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Abstract 

 The use of smartphones continues to sour, with Android leading the way. Google claims to have 

around 1.4 billion active mobile devices across the globe. According to The Telecom Regulatory 

Authority of India, India has become the second country globally with a user threshold of 1.03 billion 

users. The massive user base has caught the eyes of cybercriminals trying to attack Android using 

malware. Malware is malicious software created to destroy computer or electronic systems without the 

knowledge of the user using the system. This work aim has created an efficient malware detection 

system with machine learning-enabled features for Android Environment so that they can sense 

malware applications with the help of static features. The system extracts various permissions and API 

Tags from the Android applications. It uses these features along with five unique machine learning 

techniques for classifying whether the application is malicious or benign. The experimental results are 

promising as we have achieved high accuracy in detecting Android malware with all the classifiers. We 

have also analyzed the effect of a number of Android applications used in the database on the accuracy 

of classifiers. 

1. Introduction 

Android applications are generally used in cell phones as a mobile software application and are created by 
Google to run on Android platforms like smartphones, tablets, Google TV, and other devices compatible 

with running Android featured operating system. Android applications utilize advanced hardware and 

software to bring benefits and values to their users. According to statista.com, the number of accessible 
applications in the Google Play Store outperformed 1 million applications in July 2013 and was most 

recently positioned at 2 million applications in February 2016 [1]. Google says there are 1.4 billion active 

mobile devices [2] worldwide. According to The Telecom Regulatory Authority of India, India has 
become the second country globally with a user threshold of 1.03 billion users [3]. The Android 

platform's openness makes it attractive to users, but the freedom or openness users appreciate is also a 

pitfall of the forum. Cybercriminals nowadays are finding more complex ways to get into android systems 

and breach the security of the system. Cybercriminals exploit it by posting malware spreading apps in 
deceitful attempts to steal personal information. In this case user’s mobile security is compromised. So 

the users who download malicious apps unknowingly face a mobile privacy threats.  The research carried 

out by Pulse secure, found that 97% of malware focusses the Android operating system [4]. 

Malware is malicious software and is developed for damaging the computer system irrespective of the 
knowledge of the user [5]. Trojan horse, worm, virus, spyware are all classified as malware. It is 

necessary to analyze malicious apps to understand the risk associated and their intentions. There are 

various types of analysis, including Static Analysis and Dynamic analysis as the broad domain. 

Examining malicious software without performing the process is called static analysis whereas, 
exploration of the infected file during its completion is known as dynamic analysis [5, 6]. It is also called 

behavioral analysis. In this project, we have used static analysis of malicious apps. The disassembly 

method is one of the old procedures of static analysis. Machine learning classifiers are used for 
classifying malicious applications having permissions, API Tags, and a combination of both [7, 8, 9, 10, 

11]. 

Our contribution in the paper are as follows: 
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1. Extraction of Android App static features by using Androguard. 
2. Classification of Android applications as malicious or benign by using five machine learning 

classifiers: Naïve Bayes, KNN, Logistic Regression, C4.5, and SVM. 

3. Analyze the effect of three sets of static features (permissions only, API Tags only, and 

permissions and API tags) on the performance of the classifiers. 
4. Analyze the effect of the number of Android applications on the performance of classifiers. 

5. Based on our database we have also compared the top ten Android app permissions and API tags 

of both benign and malicious apps and then concluded the dangerous permissions and API Tags.   
 

2. Related Work 

In the domain of static analysis for malware detection in Android applications, several studies have 

already been processed. Sanz et al. [12] introduced PUMA (Permission Usage to detect Malware in 

Android), a process for sensing malevolent applications using the consent usage of each application. They 

used machine learning models to perceive whether an application is malicious or not. A dataset of 357 
benign and 249 malicious applications was used in the technique, and Android Asset Packaging Tool 

(AAPT) was used to get permissions from the APK file. Justin Sahs et al. [13] used a machine learning 

process to detect Android malware. The technique used Androguard (an open-source project) to get 
features from APKs and then used these features to train a One-Class SVM. The system was limited to 

just permissions (built-in and non-standard) and CFGs of the input applications. One more approach 

towards Permission-Based Malware Detection which is proposed by Aung et al. [14] have used K-means 
clustering, Random Forest DT (decision tree) and CART (Classification and Regression Tree) algorithm. 

