A new oscillation criteria of first order nonlinear advanced differential equation with several deviating arguments.

¹RAMA RENU, ²SRIDEVI RAVINDRAN

¹Associate professor Department of Mathematics Quaid-E-Millath Government College for Women, University of Madras, Chennai,600002, INDIA ²Research Scholar Department of Mathematics Quaid-E-Millath Government College for Women, University of Madras, Chennai,600002, INDIA ¹Email: renurama68@gmail.com,²Email: sridevisubramoniam@gmail.com

Abstract

In this paper, we established a new oscillation criteria for first order nonlinear advanced differential equation with several non monotone arguments. A new oscillation condition involving limsup and liminf is obtained. An example illustrating the result is also given.

Keywords: non monotone, nondecreasing, several deviating arguments, Grönwall inequality.

1.Introduction

Consider the first order nonlinear advanced differential equation of the form

$$u'(t) - \sum_{i=1}^{m} p_i(t) g_i(u(\sigma_i(t))) = 0 \qquad t \ge t_0 > 0.$$
(1.1)

Througout this paper, we assume the following hypotheses hold :

(H₁) $p_i(t), \sigma_i(t) \in C([t_0,\infty), R), \sigma_i(t)$ is non-monotone or nondecreasing.

(H₂) $\sigma_i(t) \ge t$ for $t \ge t_0$ and $\lim_{t \to \infty} \sigma_i(t) = \infty$ for $1 \le i \le m$.

(H₃)
$$g_i \in C(R, R)$$
 and $ug_i(u) > 0$ for $u \neq 0$ for $1 \le i \le m$.

By a solution u(t) of (1.1) we mean an absolutely continuous function on $[\sigma_i(T),\infty)$ for some $T \ge t_0$ and satisfying (1.1) for atmost all $t \ge T$. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros. Otherwise it is called non oscillatory.

In the special case for m = 1, (1.1) reduces to

$$u'(t) - p(t)g(u(\sigma(t))) = 0$$
 $t \ge t_0 > 0.$ (1.2)

where the functions p, σ are real valued functions, $\sigma(t) \ge t$ for $t \ge t_0$ and $\lim_{t \to \infty} \sigma(t) = \infty$.

Recently, there has been a considerable interest in the study of the oscillatory behaviour of the following special form of (1.1)

$$u'(t) - p(t)u(\sigma(t)) = 0, \qquad t \ge t_0$$
(1.3)

In 1983, Fukagai and Kusano [7] proved that if

$$\lim_{t\to\infty}\int_t^{\sigma(t)}p(s)ds>\frac{1}{e},$$

then all solution of (1.3) are oscillatory, while if

$$\int_{t}^{\sigma(t)} p(s) ds \le \frac{1}{e} \quad \text{for all sufficiently large t}$$

then (1.3) has a non-oscillatory solution.

In 1990, Zhou[14] proved that if $\sigma(t) \le \sigma_0$, $1 \le i \le m$ and

$$\liminf_{t\to\infty}\sum_{i=1}^m p_i(t)(\sigma_i(t)-t) > \frac{1}{e},$$

then all solution of (1.3) are oscillate.

In 2011, Braverman and Karpuz, [3] proved that the following linear differential equation

$$u'(t) + p(t)u(\sigma(t)) = 0, \qquad t \ge t_0$$
(1.4)

where p is a function of non-negative real numbers and $\sigma(t)$ is a non-monotone of positive real numbers such that $\sigma(t) < t$ for $t \ge t_0$ and $\lim_{t\to\infty} \sigma(t) = \infty$. They proved that if

$$\limsup_{t\to\infty}\int_{\delta(t)}^t p(s)\exp\left\{\int_{\sigma(s)}^{\delta(t)}p(u)du\right\}ds>1$$

where $\delta(t) = \sup_{s \le t} \sigma(s)$, $t \ge 0$, then all solution of (1.4) are oscillate.

The objective of this paper is to find a new condition for all solutions of (1.1) to be oscillatory when the arguments are not necessarily monotone.

