8% with CART.

Aafer et al. [15] presented DroidAPIMiner: generic data mining technique to develop a classifier for

applications having inbuilt android feature. Their procedure had compared performance of four
classifiers: ID5, C4.5, KNN and SVM in terms of both the process of various feature extraction i.e.

approval based and API calls based feature set with package level and parameter information. The data

set taken for this paper consists of 3987 malware samples from Android Malware Genome Project and
500 benign applications from each category in Google Play [16]. They reported KNN with an efficient

performance model and has given the accuracy of 99.9%. The false positive rate is very low as 2.2%

when around 189 features are taken from a feature set. Akanksha Sharma et al. [17] gave a proactive

technique for static malware detection. The features which were removed based on API calls as well as
permissions. Correlation based as well as information gain feature selection process and used to select

most efficient features. The dataset created from the selected feature set was validated using Naive

Bayesian and K-Nearest Neighbor classifiers. They used APKAnalyser for reverse engineering.

3. Proposed Methodology and Implementation

The suggested procedure consists of these four steps. They are:

STEP 1: Creation of an efficient database having a variety of Android malware belonging to

different malware families and benign apps from various categories of applications such as
communication, education, health etc. We have created 4 sets of databases having a different

number of Android apps.

STEP 2: Extracting features such as Android permissions and API tags and creating three sets of features-

permissions only, API tags only, and permissions and API tags.
STEP 3: Preprocessing the three sets of features by using the filter to remove unnecessary features.

STEP 4: Building the models of a Machine learning classifier using the 3 sets of features and also

by using 4 different databases of apps and subsequently analyzing the performance of various
classifiers based on the feature set and database set.

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

147
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

I. Creation of Database

Here we label the procedure we monitored to get data from the android application file. The basic steps

we have followed for each application are:

1. First, we downloaded the android apps of different malware families from AndroMalShare [18] and
goodwares from Google Play Store [16] as shown below.

Malware

Families
Count Goodware

Families
Count

DroidkungFu

and its

Variants

10 Arcade 5
FakeInst

10 Tools 22
Opfake

10 Business 8
Geinimi

10 Communication 10
FakeLogo

10 Education 11
Kmin

10 Entertainment 9
Adrd

10 Lifestyle 10
YZHCSMS

10 Music & Audio 8
PJApps

10 Photography 7
Legacy 10 Puzzle 7

 Shopping 9
2. We decompressed the android apps using Androguard [19] and extracted the selected features like

Permissions requested and API Tags for each android app by using our python scripts.
3. We build a dataset in a CSV file format with the extracted data.

In step 2, we processed the AndroidManifest.xml file to extract the data.

Using our python scripts we extracted the permissions and created the feature vectors in the following

way.

For each Android app, we retrieved the selected features “permissions requested” and “API Tags”. The
selected features with their values are kept as a binary number (0 or 1) and is signified as a sequence of

comma separated values which is also called as CSV format.

0,0

,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0, MALICIOUS

Figure 1: Feature Vector created using extracted android permissions

0,0,0,0,1,0
,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,BENIGN

Figure 2: Feature Vector created using extracted API Tags

Features

Features used in the dataset are the Permissions requested, API Tags (Tags defined in Androguard[19]

corresponding to APIs used in the app), and Permissions requested and API Tags used by the Android

Applications[20].

Few samples of permission features are:
 android.permission.READ_PHONE_STATE: Permits access in read only mode. This is

crucial agreement in order harm an android application

 android.permission.INTERNET:

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

148
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Permits the applications for opening network sockets for the usage of internet. If any application
doesn’t require the internet and still it request the INTERNET access then it can be used for

malicious purpose

 android.permission.CALL_PHONE:

Permits the application to initiate a phone call without accessing the Dialler user interface for the
user to approve the call. Malevolent use of this permission can incur charges to the user.

 android.permission.ACCESS_COARSE_LOCATION:

Permits an app to access approximate location. Attackers can use this permission maliciously to
track the location of the user.

 android.permission.ACCESS_WIFI_STATE: Permits applications to access information about

Wi-Fi networks. By making use of android permissions. INTERNET along with this permission
access, attackers gain access to sensitive information.

