
International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4986
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Design of Hybrid RISC Processor for Code Compression

1Lakshminarayana Devarakonda, 2Ganesan.V

Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India.

E-Mail: lakshman5504@gmail.

Abstract

This investigation utilizes compiler techniques for diminishing memory needed for running and loading

program executables. Based on economic incentives, embedded system needs to reduce ROM and RAM
is extremely stronger, compiler cost size is also increasing significantly. Alike of network and mobile

based computing, the necessity of transmitting an executable code is before placing it to a premium

code size. This work concentrates on compressing programmable code size with Hybrid Huffman Code

compression and Look up Table with cost minimization. It helps to combine and recognize repeated
instruction sequences. In contrary to other approaches, this hybrid method maintains competency to

execute programs directly devoid of any intervention in decompression stage. This method is merging

with industrial strength for optimizing compiler which facilitates users to provide interaction among
conventional code optimization approaches and code compression techniques. It is contended with

various complexity associated with optimizing code. The foremost contribution of this investigation is

code compression in RISC architecture which is a most resourceful factor for enhancing code
compression with repeated code fragments and newer form of hybridized code compression that

diminishes cost wise penalty while performing compression.

Keywords- RISC, code compression, Huffman code, Look Up table, instruction

I. Introduction

With the development of technologies, embedded systems are considered to be more complex, as

embedded program size is rising constantly [1]. This outcome of this constant improvement is that

program memories are accountable for huge storage of die area, which is higher that microprocessor
core area and other on-chip modules. As an outcome, compressing or reducing program size has been

measured as an essential factor for performing designing effort (cost) in association with embedded

system. This may indirectly influences the reduction of instructions size. This model is executed in the

design of RISC architecture and advanced processors. Reduced instructions are attained significantly
with the constraints of number of bits that encodes intermediates and registers [2]. Some registers are

drastically based on freedom for compiler to carry out essential factors such as global register allocation

and huge instruction to carry out similar amount of computation [3]. The overall outcome is

roughly about 35-45% smaller programs that runs 20-25% lesser than programs with conventional RISC

architectures. Subsequent way for reducing program size is the modelling of processors that may

perform compressed code [4]. To do it, decompression engine should carry out code decompression in
real time environment. However, this is due to branching instructions, decompression that may restart

from target of branch instruction. There are two essential features that differentiate data compression

and code compression crisis, turning unreasonable for code compression procedures such as Ziv and
Lempel approach and variations [5]. This work handles problem of determining code compression

approaches that facilitate effectual execution of real time compression engines.

Numerous factors describe compiled code size. Instruction set based framework of target machine has

stringer effect. For instance, stack machine may generate compact code, whilst three address RISC

machine provides larger code (every operand is named explicitly) [6]. Certain code sequences are

chosen by compiler of that effect, this may perform certain transformations during optimization.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4987
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

This work utilizes one approach for compressing code size during final compilation stage. This model

is technically simpler and it is constructed based on prior background studies. This code matching

approach recognizes identical code for executing the sequence. Compiler utilizes either cross jumping

or abstraction to channel execution of repetition via single code copy. The basic algorithm is improved
with hybridization of Huffman compression technique and Look up table for cost minimization.

This work provides numerous essential contributions towards literature. Initially, this work provides an
extensive evaluation for code compression with RISC architecture. This work helps in saving around

15% of benchmark standards with an average of about 5% approximation [7]. Next, optimization based

code space computation and extraction among these code compression and optimization is explained.
Here, two approaches are hybridized for performing code compression and cost reduction. Here, a series

of approaches are computed and improves baseline compression structure to deal differences among

register assignment [8]. This work specifies that this hybridization make crucial significance to carry

out compression. At last, these techniques provide a mechanism for handling trade off among over all
execution time and code size.

This work is structured as: Section II provides backdrop studies related to compression technique.
Section III depicts proposed framework for code compression in RISC architecture for cost

minimization. Section IV depicts numerical results and discussion based on proposed framework.

Section V illustrates conclusion with direction for future extension.