2. Oscillation results

In this section, we present a new oscillation criteria for the equation (1.1) under the assumption that $\sigma_i(t)$, $1 \le i \le m$ are not necessarily monotone. Set

$$\delta_i(t) \coloneqq \inf_{s \ge t} \sigma_i(s), \qquad t \ge t_0 \tag{2.1}$$

Clearly, $\delta_i(t)$ are nondecreasing and $\sigma_i(t) \ge \delta_i(t)$, $1 \le i \le m$ for all $t \ge t_0$.

Assume that the function g in (1.1) satisfies the following condition

$$\limsup_{|u|\to 0} \frac{u}{g_i(u)} = L_i, \ 0 \le L_i < \infty, \qquad \text{for } 1 \le i \le m.$$
(2.2)

Lemma 2.1(Grönwall inequality)

If
$$u'(t) - p(t)u(t) \ge 0, \quad t \ge t_0,$$
 (2.3)

where $p(t) \ge 0$ and $u(t) \ge 0$, then we have

$$u(s) \ge u(t) \exp\{\{\int_{t}^{s} p(u)du\}, \quad s \ge t \ge t_{0}.$$
(2.4)

Lemma 2.2[5]

Assume that (1.1) holds and

$$\liminf_{t\to\infty}\int_t^{\sigma(t)}p(s)ds=m>0$$

then we have

$$\liminf_{t \to \infty} \int_{t}^{\sigma_{i}(t)} \sum_{j=1}^{m} p_{j}(s) ds = \liminf_{t \to \infty} \int_{t}^{\delta_{i}(t)} \sum_{j=1}^{m} p_{j}(s) ds = m,$$
(2.5)

where $\delta_i(t) \coloneqq \inf_{s \ge t} \sigma_i(s), t \ge 0$.

Theorem 2.1

Assume that the hypotheses (H₂), (H₃) and the condition (2.2) hold. If $\sigma_i(t)$ are nonmonotone or non decreasing and if

$$\liminf_{t \to \infty} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(t)} \sum_{j=1}^{m} p_j(u) du\right\} ds > \frac{L'}{e},$$
(2.6)

where $L' = \max_{1 \le i \le m} L_i$ and $\delta(t) = \min_{1 \le i \le m} \delta_i(t)$, then all solutions of (1.1) oscillate.

Proof:

Assume the sake of contradiction, that there exists a non oscillatory solution u(t) of (1.1). Since -u(t) is also a solution of (1.1) whenever u(t) is a solution of (1.1), we can confine our discussion only to the case where the solution u(t) of (1.1) is eventually positive. Then, there exists $t_1 > t_0$ such that u(t) > 0, $u(\sigma_i(t)) > 0$ and $u(\delta_i(t)) > 0$ for all $t \ge t_1$.

Thus, from (1.1) we have

$$u'(t) \ge \sum_{i=1}^{m} p_i(t) g_i(u(\sigma_i(t))) \ge 0 \text{ for all } t \ge t_1$$
(2.7)

and therefore u(t) is an eventually nondecreasing function.

Case(i)

Suppose $L_i > 0$ for $1 \le i \le m$, in view of (2.2) we can choose $t_2 > t_1$, so large such that

$$g_i(u(t)) \ge \frac{1}{2L_i} u(t) \ge \frac{1}{2L'} u(t) \text{ for all } t \ge t_2.$$
 (2.8)

By (1.1), we have

$$\frac{u'(t)}{u(t)} - \sum_{i=1}^{m} p_i(t) \frac{g_i(u(\sigma_i(t)))}{u(t)} = 0 \text{ for all } t \ge t_2.$$
(2.9)

Integrating (2.9) from t to $\delta(t)$, we get

$$ln\frac{u(\delta(t))}{u(t)} - \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \frac{g_i(u(\sigma_i(s)))}{u(s)} ds = 0 \text{ for all } t \ge t_2.$$
(2.10)

Using (2.8) in (2.10) we get

$$ln\frac{u(\delta(t))}{u(t)} - \frac{1}{2L'} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \frac{u(\sigma_i(s))}{u(s)} ds \ge 0 \text{ for all } t \ge t_2.$$
(2.11)

By Grönwall inequality, we have

$$ln\frac{u(\delta(t))}{u(t)} - \frac{1}{2L} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \frac{u(\delta_i(t))}{u(s)} \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds \ge 0 \text{ for all } t \ge t_2.$$
(2.12)

Using $t \le s \le \delta(t) \le \delta_i(t)$ and the monotonicity of u(t) we have $\frac{u(\delta_i(t))}{u(s)} \ge 1$.