Few Samples of API Tags are:

 Android: It consists of resource classes and is used by the applications which are included in the

platform and is used to define application approvals for system features.
 Bluetooth: Offers classes that manages Bluetooth functionality, which includes various features

such as device scanning, connection establishment among devices for communication and

management of data transfer among devices.
 Location: Consists of the framework API classes that defines services enabling location based

features.

 Reflection: brings reflective access to description info.
 Widget: Consists of the components essential to create "app widgets", which users use to

integrate with other applications (such as the home screen) to speedily access application data and
services without starting of a new activity.

II. Preprocessing the Database

In Machine Learning applications, an enormous number of extricated highlights, some of which excess or

immaterial, present a few issues, for example, deceiving the learning calculation, over-fitting, lessening

over-simplification, and expanding model intricacy and run-time [21,22]. These antagonistic impacts are
significantly more critical when applying Machine Learning strategies on cell phones since they are

regularly limited by preparing and capacity abilities, just as battery power. Therefore Applying the

Remove Useless in weka [13], filtered out the dataset in a preparatory stage and enabled the malware

detector to work more proficiently, with a quicker detection period. Yet, decreasing features should only
be performed when a high level of accuracy can be preserved.

We have preprocessed the database using “Remove Useless”. It is an unsupervised attribute filter used to

remove attributes that do not vary at all or that vary too much

III. Building the model using classifiers and detecting the malware

Our job is to develop a model that can classify an app as either malicious or benign. To do that, we have
used five different machine learning algorithms for classification Naïve Bayes Classifier, KNN, Logistic

Regression, C4.5, and Support Vector Machine. These five different classifiers belong to other classifiers'

families, KNN belongs to the lazy classifier, Naïve Bayes. Logistic Regression belongs to the family of

Probabilistic classifier, C4.5 belongs to the Decision tree, and The ML technique capable of dividing the

training data set by optimal separation is done with the Support Vector Machine technique [24, 25].

We examined two experiments.

First Experiment: In the first experiment, we have extracted around 135 permissions, 41 API tags from

200 apps. We created four databases having 50 instances, 100 instances, 150 instances and 200 instances

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

149
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

of permissions, API Tags, and permissions plus API Tags mixed respectively. So basically this

experiment consists of three parts that are:

1. Permission Based Analysis

2. API Tags Based Analysis

3. Permissions plus API Tags based Analysis

All these three parts consist of these two steps.

STEP -1- Preprocess each database using “Remove Useless” filter in Weka [13].

STEP-2-Classifiy each database using five different machine learning algorithms in Weka [13].

1. Naïve Bayes 2. KNN 3. Logistic Regression 4. C4.5 5. SVM

To test our created grouping models, we have utilized cross approval technique with 10 folds, i.e., our
dataset is part multiple times into 10 unique sets for learning (90% of the absolute dataset) and testing

(10% of the complete information). Note the Accuracy, True Positive Rate, and False Positive Rate of

every classifier.

Compare the ACCURACY and TIME EFFICIENCY of each classifier.

Second Experiment: In this experiment, we have extracted top ten permissions and API Tags from the

dataset of both benign and malicious apps. We have then compared the top ten permissions and API Tags
from both benign and malicious apps and have concluded dangerous permissions and API Tags.

4. Result and Analysis

Results of both the experiments are given below:

1
st
 Experiment Results:

We generate the classification model using five different classifiers described earlier for permissions, API

Tags, and permissions plus API Tags as features and run them for four different datasets, a dataset of 50
instances,100 instances, 150 instances and 200 instances respectively. We have used Weka [13] for

classification.

