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Abstract 

The present paper focuses on the characterization of compact sets of Minkowski space with a non - 

Euclidean 𝑠 – topology. We discuss the characterizations of closed set of 𝑛 – dimensional Minkowski 

space with 𝑠 – topology, and comparision of 𝑠 – topology with other topologies has been carried out, 

in detail.  
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1. INTRODUCTION 

Non – Euclidean topologies on 4 – dimensional Minkowski space were first introduced by Zeeman 

[8] in 1967. These topologies include fine, space topology [5], time topology [6], 𝑡 – topology [6] and 𝑠 

– topology [6]. Studying the homeomorphism group of 4 – dimensional Minkowski space with fine 

topology, Zeeman in his paper [8] mentioned that it is Hausdorff, connected, locally connected space 

that is normal, not locally compact and not first countable. His results were interesting both 

topologically and physically, because its homeomorphism group was the group generated by the Lorentz 

group, translations and dilatation which was exactly the one physicists would want it to be. 

Further, Nanda and Panda [7] introduced the notion of non – Euclidean topology, namely, order 

topology, and obtained that it is a non – compact, non – Hausdorff, locally connected, connected, path 

connected, simply connected space.  

In 2007, Dossena [3] proved that 𝑛 – dimensional Minkowski space, 𝑛 > 1, with the fine topology is 

separable, Hausdorff, non - normal, non - locally compact, non - Lindelof and non -first countable. 

Quite recently, in 2009, Agarwal and Shrivastava [2] obtained a  characterization for compact sets of 

Minkowski space with 𝑡 – topology besides studying its topological properties. It may be noted that 𝑡 – 

topology on 4 – dimensional Minkowski space is same as that of the well - known path topology on 

strongly casual spacetime proposed by Hawking et. al in 1976 [4]. 

In this paper, we study the concept of 𝑠 – topology on 𝑛 – dimensional Minkowski space in detail. 

Further we investigate generalized open subsets of Minkowski space endowed with the Euclidean 

topology and 𝑠- topology, respectively. We discuss the characterization of closed set of 𝘔𝘚 and 

comparison of 𝑠– topology with other topologies on 𝖬 has been carried out, in detail. 

2. NOTATION AND PRELIMINARIES 

 

Let ˄ denote an indexing set while ℝ, ℕ denote the set of real and natural numbers respectively. For a 

subset 𝖲 of 𝖠, 𝖠\𝖲 denotes the complement of 𝖲 in 𝖠. For 𝑠, 𝑡 ∈  ℝ𝑛, let 𝑑𝐸(𝑠, 𝑡) be the Euclidean 

distance between 𝑠 and 𝑡. For  𝜖 > 0,  𝑁𝜖
𝐸(𝑎) denotes the 𝜖– Euclidean neighbourhood about 𝑎 given by 

the set {𝑏 ∈  ℝ𝑛, 𝑑𝐸(𝑎, 𝑏) <  𝜖 }. For 𝑎, 𝑏 ∈  ℝ𝑛, let [𝑎, 𝑏] denote the line segment joining 𝑎 and 𝑏. 

Definition 2.1. The 𝑛 – dimensional Minkowksi space denoted by 𝖬, is the 𝑛 – dimensional vector 

space ℝ𝑛 with a bilinear form 𝑔 ∶ ℝ𝑛 ⟼ ℝ, satisfying the following properties: 

(i) for all  𝑎, 𝑏 ∈  ℝ𝑛, 𝑔(𝑎, 𝑏) = 𝑔(𝑏, 𝑎), that is the bilinear form is symmetric. 

(ii) for all  𝑏 ∈  ℝ𝑛, 𝑔(𝑎, 𝑏) = 0, that is the bilinear form is non – degenerate and 

(iii) There exists a basis {𝑒0, 𝑒1, … 𝑒𝑛−1} for ℝ𝑛 with  
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𝑔(𝑒𝑖, 𝑒𝑗) = {

1 𝑖𝑓 𝑖 = 𝑗 = 0
−1 𝑖𝑓 𝑖 = 𝑗 = 1,2, … , 𝑛 − 1

0 𝑖𝑓 𝑖 ≠ 𝑗
}, 

the bilinear form 𝑔 is called the Lorentz inner product. Elements of 𝖬 referred to as 

events. If 𝑥 = ∑ 𝑥𝑖𝑒𝑖
𝑛−1
𝑖=0  is an event, then the coordinate 𝑥0 is called the time 

component and the coordinates 𝑥1, … , 𝑥𝑛−1 are called the spatial component of 𝑥 

relative to the basis {𝑒0, 𝑒1, … 𝑒𝑛−1}. In terms of components, the Lorentz inner product 