$$ln\frac{u(\delta(t))}{u(t)} - \frac{1}{2L'} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds \ge 0.$$
(2.13)

From (2.6), there exists a constant d > 0 such that

$$\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds = 8L'd > \frac{L'}{e} \text{ for all } t \ge t_2 \ge t_1.$$

$$(2.14)$$

Therefore

$$\frac{1}{2L'} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds = 4d \quad .$$
(2.15)

Combining (2.13) and (2.15) we get

$$ln \frac{u(\delta(t))}{u(t)} - 4d \ge 0 \text{ for all } t \ge t_3 > t_2,$$

That is
$$\frac{u(\delta(t))}{u(t)} \ge e^{4d} \ge 4ed > 1.$$
 (2.16)

Repeating the above procedure, it follows by induction that for any positive integer k,

$$\frac{u(\delta(t))}{u(t)} \ge (4ed)^k \to \infty \text{ as } k \to \infty,$$
(2.17)

since 4 ed > 1.

By Lemma (2.2), we have

$$\liminf_{t \to \infty} \int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^m p_j(u) du = \liminf_{t \to \infty} \int_{\delta_i(t)}^{\delta_i(s)} \sum_{j=1}^m p_j(s) ds , \qquad (2.18)$$

where $\delta_i(t) = \inf_{t \le s} \sigma_i(s), t > 0.$

Also from (2.6) and (2.18), it follows that there exists a constant d > 0 such that

$$\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds = d > \frac{L'}{e}$$

From (2.6) there exists a real number $t^* \in (t, \delta(t))$ such that

$$\int_{t}^{t} \sum_{i=1}^{m} p_{i}(s) \exp\left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) du\right\} ds > \frac{L'}{2e}$$
(2.19)

and

$$\int_{t}^{\delta_{i}(t)} \sum_{i=1}^{m} p_{i}(s) \exp\left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) du\right\} ds > \frac{L'}{2e}.$$
(2.20)

By (1.1) we have

$$u'(t) \ge \sum_{i=1}^{m} p_i(s) g_i(u(\sigma_i(s))) \ge 0 \text{ for all } t \ge t_3.$$
(2.21)

Integrating (2.7) from t to t^* , we get

$$u(t^*) - u(t) \ge \int_{t}^{t^*} \sum_{i=1}^{m} p_i(s) g_i(u(\sigma_i(s))) ds$$

or

International Journal of Future Generation Communication and Networking Vol. 13, No. 4, (2020), pp.4632–4642

$$u(t^*) \ge \int_{t}^{t^*} \sum_{i=1}^{m} p_i(s) g_i(u(\sigma_i(s))) ds$$

Using (2.8) in the last inequality we get

$$u(t^*) \ge \frac{1}{2L'} \int_{t}^{t} \sum_{i=1}^{m} p_i(s) u(\sigma_i(s)) ds$$

Now using Grönwall inequality we get

$$u(t^*) \ge \frac{1}{2L'} \int_{t}^{t^*} \sum_{i=1}^{m} p_i(s) u(\delta_i(t)) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds$$

or

$$u(t^{*}) \ge \frac{1}{2L'} u(\delta(t)) \int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) \exp\left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) du\right\} ds$$
(2.22)

Now using (2.19) the last inequality becomes

$$u(t^*) \ge \frac{u(\delta(t))}{4e} \text{ for all } t \ge t_3.$$
(2.23)

Similarly integrating (2.21) from t^* to $\delta(t)$ and also using (2.20), we obtain

$$u(\delta(t)) \ge \frac{u(\delta(t^*))}{4e} \text{ for all } t \ge t_3.$$
(2.24)

Combining (2.23) and (2.24), we get

$$u(t^*) \ge \frac{u(\delta(t))}{4e} \ge \frac{u(\delta(t^*))}{16e^2}$$

That is

$$\frac{u(\delta(t^*))}{u(t^*)} \leq 16e^2 < \infty.$$

which is a contradiction to (2.17).