Table 1: The result of each classifier on permissions based dataset

Classifier

Dataset of

50

instances

Dataset of

100

instances

Dataset of

150

instances

Dataset of

200

instances

Acc. TPR Acc. TPR Acc. TPR Acc. TPR

Naïve

Bayes
90% 0.840 95% 0.900 90.66

%
0.933 92% 0.960

KNN(

k=5)
86% 0.760 90% 0.820

89.33

%
0.827 95% 0.950

Logistic

Regressio

n
90% 0.880 93% 0.960

95.33

%
0.960

96.5

%
0.960

C4.5 90% 0.880 95% 0.980
93.33

%
0.933 96% 0.970

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

150
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 3: Bar Graph showing classifier wise accuracy for permission based analysis

In permission based analysis we found that the accuracy of SVM is the highest i.e., 98% in the dataset of

200 and 150 instances while KNN holds the lowest accuracy i.e. 86 % in case of 50 instances. Also, we

found that in most of the cases, as we increase the number of instances the accuracy of classifier increases

with the slight exception in case of Naïve Bayes

Table 2: The result of each classifier on API Tags based dataset

80%

85%

90%

95%

100%

Naïve
bayes

KNN(k=5) Logistic
Regression

C4.5 SVM

A
C

C
U

R
A

C
Y

CLASSIFIERS

CLASSIFIERS ACCURACY ON PERMISSION
DATASET

Accuracy of classifiers on 50 instances

Accuracy of classifiers on 100 instances

Accuracy of classifiers on 150 instances

Accuracy of classifiers on 200 instances

SVM 90% 0.880 97% 0.960 98% 0.973 98% 0.980

Classifier

Dataset of

50

instances

Dataset of

100

instances

Dataset of

150

instances

Dataset of

200

instances

Acc. TPR Acc. TPR Acc. TPR Acc. TPR

Naïve

Bayes
86% 0.960 93% 0.960

89.33

%
0.933 91%

0.94

0
KNN(

k=5)
86% 1.000 90% 1.000

91.33

%
1.000

93.5

%

1.00

0

Logistic

Regressio

n
82% 0.800 87% 0.880

89.33

%
0.907

92.5

%

0.93

0

C4.5 84% 0.920 91% 0.980 93.33
%

1.000 93% 0.97
0

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

151
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Figure 4: Bar Graph showing classifier wise accuracy for API Tags based analysis

In API Tags based analysis we found that the accuracy of SVM is highest i.e., 95.5% after that Logistic

regression and C4.5 give better result in terms of accuracy while KNN holds the lowest accuracy i.e. 86
% in case of 50 instances. Also, we found that in most of the cases ,as we increase the number of

instances the accuracy of classifier increases with the slight exception in case of naïve Bayes where the

accuracy attain a peak at dataset of 100 instances

Table 3: The result of each classifier on Permission plus API Tags based dataset

Figure 5: Bar Graph showing classifier wise accuracy for permission plus API Tags based analysis

75%

80%

85%

90%

95%

100%

Naïve
bayes

KNN(k=5) Logistic
Regression

C4.5 SVM

A
C

C
U

R
A

C
Y

CLASSIFIERS

CLASSIFIERS ACCURACY ON API TAGS
DATASET

Accuracy of classifiers on 50 instances
Accuracy of classifiers on 100 instances
Accuracy of classifiers on 150 instances
Accuracy of classifiers on 200 instances

80%

85%

90%

95%

100%

Naïve
bayes

KNN(k=5) Logistic
Regression

C4.5 SVM

A
C

C
U

R
A

C
Y

CLASSIFIERS

CLASSIFIERS ACCURACY ON PERMISSIONS PLUS
API TAGS DATASET

Accuracy of classifiers on 50 instances
Accuracy of classifiers on 100 instances
Accuracy of classifiers on 150 instances
Accuracy of classifiers on 200 instances