II. Related works

The essential characteristics of code compression procedure are encoding techniques that deal with

decompression approaches and branch instructions. There exist extensively two kinds of compression

approaches- dictionary and statistical coding. Former, tries to substitute series or symbols with
dictionary index, where addresses change owing to compression may deal branch instruction either with

translation table that performs translation of prior address to novel address with offset to branch

instructions. Latter is individual symbols are substitution with various sized code words based on
frequency occurrence.

Author in [9] depicted that greedy approach may substitute’s instruction groups with dictionary entries

that are decompressed during execution time. This provides restriction of target instructions will not be
compressed till it initiates such groups. This is due to the fact that branch target instruction happens in

intermediate group as it cannot be evaluated directly devoid of accessing every previous instruction in

group. They are utilized illegal codes to differentiate compressed and ordinary instructions [10]. There
are enormous works that is accessible in prevailing methods which are not capable for space restrictions.

One amongst the extensively utilized industrial standards is THUMB approach. In this approach, 32 bit

ARM processor are utilized where concurrent instructions which utilize smaller fields/operands that are
specified with 16 bit that get rid of redundant information bits and decompresses to 32 bit instructions

during execution [11]. In certain cases, variable length processor like frequent instructions need least

fields/operands which for part of significant instructions with least encoding. Therefore, this type of
approach is applied to variable length processors [12]. As THUMB code is not of compilation

procedure, the crisis of varying address with branch instruction is owing to compression that does not

arise.

Processor runs on ARM and implements in THUMB 16 bit instruction for decoding with 32 bit

instructions before decoding it. Instead of using ARM instructions, THUMB instructions are used for

providing superior compression, however it causes performance degradation as more number of
instructions is executed. Some code comprises of mixed THUMB and ARM instructions for mode

change are performed with switch instruction. These instructions initiate com precision overhead.

Author in [13], have depicted as guided procedures for producing THUMB and ARM code to acquire
compression devoid of performance degradation Algorithm functions by substituting these THUMB

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4988
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

series with ARM instruction for all compression and recital enhancement. MIPS 16 is alike of MIPS

processer extension based architecture where frequent occurrence of 32/64 instructions are specified as

16 bits. They are converted to instruction original before execution.

With Power PC processor based code pack approaches where every instruction is partitioned to two

parts and every halves are entropy dependent coded. Owing to resultant based variable encoded

instruction size are index table essential to plot older instruction to resolve newer [14]. To reduce index
table based overhead, these are compressed and placed, therefore one address translation is essential for

grouping. Degradation owing to variable lengths is eliminated by maintaining output buffer which

preserves decompressed instructions group accessible for quicker access [15]. Techniques are not
applied directly to variable length processors as instruction splitting will causes diverse sized values

and will not acquire repetition values, therefore it results in extremely lesser compression.

III. Proposed method

This section comprises RISC architecture that includes some outcomes. This RISC architecture are

simpler to pipeline and usually assists superior performance and higher clock rate, however usually
needs more instructions to carry put similar work. This may translate higher instruction bandwidth

needs which may generally satisfy instruction cache. However, all instructions posses same size where

some amount out both instruction bandwidth and program memory that are wasted with simple
instruction that are explained with lesser bits. However, RISC architecture may have relatively poor

code density. Code compression is measured as a solution for bandwidth and code density issues in

RISC design. This work explains about Huffman coding that is utilized as compressor to compress

instructional code. It is compression technique which is dependent on probabilistic distribution. Here,
frequently applied instructions are encoded with code words. Code works are used for specifying

decoding table which comprises of original instructions.

With this Huffman coding model, an effectual compression is used as it offers average codeword length.

Benefit of using this is based on prefix tree, that is, no codeword is prefix to another as in Fig 1. This

leads to simpler decoding process and more easily for implementation. This is the ultimate cause of
using Huffman code as compression approach to encode instruction based object code. Moreover,

decoding table size is generated for decompression is larger and directly influences final compression

ratio. Therefore, it reduces benefits that have been attained by instruction compression. Compression
ratio is not achieved only by reducing encoded instructions, however decoding table is considered.