Case(ii)

Suppose L = 0Assume that $\limsup_{|u| \to 0} \frac{u}{g_i(u)} = L_i = 0, \ 0 \le L_i < \infty.$ (2.25) Since $\frac{u(t)}{g_i(u(t))} > 0$, there exists $t_4 \ge t_3$ such that $\frac{u}{g_i(u)} < \varepsilon \text{ or } \frac{g_i(u)}{u} > \frac{1}{\varepsilon}, \ t \ge t_4,$ (2.26) where $\varepsilon > 0$ is an arbitrary real number. Thus, from (1.1) and (2.26), we have

$$u'(t) > \frac{1}{\varepsilon} \sum_{i=1}^{m} p_i(t) u(\sigma_i(t)).$$

Integrating (2.21) from t to $\delta(t)$ and using (2.26), we get

$$u(\delta(t))-u(t) > \frac{1}{\varepsilon} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s)u(\sigma_i(s))ds,$$

That is

$$u(\delta(t)) > \frac{1}{\varepsilon} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) u(\delta_i(t)) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds$$

or

$$u(\delta(t)) > \frac{u(\delta(t))}{\varepsilon} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(s)} \sum_{j=1}^{m} p_j(u) du\right\} ds$$

or

$$> \frac{L}{e\epsilon}$$

1

or

$$\varepsilon > \frac{L'}{e}.$$

which is a contradiction to $\lim_{|u|\to 0} \frac{u(t)}{g_i(u(t))} = 0$.

The proof is completed.

Theorem 2.2

Assume that the assumptions (H₂), (H₃) and the condition (2.2) hold, if $\limsup_{t \to \infty} \int_{t}^{\delta_{i}(t)} \sum_{i=1}^{m} p_{i}(s) \exp\left\{\sum_{j=1}^{m} p_{j}(u) du\right\} ds > L',$ (2.27)

where $\sigma_i(t)$ is non-monotone or nondecreasing and $\delta(t)$ is defined as in (2.1), then all the solutions of (1.1) oscillate.

Proof:

Assume for the sake of contradiction, that there exists a non oscillatory solution u(t) of (1.1). Since -u(t) is also a solution of (1.1), whenever u(t) is a solution of (1.1) therefore it is enough to prove the theorem for positive solutions of (1.1). Then, there exists $t_1 \ge t_0$ such that $u(t) > 0, u(\sigma_i(t)) > 0$ and $u(\delta_i(t)) > 0, 1 \le i \le m$, for all $t \ge t_1$. Then, from (1.1) we have

$$u'(t) \ge \sum_{i=1}^{m} p_i(t)g_i(u(\sigma_i(t))) \ge 0 \text{ for all } t \ge t_1.$$

and therefore u(t) is nondecreasing for all $t \ge t_2$.

Again using (2.2), we have a constant $\xi > 1$ such that

$$g_i(u(t)) \ge \frac{1}{\xi L_i} u(t) \ge \frac{1}{\xi L'} u(t) \text{ for all } t \ge t_2.$$

Therefore

$$u'(t) \ge \sum_{i=1}^{m} p_i(t)g(u(\sigma_i(t))) \ge \frac{1}{\xi L'} \sum_{i=1}^{m} p_i(t)u(\sigma_i(t)) \text{ for all } t \ge t_2.$$
(2.28)

Integrating (2.28) from t to $\delta(t)$ and using the monotonicity of u(t), we have

$$u(\delta(t)) - u(t) \ge \frac{1}{\xi L'} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(t) u(\sigma_i(s)) ds \,.$$
(2.29)

Using Lemma (2.2) in (2.29) and using Grönwall inequality, we have

$$u(\delta(t)) \ge \frac{u(\delta(t))}{\xi L'} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\sum_{j=1}^{m} \int_{\delta_i(t)}^{\sigma_i(s)} p_j(u) du\right\} ds.$$
(2.30)

That is

$$u(\delta(t)\left(1-\frac{1}{\xi L'}\int_{t}^{\delta(t)}\sum_{i=1}^{m}p_i(s)\exp\left\{\sum_{j=1}^{m}\int_{\delta_i(t)}^{\sigma_i(s)}p_j(u)du\right\}ds\right)\geq 0,$$

or

$$\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\sum_{j=1}^{m} \int_{\delta_i(t)}^{\sigma_i(s)} p_j(u) du\right\} ds \leq \xi L'.$$