𝑔(𝑥, 𝑦) of two events 𝑥 = ∑ 𝑥𝑖𝑒𝑖
𝑛−1
𝑖=0  and 𝑦 = ∑ 𝑦𝑖𝑒𝑖

𝑛−1
𝑖=0  is defined by 𝑥0𝑦0 ∑ 𝑥𝑖𝑦𝑖

𝑛−1
𝑖=0 . 

Lorentz inner product induces an indefinite characteristic quadratic form 𝖰 on 𝖬 given 

by 𝖰(𝑥) = 𝑔(𝑥, 𝑥). Thus 𝖰(𝑥) = 𝑥0
2 − ∑ 𝑥𝑖

2𝑛−1
𝑖=0 . The group of all linear operators 𝖳 on 

𝖬 which leave the quadratic form 𝖰 invariant, that is 𝖰(𝑥) = 𝖰(𝘛(𝑥)), for all 𝑥 ∈ 𝖬, is 

called the Lorentz group. 

Definition 2.2. A event 𝑎 ∈ 𝖬 is called space-like, light-like (also called null) or time-like vector 

according as 𝖰(𝑎) is negative, zero or positive. The sets 𝘊𝘚(𝑎) = {𝑏 ∈ 𝘔: 𝑏 = 𝑎 𝑜𝑟 𝖰(𝑏 − 𝑎) > 0} are 

likewise, respectively called the spacecone, lightcone (or null cone), and time cone at 𝑎. 

Definition 2.3. For a given 𝑎, 𝑏 ∈ 𝘔, the set {𝑎 + 𝑡(𝑏 − 𝑎): 𝑡 ∈ ℝ} is called a spacelike straight line or 

lightray or time-like straight line joining 𝑎 and 𝑏 according as 𝖰(𝑏 − 𝑎)  is negative or zero or positive. 

Definition 2.4. The Euclidean topology on the 𝑛 - dimensional Minkowski space 𝖬 is the topology 

generated by the basis 𝘉 = { 𝑁𝜖
𝐸(𝑎): 𝜖 > 0, 𝑎 ∈ 𝘔}.  𝖬 with the Euclidean topology will be denoted by 

𝘔𝐸. 

Definition 2.5. The 𝑠 - topology on the 𝑛 - dimensional Minkowski space 𝖬 is defined by specifying the 

local base of neighbourhoods at each 𝑥 ∈  𝘔 given by the collection ℵ(𝑎) = { 𝑁𝜖
𝘚(𝑎) ∶ 𝜖 > 0}, where 

 𝑁𝜖
𝘚(𝑎) =  𝑁𝜖

𝐸(𝑎) ⋂ 𝘊𝘚(𝑎) and  𝑁𝜖
𝐸(𝑎) is the 𝑠 – neighbourhood of radius 𝜖. 𝖬 endowed with 𝑠 – 

topology is denoted by 𝘔𝘚.    

Definition 2.6. The collection ℵ(𝑎)= { 𝑁𝜖
𝑡(𝑎) ∶ 𝜖 > 0}, where  𝑁𝜖

𝑡(𝑎) =  𝑁𝜖
𝐸(𝑎) ⋂ 𝘊𝑇(𝑎) forms a local 

base for the family of neighbourhoods of 𝑎 ∈  𝘔. The topology generated by these neighbourhood 

systems is called 𝑡 - topology. 

Definition 2.7. The fine topology (resp. 𝖠 - topology) on 𝖬 is the finest topology on 𝖬 which induces 

one - dimensional Euclidean topology on every time - like line (respectively, time-like line and light-

like line) and three - dimensional Euclidean topology on every space-like hyperplane. 

Definition 2.8. The time (respectively space) topology on 𝖬 with respect to which induced topology on 

every time like (respectively, space-like hyperplane) is Euclidean. 