Fig 1. Huffman code based decoder

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4989
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

a) Pre-fix tree based Look up Table compression

Here, superior hardware based compression approach is initiated. Indeed of encoded instructions in

Look up table is compressed which is significant in size, and if it is higher compression is appropriate.

This may deploy conjunction with prefix tree to produce Look up table.

1) Instruction based object code is encoded with fixed code length with sequential encoding

approach. The instructions are preserved in Look up table,
2) This table is compressed with Prefix tree based compression technique.

To resolve this crisis, locating branch based target address in memory may patch address to compress

code. As these encoded instructions posses fixed variable length, this will not align branch target address
instruction at boundaries. Owing to hardware decoder may evaluate encoded instruction address and if

it not handled with memory border. There is no cost based penalty for compression.

b) Compressed instructions generation

To produce encoded instruction, here initially consider uncompressed instruction words. Here,
instruction words are extracted and placed in Look up Table. With originally available code, all unique

instruction words uses numerical sequence encoding approach. With encoding technique, each

instruction word may be substituted with index to ascending order based LUT. Index posses fixed length

which is equivalent to unique log2 instruction words.

Assume, number of initial instructions are 𝑁 = 8, number of instructions is 𝑛 = 5, and 𝑖𝑛𝑑𝑒𝑥𝑙𝑒𝑛𝑔𝑡ℎ =

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ = log2(5) = 3 𝑏𝑖𝑡𝑠. With this, compression ratio is evaluated with Eq. (1)

given below:

𝑠𝑖𝑧𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑊 ∗ 𝑁

𝑆𝑖𝑧𝑒𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑁 ∗ log2(𝑛)

𝑠𝑖𝑧𝑒𝑑𝑒𝑐𝑜𝑑𝑖𝑛𝑔 𝑡𝑎𝑏𝑙𝑒 = 𝑠𝑖𝑧𝑒 (𝑡𝑎𝑏𝑙𝑒 𝑐𝑜𝑙𝑢𝑚𝑛) = ∑ 𝐶𝑖

𝑊

𝑖=1

Compression ratio with Look up table using pre fix tree is computed by,

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

=
𝑁 ∗ log2(𝑛) + ∑ 𝐶𝑖

𝑊
𝑖=1

𝑊 ∗ 𝑁

(1)

Where, 𝑊 is table column number (instruction word length), 𝑁 is original instructions, ′𝑛′ is total table

entries and 𝐶𝑖 is table column size (bits). Subsequently, to enhance compression ratio by table size

reduction, either with table column size or with number of columns that has to be reduced. ′𝑊′ is a fixed

value with reducing table column size to compress decoding table.

c) Decoding table compression

Generally, uncompressed instruction words are placed in look up table. Here, total table column is equal

to instructional word length in bits. Consider, for example, if instruction length is 8 bits, total table

column is 8. Reducing table cost is attained by diminishing table column size (bits). The ultimate

objective to compress decoding table is to reduce total bit transitions and preserves bit indeed of saving
column. Table size is 56 bits. Total table instructions are 8 with length is 3 bits. Therefore, column are

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4990
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

compressed with maximal transitions. In some cases, column is compressed and column is left devoid

of compression. Table size after compression is reduced to 37 bits. (56 𝑡𝑜 37 𝑏𝑖𝑡𝑠).

To compute cost and to compress Look up Table, prefix tree structure is provided. Column cost is table

indices occur in column. If sum is lesser than cost (𝑛), then column is compressed. Else, column

remains to be left devoid of compression. This process will be repeated in table columns. At last,

function seems to provide compression table cost. This algorithm shows that bits start from either 1 or
0 based on column entry. If number of zero in column entry is more than number of ones, algorithm

considered to be bits commences from 0. Else, it starts from 1.

Algorithm 1:

Input: Total table entries, Number of ones and

zero entries in table entry, table width, table
index length.