SVM 86% 0.880 92% 0.980 94% 0.973 95.5

%

0.98

0

Classifier

Dataset of

50

instances

Dataset of

100

instances

Dataset of

150

instances

Dataset of

200

instances

Acc. TPR Acc. TPR Acc. TPR Acc. TPR

Naïve

Bayes
96% 0.960 96% 1.000 94.66

%
0.987 96% 0.990

KNN(

k=5)
94% 0.960 96% 0.960 96% 0.960

97.5
%

0.980

Logistic

Regressio

n
96% 0.960 98% 1.000

96.66

%
0.960 98% 0.980

C4.5 88% 0.920 96% 0.980 95.33
%

0.947 98% 0.990

SVM 96% 1.000 96% 0.940 97.33

%
0.960 98.5

%
0.980

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

152
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

In permissions plus API Tags based analysis we found that SVM turns out to be the best classifier as the
accuracy of SVM is highest i.e. 98.5. Also, we found that in most of the cases as we increase the number

of instances the accuracy of the classifier also increases.

2
nd

 Experiment result:

We found the top ten permissions from each of the database of 100 malicious apps and 100 benign apps

collected separately.

Figure 6: Bar graph showing top 10 permissions used in malicious apps

Figure 7: Bar graph showing top 10 permissions used in benign apps

0
10
20
30
40
50
60
70
80
90

100

N
O

 O
F

A
P

K
s

PERMISSIONS

TOP 10 PERMISSIONS USED IN
MALICIOUS APPS

0
10
20
30
40
50
60
70
80
90

100

N
o

. O
f

A
P

K
S

Permissions

TOP 10 PERMISSIONS USED IN BENIGN
APPLICATIONS

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

153
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

We also found the top ten API Tags from each of the database of 100 malicious apps and 100 benign apps

collected separately.

Figure 8: Bar graph showing top 10 API Tags used in malicious apps

Figure 9: Bar graph showing top 10 API Tags used in benign apps

After comparing figure 6 and figure 7 we conclude that SEND_SMS, READ_SMS, RECEIVE_SMS,

RECEIVE_BOOT_COMPLETED and ACCESS_COARSE_LOCATION are the permissions mostly

used only in malicious applications. Similarly, from figure 8 and figure 9 we can see that TELEPHONY

is the API Tag mostly used only in malicious applications.

5. Conclusion

0

20

40

60

80

100

120

N
O

 O
F

A
P

K
s

API TAGS

TOP 10 API TAGS USED IN MALICIOUS
APPS

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

100.5

N
o

. O
f

A
P

K
s

Permissions

TOP 10 API TAGS USED IN BENIGN
APPLICATIONS

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

154
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

In this paper, we have examined about Android applications comprised of both malicious and non-
malicious. In Malicious apps, we have used ten malware families which have already been discussed in

earlier chapters.

We have used five classification algorithms to detect the malware and subsequently evaluated the

classifiers on the basis of accuracy.

Taking into the consideration all databases, SVM classifier turned out to be the best classifier in detecting

the malware.

Out of all the three datasets i.e. Permissions, API Tags, Permissions plus API Tags as features,
Permission plus API Tags based features comes out be the best for the detection of malware on the basis

of features.

Analyzing all the datasets thoroughly, the top ten Android Permissions used in malicious applications are

INTERNET, READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE, SEND_SMS, READ_SMS,
RECEIVE_SMS, ACCESS_NETWORK_STATE, RECEIVE_BOOT_COMPLETED,

ACCESS_WIFI_STATE, ACCESS_COARSE_LOCATION.

Top ten API Tags used in malicious applications are ANDROID, APP, CONTENT, TELEPHONY, NET,

WIDGET, UTIL, OS, TEXT, VIEW

After comparing the top most permissions and API Tags in both malicious and benign apps we conclude

that SEND_SMS, READ_SMS, RECEIVE_SMS, RECEIVE_BOOT_COMPLETED and
ACCESS_COARSE_LOCATION are the dangerous permissions and TELEPHONY is the dangerous

API Tag.

References

 [1] http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

[2] http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-

worldwide

[3] http://www.techi.com/2015/12/india-now-has-more-than-a-billion-smartphone-users/

 [4]http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-

android/article/422783/

[5] Odusami, Modupe, Olusola Abayomi-Alli, Sanjay Misra, Olamilekan Shobayo, Robertas
Damasevicius, and Rytis Maskeliunas. "Android malware detection: A survey." In International

Conference on Applied Informatics, pp. 255-266. Springer, Cham, 2018.