3. COMPARISION OF s – TOPOLOGY WITH OTHER TOPOLOGIES 

In this section, a necessary and sufficient condition for a set to be open in 𝘔𝘚, has been obtained and 

also characterization of closed set of 𝘔𝘚 has been found and we compare s - topology with other 

topologies.  

Theorem 3.1. Let 𝘔𝘚 be the n – dimensional Minkowski space with s – topology and 𝖦 be the the non - 

empty subset of 𝖬. Then 𝖦 is open in 𝘔𝘚  if and only if 𝖦 ⋂ σ, 𝖦 ⋂ τ, 𝖦 ⋂ λ open in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 

respectively. 

Proof. If 𝖦 is open in 𝘔𝘚 then by definition of s – topology on 𝖬, 𝖦 ⋂ σ, 𝖦 ⋂ τ, 𝖦 ⋂ λ are open in 

𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. Conversely let 𝖳 be the topology generated by the basis 𝘉 = {𝖦 ⊆ 𝘔: 𝖦 ⋂ σ, 𝖦 

⋂ τ, 𝖦 ⋂ λ are open in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively}. Clearly s – topology is coarser than 𝖳. Let 𝖧 ∈ 𝖳. Then 

𝖧 ⋂ σ, 𝖧 ⋂ τ, 𝖧 ⋂ λ are open in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively, because 𝖧 is the union of elements of 𝘉. Hence 

𝖦 is open in s – topology.  
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Theorem 3.2. Let 𝘔𝘚 be the n – dimensional Minkowski space with s – topology and 𝖥 be the the non - 

empty subset of 𝖬. Then 𝖥 is closed in 𝘔𝘚  if and only if 𝖥 ⋂ σ, 𝖥 ⋂ τ, 𝖥 ⋂ λ closed in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 

respectively. 

Proof. Let 𝖥 be closed in 𝘔𝘚. Then 𝖬\𝖥 is open in 𝘔𝘚. (𝖬 \𝖥) ⋂ σ, (𝖬 \𝖥) ⋂ τ, (𝖬 \𝖥) ⋂ λ are open in 

𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. This implies that {σ \ (𝖥 ⋂ σ)}, {τ \ (𝖥 ⋂ τ)}, {λ \ (𝖥 ⋂ λ) are open in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 

respectively. Hence (𝖥 ⋂ σ), (𝖥 ⋂ τ), (𝖥 ⋂ λ) are closed in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. Conversely, let (𝖥 ⋂ 

σ), (𝖥 ⋂ τ), (𝖥 ⋂ λ) are closed in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. This implies that {σ \ (𝖥 ⋂ σ)}, {τ \ (𝖥 ⋂ τ)}, {λ 

\ (𝖥 ⋂ λ) are open in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. Further, (𝖬 \𝖥) ⋂ σ, (𝖬 \𝖥) ⋂ τ, (𝖬 \𝖥) ⋂ λ are open in 

𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. This implies that 𝖬\𝖥 is open in 𝘔𝘚. Hence 𝖥 is closed in 𝘔𝘚. 

Theorem 3.3. Let 𝘔𝘚 be the n – dimensional Minkowski space with s – topology. Then  

(i) 𝘊𝘛(0) − {0} is open in 𝘔𝘚. 

(ii) 𝘊𝘚(0) − {0} is open in 𝘔𝘚. 

Proof. 

(i) Since 𝘊𝘛(0) − {0} is open in 𝘔𝐸 and s – topology is finer than Euclidean topology we 

have 𝘊𝘛(0) − {0} is open in 𝘔𝘚. 
(ii) Similar to (i). 

Theorem 3.4. Let 𝘔𝘚 be the n – dimensional Minkowski space with s – topology. Then singletons are 

not open in 𝘔𝘚.  

Proof. Let 𝑥 ∈ 𝘔. Then for any 𝜖 > 0 there exists no open   𝑁𝜖
𝐸(𝑥) such that  𝑁𝜖

𝐸(𝑥) ⊆ {𝑥} because 

 𝑁𝜖
𝐸(𝑥) has infinitely many points. Hence {𝑥} is not open in 𝜎𝐸, 𝑥 is not open in 𝘔𝘚. Hence singletons 

are not open in 𝘔𝘚. 

Theorem 3.5. Let 𝘔𝘚 be the n – dimensional Minkowski space with s – topology. Then 

(i) 𝘊𝐿(0) is not open in 𝘔𝘚. 