Output: Cost computation and compression
ratio

1. Functions of prefix tree (𝑒𝑛𝑡𝑟𝑦, 𝑐𝑜𝑠𝑡)

2. {
3. Parameter Initialization

4. Toggles = 0; cost = 0;

5. If 𝑛0 > 𝑛1 then
6. Toggle commences from 0

7. Else

8. Toggle commences from 1

9. End if

//Initialization//

10. For column ‘i’ to ‘W’ do

11. For ‘n’entries do

12. If (𝑖)[0 → 1 𝑜𝑟 1 → 0] is valid then

13. 𝑇(𝑖) = 𝑇(𝑖) + 1 {𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔}
14. End of

15. End for

16. Column cost 𝐶(𝑖) = 𝑇(𝑖) ∗ 𝐿

//validate column based compression//

17. If 𝑛 > (𝑖) then {column compress}
18. Save index of each toggle

19. 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 + 𝐶(𝑖)
20. Else
21. Maintain column // without

compression

22. End if

23. Return
24. }

Attaining superior compression ratio is based on sorting. Determining optimal sorting solution is 𝑁𝑃

complete. Testing each sorting probability based on (n) entries may need 𝑛! comparison. Henceforth,

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4991
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

entries are sorted in two different phases. Here, initial phase is generation of Gray code for given bits

(table width), then locating every table entry (conversion to decimal) to position to produce gray code.

Number of transactions among entries is reduced and columns are compressed. If table comprise 2𝑊

diverse entries (probable bits combinations) then code provides solution for sorting entries, total

transactions among two successive instructions 1). When entries are lesser than 2𝑊 , sorting will not

offer solution. Distance among two entries is computed with Hamming distance, i.e. sum of bit among

available entries. It is performed with XOR gate. Algorithm may return sorted entries. Sorting table

complexity is provided with 𝑂 (𝑛 log 𝑛), where ′𝑛′number of original instructions is provided in Look
up table (entries).

Algorithm 2: Prefix tree based sorting

Input: Number of table entries, table entry

length, table entries.

Output: Tree based sorted entries.

1. Tree distance = 0
2. Minimal distance = 1000 // defining

minimal distance

3. New_distance = 100000 // initial value
4. Sort entries of tree based on prefix

entries.

5. 𝐴 = 𝑋𝑖 𝑋𝑂𝑅 𝑋𝑖+1

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝐷𝑖

7. 𝐷𝑖 = ∑ 𝑋𝑗
𝑊
𝑗=1 (bit position in X)

8. 𝑒𝑛𝑑 𝑓𝑜𝑟

9. If 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑁𝑒𝑤𝑑𝑖𝑠𝑡𝑎𝑛𝑒 then

10. 𝑁𝑒𝑤𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝑀𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then

11. Goto 18
12. Else

13. Goto 4

14. End if

15. Else {better solution is not found}
16. Goto 4

17. End if

18. Return {𝑆1
′ , 𝑆2

′ , … , 𝑆𝑛
′ } // sort entries

To demonstrate significance of table entries based sorting and to enhance compression table cost,

demonstrate compressing LUT with total entries 𝑛 = 7, where instruction length 𝑊 = 8. It size goes

to 47 bits. After compression, the table size reduces to 35 bits.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4992
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig 2: Code compression steps

IV. Simulation

Here, decompression hardware comprises of two essential factors: Huffman decoder and Look Table
decoder. As Huffman code based algorithm is not used in Prefix tree, decompression hardware

comprises LUT based decoder as in Fig 2.

With this decoder, compression column are placed on FPGA based RAMs, every column in every

RAM, as uncompressed column posses own column decoder and works with other column in parallel.

If total compressed column is determined as ′𝑚′, then total uncompressed table in ROM is 𝑊 − 𝑚.
Every decoder posses data regarding position with original LUT and total toggles. Decoder comprises
comparator for scanning RAM entries till compressed instruction is determined. Every column decoders

functions based on asynchronous and attain similar encoded instruction, where ′𝐿′ length concurrently.

When it maintains encoded instruction, it determines position of every block RAM. Decoder may

produces ′0′ for position, else it may generate ′1′. 𝐵its with uncompressed table column are directly

attained from ROM. Accumulator merges bits with appropriate position and produces ′𝑊′ bits

decompressed instruction.

