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Abstract 

In this paper, we established a new oscillation criteria for first order nonlinear advanced 

differential equation with several non monotone arguments. A new oscillation condition 

involving limsup and liminf is obtained. An example illustrating the result is also given. 

Keywords: non monotone, nondecreasing, several deviating arguments, Gr�̈�nwall 

inequality. 

1.Introduction 

 Consider the first order nonlinear advanced differential equation of the form 

1

'( ) ( ) ( ( ( ))) 0
m

i i i

i

u t p t g u t


   0 0t t  .                      (1.1) 

 Througout this paper, we assume the following hypotheses hold : 

(H1) 0,( ), ( ) ([ ), )i ip t t C t R   , ( )i t  is non-monotone or nondecreasing. 

(H2) ( )i t t   for  0t t and lim ( )i
t

t


   for 1 i m  .
  

(H3) 
( , )ig C R R and ( ) 0iug u   for 0u   for 1 i m  . 

By a solution u(t) of (1.1) we mean an absolutely continuous function on  ( ),i T  for 

some 0T t  and satisfying (1.1) for atmost all t T .  A solution of (1.1) is called 

oscillatory if it has arbitrarily large zeros. Otherwise it is called non oscillatory.  

In the special case for 1m  , (1.1) reduces to  
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'( ) ( ) ( ( ( ))) 0u t p t g u t    0 0t t  .                        (1.2) 

where the functions ,p   are real valued functions, ( )t t   for  0t t  and 

lim ( )
t

t


  . 

Recently, there has been a considerable interest in the study of the oscillatory behaviour 

of the following special form of (1.1) 

'( ) ( ) ( ( )) 0u t p t u t  ,   0t t                         (1.3) 

In 1983, Fukagai and Kusano [7] proved that if  

  

( )
1

lim ( )

t

t
t

p s ds
e




  , 

then all solution of (1.3) are oscillatory, while if 

  

( )
1

( )

t

t

p s ds
e



   for all sufficiently large t, 

then (1.3) has a non-oscillatory solution. 

In 1990, Zhou[14] proved that if 0( )t  , 1 i m   and 

  
1

1
liminf ( )( ( ) )

m

i i
t

i

p t t t
e






  , 

then all solution of (1.3) are oscillate. 

In 2011, Braverman and Karpuz,[3] proved that the following linear differential equation 

'( ) ( ) ( ( )) 0u t p t u t  , 0t t                          (1.4) 

where p is a function of non-negative real numbers and ( )t  is a non-monotone of 

positive real numbers such that ( )t t   for  0t t  and lim ( )
t

t


  . They proved that 

if  

  

( )

( ) ( )

limsup ( )exp ( ) 1

tt

t
t s

p s p u du ds



 


  
 

  
   

where ( ) sup ( )
s t

t s 


 , 0t  , then all solution of (1.4) are oscillate. 

The objective of this paper is to find a new condition for all solutions of (1.1) to be 

oscillatory when the arguments are not necessarily monotone. 
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2. Oscillation results 

 

In this section, we present a new oscillation criteria for the equation (1.1) under the 

assumption that ( ), 1i t i m    are not necessarily monotone. Set 

( ) : inf ( )i i
s t

t s 


 ,    0t t                                (2.1) 

Clearly, ( )i t  are nondecreasing and ( ) ( ),i it t   1 i m   for all 0t t . 

Assume that the function g in (1.1) satisfies the following condition 

0

limsup ,
( )

i
u i

u
L

g u

  0 iL   ,  for 1 i m  .                              (2.2) 

 

Lemma 2.1(Gr�̈�nwall inequality) 

 

 If 

'( ) ( ) ( ) 0u t p t u t  ,    0t t ,                                                            (2.3) 

where ( ) 0p t  and ( ) 0u t  ,  then we have 

( ) ( )exp{ ( ) }

s

t

u s u t p u du  , 0s t t  .                                               (2.4) 

 

Lemma 2.2[5] 

 

Assume that (1.1) holds and  

   

( )

liminf ( ) 0

t

t
t

p s ds m




   

then we have  

( ) ( )

1 1

liminf ( ) liminf ( ) ,
i it tm m

j j
t t

j jt t

p s ds p s ds m

 

 
 

                                      (2.5) 

where ( ) : inf ( )i i
s t

t s 


 , 0t   . 

Theorem 2.1 

Assume that the hypotheses (H2), (H3) and the condition (2.2) hold. If ( )i t  are non-

monotone or non decreasing and if 

 

( )( )

1 1( )

'
liminf ( )exp ( )

i

i

tt m m

i j
t

i jt t

L
p s p u du ds

e






 

  
 

  
   ,                                 (2.6) 

where 
1

' max i
i m

L L
 

  and 
1

( ) min ( )i
i m

t t 
 

 , then all solutions of (1.1) oscillate. 
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Proof: 

Assume the sake of contradiction, that there exists a non oscillatory solution  ( )u t  of 

(1.1). Since ( )u t  is also a solution of (1.1) whenever ( )u t  is a solution of (1.1), we can 

confine our discussion only to the case where the solution ( )u t of (1.1) is eventually 

positive. Then, there exists 1 0t t  such that ( ) 0u t  , ( ( )) 0iu t   and ( ( )) 0iu t   for 

all 1t t . 