(ii) 𝘊𝘛(0) is not open in 𝘔𝘚. 

(iii) 𝘊𝘚(0) is not open in 𝘔𝘚. 

Proof. 

(i) Let 𝜆 be the light ray passing through origin. Since 𝐶𝐿(0) ∩ 𝜆 = {0} and singletons are 

not open in 𝜆𝐸 , 𝐶𝐿(0) ∩ 𝜆 is not open in 𝜆𝐸. 

(ii) Proof of (ii) and (iii) are similar. 

Theorem 3.6. Let 𝑀𝑆be the n – dimensional Minkowski space with s – topology. Then 𝐶𝐿(0) is closed 

in 𝑀𝑆. 

Proof. Let 𝑋 =  𝐶𝐿(0). Then 𝑋𝑐 = 𝑀 − 𝐶𝐿(0) = {𝐶𝑆(0) ∪ 𝐶𝑇(0)} − {0}. This implies 𝑋𝑐 =
{(𝐶𝑆(0) − {0}) ∪ (𝐶𝑇(0) − {0})}. By theorem 3.3, (𝐶𝑆(0) − {0}) and (𝐶𝑇(0) − {0}) are open in 𝑀𝑆. 

Hence 𝑋𝐶  is open in 𝑀𝑆. This implies that 𝑋 = 𝐶𝐿(0) is closed in 𝑀𝑆. 

Theorem 3.7. Let 𝑀𝑆 be the n – dimensional Minkowski space with s – topology. Then 

(i) 𝐶𝐿(0) − {0} is not closed in 𝑀𝑆. 

(ii) 𝐶𝑇(0) − {0} is not closed in 𝑀𝑆. 

(iii) 𝐶𝑆(0) − {0} is not closed in 𝑀𝑆. 

Proof. 

(i) Let λ be the light ray passing through origin respectively. Since (𝘊𝐿(0) − {0}) ⋂ 𝜆 =
𝜆 − {0} which is not closed in 𝜆𝐸. This implies that  𝘊𝐿(0) − {0} is closed in 𝜆𝐸. Hence 

𝘊𝐿(0) − {0} is not closed in 𝘔𝘚. 
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(ii) Proof of (ii) and (iii) are similar. 

Remark 3.8. Since 𝘔𝘚 is connected, the sets 𝜙 and 𝖬 are clopen in 𝘔𝘚. 

Comparison of s - topology with other topologies.  

In this section, comparison of s - topology with other topologies on 𝖬 has been carried out.  

Theorem 3.9. Let 𝖬 be the n - dimensional Minkowski space. Then s - topology on 𝖬 is not 

comparable with  

(i) 𝑡 - topology  

(ii)  𝖠 - topology  

(iii) 𝑓 - topology on 𝖬. 

Proof. Since 𝘊𝘛(0) is open in 𝘔𝑡. By theorem 3.5 (ii), 𝘊𝘛(0) is not open in 𝘔𝘚. This implies that 𝑡 – 

topology is not coarser than 𝑠 - topology. Further, let {𝑠𝑛} be the sequence of distinct spacelike straight 

lines passing through a point 𝑧. Let 𝑧𝑛 ∈ 𝑠𝑛 such that 𝑑(𝑧𝑛, 𝑧) ↦ 0 and 𝖹 = {𝑧𝑛}. Then the set 𝖹 is 

closed in 𝘔𝘚 because (𝖹 ⋂ σ), (𝖹 ⋂ τ), (𝖹 ⋂ λ) are finite sets, hence closed in 𝜎𝐸 , 𝜏𝐸 , 𝜆𝐸 respectively. 

This implies that 𝖹𝑐 is open in 𝘔𝘚. On the other hand 𝖹𝑐 is not open in the 𝑡 – topology. This shows that 

𝑠 - topology is not coarser than 𝑡 - topology. Similar argument for 𝖠 and 𝑓 – topology. 

Theorem 3.10. Let 𝖬 be the n - dimensional Minkowski space. Then s – topology is coarser than  

(i) space topology 

(ii) time topology 

(iii) fine topology on 𝖬 

Proof. The 𝑠 - topology on 𝖬 induces three - dimensional Euclidean topology on every space-ike hyper-

plane and space topology is the finest such topology. Hence 𝑠 - topology coarser than space topology on 

𝖬. Similar argument for time and space topology. 
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