If compressed instructions are placed in table with entry 101, ROM outputs is ‘1’ to accumulator at

position 3. In case of bits position at 1, 2, 4, 5, 6, 7 and 8, controller may determine 101 at initial

location, second place and in zeroth location. Therefore, generated bits may be provided as 1, 0, 0, 1,
0, 0 and 0 correspondingly. At last, decompressed instructions may be acquired for 101010000.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4993
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig 3: LUT decoder

In pre-fix tree, LUT decoder has to perform some additional tasks as in fig 3. It acquires address from

CPU and evaluated compressed 1 of memory based instruction. This is performed as encoded
instructions in memory are with fixed length. Therefore, handling branch target address instruction with

addressed boundary is not needed, this may eradicates branch penalty produced during code

compression. Compressed address will be evaluated as in Eq. (2):

𝑀𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑠𝑒𝑑 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑑𝑑𝑟𝑒𝑠𝑠

=
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑓𝑟𝑜𝑚 𝐶𝑃𝑈

𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦

(2)

This decoder may be executed in VHDL and synthesis may be done in Xilinx for FPGA based prototype
with Virtex family. Maximal frequency attained with LUT is 330 MHz (access time with 3 ns). Total

slices required for decoding is 430.

V. Cost Minimization with LUT

Here, for reducing cost (bit size) of Look up table can be attained with two approaches:

i) Cost minimization separately

Instructions that come under this LUT will be sorted in table and compressed based on above

compression techniques. This may reduce Look up table cost and will not show any influence towards

instruction size as total instructions with code length may be ′𝑖′, (𝑖. 𝑒. 𝑁𝑖) is not be varied after sorting.

Look up table cost is evaluated with functional Pre-fix tree.

ii) Cost minimization with complete LUT

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4994
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Instructions that come under any available LUT will be transferred to newer LUT; if it is enhanced with

optimal compression ratio. Instructions are transferred to new LUT, if index size of new Look up Table

is higher than original LUT index (to preserve Huffman based Pre-fix tree property). This process may

reduce total LTU by eradicating instructions from certain Tables and insert it to another. This may
provide superior compression chance more columns in every table and subsequently reduce total

compressed table cost. This may counter produce encoded instructions size as it may produce non-

resorted LUT. For instance, moving instructions from second LUT to free entry in 4th LUT may

increases size of encoded instruction by 2 times the instruction frequency, (3 ∗ 10 = 30 𝑏𝑖𝑡𝑠).

If certain instructions are moved from LUT to another, efficiency is formulated as in Eq. (3):

𝐸
= 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑡𝑎𝑏𝑙𝑒 𝑔𝑎𝑖𝑛
− 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠

(3)

Here, compressed gain is variance among compressed table size transferring instructions (before and

after). Loss of encoded instructions is difference among encoded instruction size after and before

transferring instructions. Transferring instructions that are determined form LUT to another as size
difference may have indices higher than ‘1’ bit, is reduce instructions loss in compressed table gain. It

may show negative consequences with compression ratio. Henceforth, it may transfer instructions

among two successive LUTs (i.e. size difference of indices is ′1′ bit).

Fig 4: Optimizing LUT

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4995
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig 5: Table compression ratio

From Fig 4, the consequences of reduction in number of LUT may be encoded with instruction size,

total compressed code size and compressed LUT size. Reducing number of LUT will be ′1′ may attain

finest compression table as it will provide superior chance to compress every column of table with re-

occurring patterns as in Fig 5. This may raise cost of encoded instructions to maximal value as all
instructions (less/more frequent sequence) may possess highest codeword. Subsequently, code cost may

be reduced. Optimal solution shows 8 LUT here. This may reduce cost of tables, however may reduce

instruction cost and total cost may be diminished.

Algorithm 3:

Input: Instruction frequency, Total LUT, Number of

instructions, Minimal and Maximal transferred

instructions, Table index length, tables during

transformation.