Taking lim supremum, we have

$$\lim_{t \to \infty} \sup \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\sum_{j=1}^{m} \int_{\delta_i(t)}^{\sigma_i(s)} p_j(u) du\right\} ds \le \xi L' \text{ for all } t \ge t_2.$$

$$(2.31)$$

From (2.27) we have

$$\lim_{t\to\infty}\sup\int_{t}^{\delta(t)}\int_{i=1}^{m}p_{i}(s)\exp\left\{\sum_{j=1}^{m}\int_{\delta_{i}(t)}^{\sigma_{i}(s)}p_{j}(u)du\right\}ds=M>L'.$$

Then

$$L' < \frac{M+L'}{2} < M$$

By choosing $\xi = \frac{M+L'}{2L'} > 1$ we have

$$\limsup_{t\to\infty} \sup_{t} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\sum_{j=1}^{m} \int_{\delta_i(t)}^{\sigma_i(s)} p_j(u) du\right\} ds = M \le \xi L' = \frac{M+L'}{2}.$$

which is a contradiction to $\frac{M+L'}{2} < M$ and the proof is completed.

3 Example

Example 3.1.

Consider the equation

$$u'(t) - \frac{1}{25}u(\sigma_1(t))ln(|12 + u(\sigma_1(t))|) - \frac{2}{25}u(\sigma_2(t))ln(|15 + u(\sigma_1(t))|) = 0, \quad t > 0,$$

where

$$\sigma_{1}(t) = \begin{cases} 5t - 20k + 1, & \text{if } t \in [5k, 5k + 1] \\ -2t + 15k + 8, & \text{if } t \in [5k + 1, 5k + 2] \\ 4t - 15k - 4, & \text{if } t \in [5k + 2, 5k + 3] \\ -2t + 15k + 14, & \text{if } t \in [5k + 3, 5k + 4] \\ 5k + 6, & \text{if } t \in [5k + 4, 5k + 5] \end{cases}$$

Figure 1.The graph of $\sigma_1(t)$, $\sigma_2(t)$

Figure 2.The graph of $\delta_1(t)$, $\delta_2(t)$

By (2.1), we have

$$\delta_1(t) = \inf_{s \ge t} \sigma_1(s) = \begin{cases} 5t - 20k + 1, & \text{if } t \in [5k, 5k + 3/5] \\ 5k + 4, & \text{if } t \in [5k + 3/5, 5k + 2] \\ 4t - 15k - 4, & \text{if } t \in [5k + 2, 5k + 5/2] \\ 5k + 6, & \text{if } t \in [5k + 5/2, 5k + 5] \end{cases}$$

and $\delta_2(t) = \inf_{s \ge t} \sigma_2(s) = \delta_1(t) + 2$, $k \in N_0$ and N_0 is the set of non negative integers.

Therefore

$$\delta(t) = \min_{1 \le i \le 2} \left\{ \delta_i(t) \right\} = \delta_1(t) \,.$$

If we put
$$p_1 = \frac{1}{25}$$
, $p_2 = \frac{2}{25}$, $g_1(u) = uln(|12 + u(\sigma_1(t))|)$ and $g_2(u) = uln(|15 + u(\sigma_2(t))|)$.

Then we have

$$L_{1} = \limsup_{|u| \to 0} \frac{u}{g_{1}(u)} = \limsup_{|u| \to 0} \frac{u}{uln(12 + |u(\sigma_{1}(t))|)} = \frac{1}{ln12}$$

$$L_{2} = \limsup_{|u| \to 0} \frac{u}{g_{2}(u)} = \limsup_{|u| \to 0} \frac{u}{uln(15 + |u(\sigma_{2}(t))|)} = \frac{1}{ln15}$$
$$L' = \max\{L_{1}, L_{2}\} = L_{1} = \frac{1}{ln12}.$$

Now at t = 5k + 2.5, $k \in N_0$ we have

$$\int_{t}^{\delta(t)} \sum_{i=1}^{2} p_{i}(s) \exp\left\{\sum_{j=1}^{2} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) du\right\} ds$$