[6] Xiao, Xi, Shaofeng Zhang, Francesco Mercaldo, Guangwu Hu, and Arun Kumar Sangaiah. "Android

malware detection based on system call sequences and LSTM." Multimedia Tools and Applications 78,

no. 4 (2019): 3979-3999.

[7] Milosevic, Nikola, Ali Dehghantanha, and Kim-Kwang Raymond Choo. "Machine learning aided
Android malware classification." Computers & Electrical Engineering 61 (2017): 266-274.

[8] Li, Jin, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye. "Significant
permission identification for machine-learning-based android malware detection." IEEE Transactions on

Industrial Informatics 14, no. 7 (2018): 3216-3225.

[9] Demontis, Ambra, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad Rieck, Igino
Corona, Giorgio Giacinto, and Fabio Roli. "Yes, machine learning can be more secure! a case study on

http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/
http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

155
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

android malware detection." IEEE Transactions on Dependable and Secure Computing 16, no. 4 (2017):
711-724.

[10] Martín, Ignacio, José Alberto Hernández, and Sergio de los Santos. "Machine-Learning based

analysis and classification of Android malware signatures." Future Generation Computer Systems 97
(2019): 295-305.

[11] Chen, Xiao, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang Xiang, and Kui

Ren. "Android HIV: A study of repackaging malware for evading machine-learning detection." IEEE

Transactions on Information Forensics and Security 15 (2019): 987-1001.

[12] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Alvarez, G.,: PUMA:

Permission Usage to detect Malware in Android, Springer, Berlin Heidelberg, 2013

[13] Justin Sahs , Latifur Khan, A Machine Learning Approach to Android Malware Detection,
Proceedings of the 2012 European Intelligence and Security Informatics Conference, p.141-147, August

22-24, 2012

[14] Zarni Aung, Win Zaw. “Permission-Based Android Malware Detection” in International Journal of

Scientific & Technology Research Volume 2, Issue 3, March 2013

[15] Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-level features for robust malware detection
in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm 2013. LNICST, vol.

127, pp. 86–103. Springer, Heidelberg (2013)

[16] https://play.google.com/store?hl=en

[17] Akanksha Sharma and Subrat Kumar Dash,: Mining API Calls and Permissions for Android

Malware Detection, proceedings of 13th International Conference, CANS 2014, Heraklion, Crete, Greece,

October 22-24, 2014.

[18] http://sanddroid.xjtu.edu.cn:8080/

[19] https://github.com/androguard/androguard

[20] Jung, Jaemin, Hyunjin Kim, Dongjin Shin, Myeonggeon Lee, Hyunjae Lee, Seong-je Cho, and
Kyoungwon Suh. "Android malware detection based on useful API calls and machine learning." In 2018

IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp.

175-178. IEEE, 2018.

[21]Gong, Zhiqiang, Ping Zhong, and Weidong Hu. "Diversity in machine learning." IEEE Access 7
(2019): 64323-64350.

[22]Cai, Jie, Jiawei Luo, Shulin Wang, and Sheng Yang. "Feature selection in machine learning: A new
perspective." Neurocomputing 300 (2018): 70-79.

[23] www.cs.waikato.ac.nz/ml/weka/

[24]A. Dey, ‘‘Machine learning algorithms: A review,’’ Int. J. Comput. Sci. Inf. Technol., vol. 7, no. 3,
pp. 1174–1179, 2016.

http://sanddroid.xjtu.edu.cn:8080/

International Journal of Future Generation Communication and Networking

Vol. 14, No. 1, (2021), pp. 145–156

156
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

[25]M. Mohri, A. Rostamizaden, and A. Talwalkar, Foundations of Machine Learning, 2nd ed.

Cambridge, MA, USA: MIT Press, 2018.