Output: New LUT after instruction transfer.

1. Default. value = 0

2. 𝑐𝑜𝑠𝑡 min = 𝑘 = 1

3. 𝑐𝑜𝑠𝑡. max = 𝑁1

4. 𝑟𝑒𝑝𝑒𝑎𝑡 = 10

/*Evaluate table cost before transfer */

5. 𝑐𝑜𝑠𝑡1 = 𝑃𝑟𝑒 −
𝑓𝑖𝑥 𝑡𝑟𝑒𝑒 (𝑁1, 𝑖𝑛𝑑𝑒𝑥1, 𝑐𝑜𝑠𝑡1, 𝑜𝑙𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)

6. 𝑐𝑜𝑠𝑡2 = 𝑝𝑟𝑒 −
𝑓𝑖𝑥 𝑡𝑟𝑒𝑒 (𝑁2, 𝑖𝑛𝑑𝑒𝑥2, 𝑐𝑜𝑠𝑡2, 𝑜𝑙𝑑 𝑡𝑟𝑛𝑎𝑠𝑓𝑒𝑟 2)

7. 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡1 + 𝑐𝑜𝑠𝑡2

8. 𝑡𝑒𝑚𝑝1 = 𝑜𝑙𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟1

9. 𝑡𝑒𝑚𝑝2 = 𝑜𝑙𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 2

10. While 𝑘 < 𝑐𝑜𝑠𝑡. 𝑚𝑎𝑥 do
11. Repeat

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4996
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

12. For all instructions do

13. Transfer k random instructions

14. Evaluate loss

15. End for

16. 𝑐𝑜𝑠𝑡1 = 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑒𝑒 (𝑁1, 𝑡𝑒𝑚𝑝_𝑡1, 𝑐𝑜𝑠𝑡1

17. 𝑐𝑜𝑠𝑡2 = 𝑝𝑟𝑒𝑓𝑖𝑥 𝑡𝑟𝑒𝑒 (𝑁2, 𝑡𝑒𝑚𝑝_𝑡2, 𝑐𝑜𝑠𝑡2

18. 𝐴𝑓𝑡𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡1 + 𝑐𝑜𝑠𝑡 2

19. Compute efficiency with 𝐺𝑎𝑖𝑛 − 𝑙𝑜𝑠𝑠

20. ∆ = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 − 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

/* validate transfer*/

21. If ∆ > 0, then

22. 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

23. 𝑛𝑒𝑤𝑡1 = 𝑡𝑒𝑚𝑝_𝑡1, 𝑡𝑒𝑚𝑝_𝑡2
24. Else

25. Return transfer instruction

26. End if
27. End for

28. K++

29. End while

30. Return (𝑛𝑒𝑤_𝑡1, 𝑛𝑒𝑤 _𝑡2)

Algorithm 3 depicts LUT cost minimization by instruction transfer among one another: After parameter

initialization, cost computation is initiated from consecutive tables before providing instructions to Pre-

tree function (Line 5-7). Total instructions are provided by [𝑘 = # 𝑎𝑛𝑑 𝑘 = 1] for instructions.

Repetition step is provided by ′𝑟𝑒𝑝𝑒𝑎𝑡 = 10′. Algorithm may determines (𝑘) random instructions from

table and transforms to next table (line 12), evaluates size loss of encoded instructions (line 13). It may
compute table cost after instruction transfer and gain table size. However, algorithm may evaluate

efficiency. If outcomes are considered to be enhanced, algorithm maintains new table, else it may

transfer two other ne tables to acquire finest efficiency (line 30). Repeat algorithm to compute cost

minimization for all consecutive tables. Pre-tree based complexity is provided by 𝑂 [
𝑛 (𝑛+1)

2
] 𝑟𝑒𝑝𝑒𝑎𝑡.

Complexity may depends on total amount of original instructions in ′𝑛′ LUT (table entries) and total
repetition step. Raising ‘repeat’ parameter may enhance outcomes, however it may rise algorithm time.

Algorithm complexity may acquire optimal outcomes as 𝑂(2𝑛 − 1).