The accuracy rate improved to 91.75% with Random Forest DT and the most efficient orignal positive 

rate of 97.8% with CART. 

Aafer et al. [15] presented DroidAPIMiner: generic data mining technique to develop a classifier for 

applications having inbuilt android feature. Their procedure had compared performance of four 
classifiers: ID5, C4.5, KNN and SVM in terms of both the process of various feature extraction i.e. 

approval based and API calls based feature set with package level and parameter information. The data 

set taken for this paper consists of 3987 malware samples from Android Malware Genome Project and 
500 benign applications from each category in Google Play [16]. They reported KNN with an efficient 

performance model and has given the accuracy of 99.9%. The false positive rate is very low as 2.2% 

when around 189 features are taken from a feature set. Akanksha Sharma et al. [17] gave a proactive 

technique for static malware detection. The features which were removed based on API calls as well as 
permissions. Correlation based as well as information gain feature selection process and used to select 

most efficient features. The dataset created from the selected feature set was validated using Naive 

Bayesian and K-Nearest Neighbor classifiers. They used APKAnalyser for reverse engineering. 

3. Proposed Methodology and Implementation 

The suggested procedure consists of these four steps. They are: 

STEP 1: Creation of an efficient database having a variety of Android malware belonging to 

different malware families and benign apps from various categories of applications such as 
communication, education, health etc. We have created 4 sets of databases having a different 

number of Android apps.  

STEP 2: Extracting features such as Android permissions and API tags and creating three sets of features- 

permissions only, API tags only, and permissions and API tags. 
STEP 3: Preprocessing the three sets of features by using the filter to remove unnecessary features.  

STEP 4: Building the models of a Machine learning classifier using the 3 sets of features and also 

by using 4 different databases of apps and   subsequently analyzing the performance of various 
classifiers based on the feature set and database set. 
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I.  Creation of Database 

Here we label the procedure we monitored to get data from the android application file. The basic steps 

we have followed for each application are: 

1. First, we downloaded the android apps of different malware families from AndroMalShare [18] and 
goodwares from Google Play Store [16] as shown below. 

Malware 

Families 
Count Goodware 

Families 
Count 

DroidkungFu 

and its 

Variants 
 

10 Arcade 5 
FakeInst 

 

10 Tools 22 
Opfake 

 

10 Business 8 
Geinimi 

 

10 Communication 10 
FakeLogo 

 

10 Education 11 
Kmin 

 

10 Entertainment 9 
Adrd 

 

10 Lifestyle 10 
YZHCSMS 

 

10 Music & Audio 8 
PJApps 

 

10 Photography 7 
Legacy 10 Puzzle 7 

  Shopping 9 
2. We decompressed the android apps using Androguard [19] and extracted the selected features like 

Permissions requested and API Tags for each android app by using our python scripts. 
3. We build a dataset in a CSV file format with the extracted data.  

In step 2, we processed the AndroidManifest.xml file to extract the data. 

 
Using our python scripts we extracted the permissions and created the feature vectors in the following 

way. 

For each Android app, we retrieved the selected features “permissions requested” and “API Tags”. The 
selected features with their values are kept as a binary number (0 or 1) and is signified as a sequence of 

comma separated values which is also called as CSV format. 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0, MALICIOUS 

Figure 1: Feature Vector created using extracted android permissions 

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,BENIGN 

Figure 2:  Feature Vector created using extracted API Tags 

Features 

Features used in the dataset are the Permissions requested, API Tags (Tags defined in Androguard[19] 

corresponding to APIs used in the app), and Permissions requested and API Tags used by the Android 

Applications[20]. 