=
$$\int_{t}^{\delta(t)} p_{1}(s) \exp\left\{\int_{\delta_{1}(t)}^{\sigma_{1}(s)} (p_{1}(u) + p_{2}(u)) du\right\} ds + \int_{t}^{\delta(t)} p_{2}(s) \exp\left\{\int_{\delta_{2}(t)}^{\sigma_{2}(s)} (p_{1}(u) + p_{2}(u)) du\right\} ds$$

$$\int_{5k+2.5}^{5k+6} \frac{1}{25} \exp\left\{ \int_{5k+6}^{4s-15k-4} \frac{3}{e} du \right\} ds + \int_{5k+2.5}^{5k+6} \frac{2}{25} \exp\left\{ \int_{5k+8}^{4s-15k-2} \frac{3}{e} du \right\} ds$$

$$= \int_{5k+2.5}^{5k+6} \frac{1}{25} \exp\left\{ \frac{3}{e} (4s-20k-10) \right\} ds + \int_{5k+2.5}^{5k+6} \frac{2}{25} \exp\left\{ \frac{3}{e} (4s-20k-10) \right\} ds$$

$$= \int_{5k+2.5}^{5k+6} \frac{3}{25} \exp\left\{ \frac{3}{25} (4s-20k-10) \right\} ds$$

$$= \frac{1}{4} \left[\exp\left(\frac{42}{25} - 1 \right) \right]$$

$$= 1.091338899928 > 1$$

$$\liminf_{t \to \infty} \int_{t}^{\infty} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\infty} \sum_{j=1}^{m} q_j(u) du\right\} ds > 1 > \frac{L'}{25} = \frac{1}{25ln12}$$
$$\limsup_{t \to \infty} \int_{t}^{\delta_i(t)} \sum_{i=1}^{m} p_i(s) \exp\left\{\int_{\delta_i(t)}^{\sigma_i(t)} \sum_{j=1}^{m} q_j(u) du\right\} ds > 1 > L' = \frac{1}{ln12}$$

ISSN: 2233-7857 IJFGCN Copyright ©2020 SERSC

•

That is, all conditions of Theorem 2.1 and Theorem 2.2 are satisfied. Therefore all solutions of (1.1) oscillate.

References

[1] Akca,H., Chatzarakis, G.E., Stavroulakis, I.P.:An oscillation criterion for delay differential equations with several non-monotone arguments. Appl. Math.Lett. **59**,

101–108 (2016).

[2] Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012).

[3] Braverman E, Karpuz B. On oscillation of differential and difference equations with nonmonotone delays. Appl Math Comput. 2011;218:3880–3887.

[4]Chatzarakis, G.E., Li, T.: Oscillations of differential equations generated by several deviating arguments. Adv. Differ.Equ. 2017, 292 (2017)

[5] Chatzarakis, G.E., öcalan, ö.: Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. Int. J. (2015).

[6]L. H. Erbe and B. G. Zhang, "Oscillation for first order linear differential equations with deviating arguments," Differential and Integral Equations: International Journal for Theory and Applications, vol.1, no. 3, pp. 305–314, 1988.

[7] N. Fukagai and T. Kusano, "Oscillation theory of first order functional differential equations with deviating arguments," Annali di Matematica Pura ed Applicata. Serie Quarta, vol. 136, no. 1, pp. 95–117, 1984.

[8] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs, Clarendon Press, New York, NY, USA, 1991.

[9]Li X. and Zhu D., Oscillation and nonoscillation of advanced differential equations withvariable coe_cients, J. Math. Anal. Appl. 269 (2002), 462-488.

[10]ö. öcalan, N. Kilic, S. Sahin, and U.M. özkan, Oscillation of nonlinear delay differential equations with non-monotone arguments, International Journal of Analysis and Applications, 14(2) (2017), 147-154.

[11] ö. öcalan, N. Kilic and U.M. özkan, Oscillatory behaviour of non-linear advanced differential equation with non-monotone arguments, Acta Math. Univ. Comenianae, Vol. LXXXVIII, 2 (2019), pp. 239-246.

[12]ö. öcalan, N. Kilic, U.M. özkan and Sermin öztürk Oscillatory behavior for nonlinear delay differential equation with several non-monotone arguments, Computational Methods for Differential Equations, Vol. 8, No. 1, 2020, pp. 14-27

[13] B. G. Zhang, Oscillation of solutions of the first-order advanced type differential equations, Sci. Exploration 2(1982), 79–82.

[14] Zhou D. On some problems on oscillation of functional differential equations of first order. JShandong Univ. 1990;25:434–442.