V. Conclusion

‘Lookup Table compression’ approaches are provided with Pre-fix tree model. It concentrated on

overhead when compression approaches are termed as decoding table size. This work significantly
concentrates on code density and provides attention towards overhead. Compression ratio requires all

overhead incurred. This approach is orthogonal with certain characteristics and provided with

compression approach that produces large table size. It is cast off in conventional compression
approach; average compression ratio is 54%, 55% and 60% is reported for PowerPC, MIPS and ARM

processor respectively.

REFERENCES

[1] T. Bonny and J. Henkel. Using Lin-Kernighan Algorithm for Look-Up Table Compression to

Improve Code Density. Proc. of the 16h Great Lakes Symposium on VLSI-(GLSVLSI’06), pp. 259-
265, Philadelphia, USA, April 2006.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 4, (2020), pp. 4986–4997

4997
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

[2] T. Bonny and J. Henkel. Instruction Re-encoding Facilitating Dense Embedded Code. IEEE/ACM

Proc. of Design Automation and Test in Europe Conference (DATE08), pp. 770-775, Munich,

Germany, March 2008.

[3] T. Bonny and J. Henkel. Efficient Code Density Through Look-up Table Compression. IEEE/ACM

Proc. of Design Automation and Test in Europe Conference (DATE07), pp. 809-814, Nice, France,

April 2007.

[4] M. Collin and M. Brorsson, Low Power Instruction Fetch using Profiled Variable Length

Instructions. in Proceedings of the IEEE International SoC Conference, pp. 183-188, 2003.

[5] L. Benini, D. Bruni, A. Macii and E. Macii. Hardware-assisted data compression for energy

minimization in systems with embedded processors. Proceedings of the conference on Design,

Automation & Test in Europe DATE02, pp. 449-453, 2002.

[6] L. Benini, A.Macii and A. Nannarelli. Cached-code compression for energy minimization in

embedded processors. International Symposium on Low Power Electronics and Design, pp. 322-327,
Aug. 2001.

[7] H. Lekatsas, J. Henkel, V. Jakkula and S. Chakradhar. A unified architecture for adaptive
compression of data and code on embedded systems. Proc. of 18th. International Conference on VLSI

Design, pp. 117-123, 2005.

[8] H. Lekatsas, J. Henkel, and W.Wolf. H/S Embedded Systems: Design and simulation of pipelined
decompression architecture for embedded systems. Proceedings of the international symposium on

systems synthesis, 2001.

[9] B. Chazelle, A Minimum Spanning Tree Algorithm with Inverse Ackermann Type Complexity.

Journal of the ACM (JACM), Vol. 47, No. 6, pp. 10281047, November 2000.

[10] H. Lekatsas, J. Henkel, and V. Jakkula. Design of an One-cycle Decompression Hardware for
Performance Increase in Embedded Systems. in Design Automation Conference (DAC’02), pp. 34-39,

2002.

[11] Y. Xie, W. Wolf and H. Lekatsas. Code compression for VLIW processors using variable-to-fixed

coding. In IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol. 14, No. 5, pp. 525-

536, 2006.

[12] Y. Xie, W. Wolf and H. Lekatsas. Code compression for VLIW processors using variable-to-fixed

coding. ACM Proceedings of 15th International Symposium on System Synthesis, pp. 138-143, 2002.

[13] Y. Xie, W. Wolf and H. Lekatsas. Compression ratio and decompression overhead tradeoffs in

code compression for VLIW architectures. In International Conference on ASIC, pp. 337-340, 2001.

[14] C. Lin, Y. Xie and W. Wolf. LZW-based code compression for VLIW embedded systems.

Proceedings of the Design, Automation and Test in Europe conf. (DATE04), pp. 76-81, 2004.

[15] Seong and P. Mishra. A Bitmask-based Code Compression Technique for Embedded Systems.
24th IEEE/ACM International Conference on Computer-Aided Design (ICCAD06), pp. 251254, 2006.

	Design of Hybrid RISC Processor for Code Compression