Few samples of permission features are:  
 android.permission.READ_PHONE_STATE:  Permits access in read only mode. This is 

crucial agreement in order harm an android application 

 android.permission.INTERNET:         
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Permits the applications for opening network sockets for the usage of internet. If any application 
doesn’t require the internet and still it request the INTERNET access then it can be used for 

malicious purpose 

 android.permission.CALL_PHONE:  

Permits the application to initiate a phone call without accessing the Dialler user interface for the 
user to approve the call. Malevolent use of this permission can incur charges to the user. 

 android.permission.ACCESS_COARSE_LOCATION:  

Permits an app to access approximate location. Attackers can use this permission maliciously to 
track the location of the user. 

 android.permission.ACCESS_WIFI_STATE: Permits applications to access information about 

Wi-Fi networks. By making use of android permissions. INTERNET along with this permission 
access, attackers gain access to sensitive information. 

Few Samples of API Tags are: 

 Android: It consists of resource classes and is used by the applications which are included in the 

platform and is used to define application approvals for system features. 
 Bluetooth: Offers classes that manages Bluetooth functionality, which includes various features 

such as device scanning, connection establishment among devices for communication and 

management of data transfer among devices.  
 Location: Consists of the framework API classes that defines services enabling location based 

features. 

 Reflection: brings reflective access to description info. 
 Widget: Consists of the components essential to create "app widgets", which users use to 

integrate with other applications (such as the home screen) to speedily access application data and 
services without starting of a new activity. 

II. Preprocessing the Database 

In Machine Learning applications, an enormous number of extricated highlights, some of which excess or 

immaterial, present a few issues, for example, deceiving the learning calculation, over-fitting, lessening 

over-simplification, and expanding model intricacy and run-time [21,22]. These antagonistic impacts are 
significantly more critical when applying Machine Learning strategies on cell phones since they are 

regularly limited by preparing and capacity abilities, just as battery power. Therefore Applying the 

Remove Useless in weka [13], filtered out the dataset in a preparatory stage and enabled the malware 

detector to work more proficiently, with a quicker detection period. Yet, decreasing features should only 
be performed when a high level of accuracy can be preserved. 

We have preprocessed the database using “Remove Useless”. It is an unsupervised attribute filter used to 

remove attributes that do not vary at all or that vary too much 

III. Building the model using classifiers and detecting the malware 

Our job is to develop a model that can classify an app as either malicious or benign. To do that, we have 
used five different machine learning algorithms for classification Naïve Bayes Classifier, KNN, Logistic 

Regression, C4.5, and Support Vector Machine. These five different classifiers belong to other classifiers' 

families, KNN belongs to the lazy classifier, Naïve Bayes. Logistic Regression belongs to the family of 

Probabilistic classifier, C4.5 belongs to the Decision tree, and The ML technique capable of dividing the 

training data set by optimal separation is done with the Support Vector Machine technique [24, 25]. 

We examined two experiments. 

First Experiment: In the first experiment, we have extracted around 135 permissions, 41 API tags from 

200 apps. We created four databases having 50 instances, 100 instances, 150 instances and 200 instances 
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of permissions, API Tags, and permissions plus API Tags mixed respectively.  So basically this 

experiment consists of three parts that are: 

1. Permission Based Analysis 

2. API Tags Based Analysis 

3. Permissions plus API Tags based Analysis  

All these three parts consist of these two steps.  

STEP -1- Preprocess each database using “Remove Useless” filter in Weka [13]. 

STEP-2-Classifiy each database using five different machine learning algorithms in Weka [13]. 

1. Naïve Bayes 2. KNN 3. Logistic Regression 4. C4.5 5. SVM 

To test our created grouping models, we have utilized cross approval technique with 10 folds, i.e., our 
dataset is part multiple times into 10 unique sets for learning (90% of the absolute dataset) and testing 

(10% of the complete information). Note the Accuracy, True Positive Rate, and False Positive Rate of 

every classifier. 

Compare the ACCURACY and TIME EFFICIENCY of each classifier. 

Second Experiment: In this experiment, we have extracted top ten permissions and API Tags from the 

dataset of both benign and malicious apps. We have then compared the top ten permissions and API Tags 
from both benign and malicious apps and have concluded dangerous permissions and API Tags. 

 

4. Result and Analysis 

Results of both the experiments are given below:  

1
st
 Experiment Results: 

We generate the classification model using five different classifiers described earlier for permissions, API 

Tags, and permissions plus API Tags as features and run them for four different datasets, a dataset of 50 
instances,100 instances, 150 instances and 200 instances respectively. We have used Weka [13] for 

classification. 

 

Table 1: The result of each classifier on permissions based dataset 

Classifier 

Dataset of 

50 

instances 

Dataset of 

100 

instances 

Dataset of 

150 

instances 

Dataset of 

200 

instances 

Acc. TPR Acc. TPR Acc. TPR Acc. TPR 

Naïve 

Bayes 
90% 0.840 95% 0.900 90.66

% 
0.933 92% 0.960 

KNN( 

k=5) 
86% 0.760 90% 0.820 

89.33

% 
0.827 95% 0.950 

Logistic 

Regressio

n 
90% 0.880 93% 0.960 

95.33

% 
0.960 

96.5

% 
0.960 

C4.5 90% 0.880 95% 0.980 
93.33

% 
0.933 96% 0.970 
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Figure 3: Bar Graph showing classifier wise accuracy for permission based analysis 

In permission based analysis we found that the accuracy of SVM is the highest i.e., 98% in the dataset of 

200 and 150 instances while KNN holds the lowest accuracy i.e. 86 % in case of 50 instances. Also, we 

found that in most of the cases, as we increase the number of instances the accuracy of classifier increases 

with the slight exception in case of Naïve Bayes 

 

Table 2: The result of each classifier on API Tags based dataset 

80%

85%

90%

95%

100%

Naïve
bayes

KNN( k=5) Logistic
Regression

C4.5 SVM

A
C

C
U

R
A

C
Y

CLASSIFIERS

CLASSIFIERS ACCURACY ON PERMISSION 
DATASET

Accuracy of classifiers on 50 instances

Accuracy of classifiers on 100 instances

Accuracy of classifiers on 150 instances

Accuracy of classifiers on 200 instances

SVM 90% 0.880 97% 0.960 98% 0.973 98% 0.980 

Classifier 

Dataset of 

50 

instances 

Dataset of 

100 

instances 

Dataset of 

150 

instances 

Dataset of 

200 

instances 

Acc. TPR Acc. TPR Acc. TPR Acc. TPR 

Naïve 

Bayes 
86% 0.960 93% 0.960 

89.33

% 
0.933 91% 

0.94

0 
KNN( 

k=5) 
86% 1.000 90% 1.000 

91.33

% 
1.000 

93.5

% 

1.00

0 

Logistic 

Regressio

n 
82% 0.800 87% 0.880 

89.33

% 
0.907 

92.5

% 

0.93

0 

C4.5 84% 0.920 91% 0.980 93.33
% 

1.000 93% 0.97
0 
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Figure 4: Bar Graph showing classifier wise accuracy for API Tags based analysis 

In API Tags based analysis we found that the accuracy of SVM is highest i.e., 95.5% after that Logistic 

regression and C4.5 give better result in terms of accuracy while KNN holds the lowest accuracy i.e. 86 
% in case of 50 instances. Also, we found that in most of the cases ,as we increase the number of 

instances the accuracy of classifier increases with the slight exception in case of naïve Bayes where the 

accuracy attain a peak at dataset of 100 instances  

 

Table 3: The result of each classifier on Permission plus API Tags based dataset 

 

Figure 5: Bar Graph showing classifier wise accuracy for permission plus API Tags based analysis 

75%

80%

85%

90%

95%

100%

Naïve
bayes

KNN( k=5) Logistic
Regression

C4.5 SVM

A
C

C
U

R
A

C
Y

CLASSIFIERS

CLASSIFIERS ACCURACY ON API TAGS
DATASET 

Accuracy of classifiers on 50 instances
Accuracy of classifiers on 100 instances
Accuracy of classifiers on 150 instances
Accuracy of classifiers on 200 instances

80%

85%

90%

95%

100%

Naïve
bayes

KNN( k=5) Logistic
Regression

C4.5 SVM

A
C

C
U

R
A

C
Y

CLASSIFIERS

CLASSIFIERS ACCURACY ON PERMISSIONS PLUS 
API TAGS DATASET

Accuracy of classifiers on 50 instances
Accuracy of classifiers on 100 instances
Accuracy of classifiers on 150 instances
Accuracy of classifiers on 200 instances

SVM 86% 0.880 92% 0.980 94% 0.973 95.5

% 

0.98

0 

Classifier 

Dataset of 

50 

instances 

Dataset of 

100 

instances 

Dataset of 

150 

instances 

Dataset of 

200 

instances 

Acc. TPR Acc. TPR Acc. TPR Acc. TPR 

Naïve 

Bayes 
96% 0.960 96% 1.000 94.66

% 
0.987 96% 0.990 

KNN( 

k=5) 
94% 0.960 96% 0.960 96% 0.960 

97.5
% 

0.980 

Logistic 

Regressio

n 
96% 0.960 98% 1.000 

96.66

% 
0.960 98% 0.980 

C4.5 88% 0.920 96% 0.980 95.33
% 

0.947 98% 0.990 

SVM 96% 1.000 96% 0.940 97.33

% 
0.960 98.5

% 
0.980 
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In permissions plus API Tags based analysis we found that SVM turns out to be the best classifier as the 
accuracy of SVM is highest i.e. 98.5. Also, we found that in most of the cases as we increase the number 

of instances the accuracy of the classifier also increases. 

2
nd

 Experiment result: 

We found the top ten permissions from each of the database of 100 malicious apps and 100 benign apps 

collected separately. 

 

Figure 6: Bar graph showing top 10 permissions used in malicious apps 

 

Figure 7: Bar graph showing top 10 permissions used in benign apps 
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We also found the top ten API Tags from each of the database of 100 malicious apps and 100 benign apps 

collected separately. 

 

Figure 8: Bar graph showing top 10 API Tags used in malicious apps 

 

Figure 9: Bar graph showing top 10 API Tags used in benign apps 

After comparing figure 6 and figure 7 we conclude that SEND_SMS, READ_SMS, RECEIVE_SMS, 

RECEIVE_BOOT_COMPLETED and ACCESS_COARSE_LOCATION are the permissions mostly 

used only in malicious applications. Similarly, from figure 8 and figure 9 we can see that TELEPHONY 

is the API Tag mostly used only in malicious applications. 

5. Conclusion 
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In this paper, we have examined about Android applications comprised of both malicious and non-
malicious. In Malicious apps, we have used ten malware families which have already been discussed in 

earlier chapters. 

We have used five classification algorithms to detect the malware and subsequently evaluated the 

classifiers on the basis of accuracy. 

Taking into the consideration all databases, SVM classifier turned out to be the best classifier in detecting 

the malware. 

Out of all the three datasets i.e. Permissions, API Tags, Permissions plus API Tags as features, 
Permission plus API Tags based features comes out be the best for the detection of malware on the basis 

of features. 

Analyzing all the datasets thoroughly, the top ten Android Permissions used in malicious applications are 

INTERNET, READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE,  SEND_SMS, READ_SMS, 
RECEIVE_SMS,  ACCESS_NETWORK_STATE, RECEIVE_BOOT_COMPLETED, 

ACCESS_WIFI_STATE, ACCESS_COARSE_LOCATION. 

Top ten API Tags used in malicious applications are ANDROID, APP, CONTENT, TELEPHONY, NET, 

WIDGET, UTIL, OS, TEXT, VIEW 

After comparing the top most permissions and API Tags in both malicious and benign apps we conclude 

that SEND_SMS, READ_SMS, RECEIVE_SMS, RECEIVE_BOOT_COMPLETED and 
ACCESS_COARSE_LOCATION are the dangerous permissions and TELEPHONY is the dangerous 

API Tag. 
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