Thus, from (1.1)  we have    

1

'( ) ( ) ( ( ( ))) 0
m

i i i

i

u t p t g u t


   for all 1t t                                    (2.7) 

and therefore ( )u t is an eventually nondecreasing function. 

 

Case(i) 

Suppose 0iL   for 1 i m  , in view of (2.2) we can choose 2 1t t , so large such that 

1 1
( ( )) ( ) ( )

2 2 '
i

i

g u t u t u t
L L

   for all 2t t .                       (2.8) 

By (1.1), we have 

1

( ( ( )))'( )
( ) 0

( ) ( )

m
i i

i

i

g u tu t
p t

u t u t





   for all 2t t .                                (2.9) 

Integrating (2.9) from t  to ( )t , we get 

( )

1

( ( ( )))( ( ))
( ) 0

( ) ( )

t m
i i

i

it

g u su t
ln p s ds

u t u s






    for all 2t t .                                     (2.10) 

Using (2.8) in (2.10) we get 
( )

1

( ( ))( ( )) 1
( ) 0

( ) 2 ' ( )

t m
i

i

it

u su t
ln p s ds

u t L u s






    for all 2t t .                               (2.11) 

By Gr�̈�nwall inequality , we have 

( )( )

1 1( )

( ( ))( ( )) 1
( ) exp ( ) 0

( ) 2 ' ( )

i

i

st m m
i

i j

i jt t

u tu t
ln p s p u du ds

u t L u s







 

  
  

  
    for all 2t t . 

              (2.12) 

                   

 

Using ( ) ( )it s t t     and the monotonicity of ( )u t  we have 
( ( ))

1
( )

iu t

u s


 . 

Therefore (2.12) becomes 

( )( )

1 1( )

( ( )) 1
( )exp ( ) 0

( ) 2 '

i

i

st m m

i j

i jt t

u t
ln p s p u du ds

u t L







 

  
  

  
   .                               (2.13) 

From (2.6), there exists a constant 0d   such that 

 

( )( )

1 1( )

'
( )exp ( ) 8 '

i

i

st m m

i j

i jt t

L
p s p u du ds L d

e



 

  
  

  
    for all 2 1t t t  .                  (2.14) 
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Therefore 

( )( )

1 1( )

1
( )exp ( ) 4

2 '

i

i

st m m

i j

i jt t

p s p u du ds d
L



 

  
 

  
    .                     (2.15) 

Combining (2.13) and (2.15) we get 

( ( ))
4 0

( )

u t
ln d

u t


   for all 3 2t t t  , 

That is 

4( ( ))
4 1

( )

du t
e ed

u t


    .                                                                                            (2.16) 

Repeating the above procedure, it follows by induction that for any positive integer k,   

( ( ))
(4 )

( )

ku t
ed

u t


   as k  ,                (2.17) 

since 4 1ed  . 

By Lemma (2.2), we have 
( ) ( )

1 1( ) ( )

liminf ( ) liminf ( )
i i

i i

s sm m

j j
t t

j jt t

p u du p s ds

 

 
 

 

   ,                    (2.18)

  

where ( ) inf ( )i i
t s

t s 


 , 0t  .   

Also from (2.6) and (2.18), it follows that there exists a constant 0d   such that 

( )( )

1 1( )

'
( ) exp ( )

i

i

st m m

i j

i jt t

L
p s p u du ds d

e



 

  
  

  
   . 

 

 From (2.6) there exists a real number 
* ( , ( ))t t t  such that 

* ( )

1 1( )

'
( ) exp ( )

2

i

i

st m m

i j

i jt t

L
p s p u du ds

e



 

  
 

  
                        (2.19) 

and 

*

( )( )

1 1( )

'
( ) exp ( )

2

i

i

st m m

i j

i jtt

L
p s p u du ds

e



 

  
 

  
   .                     (2.20) 

     

By (1.1) we have 

1

'( ) ( ) ( ( ( ))) 0
m

i i i

i

u t p s g u s


   for all 3t t .                         (2.21) 

Integrating (2.7) from t  to 
*t , we get 

  

*

*

1

( ) ( ) ( ) ( ( ( )))

t m

i i i

it

u t u t p s g u s ds


    

or 
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*

*

1

( ) ( ) ( ( ( )))

t m

i i i

it

u t p s g u s ds


   

Using (2.8) in the last inequality we get 
*

*

1

1
( ) ( ) ( ( ))

2 '

t m

i i

it

u t p s u s ds
L




   

Now using Gr�̈�nwall inequality we get  
* ( )

*

1 1( )

1
( ) ( ) ( ( )) exp ( )

2 '

i

i

st m m

i i j

i jt t

u t p s u t p u du ds
L






 

  
  

  
    

or 
* ( )

*

1 1( )

1
( ) ( ( )) ( )exp ( )

2 '

i

i

st m m

i j

i jt t

u t u t p s p u du ds
L






 

  
  

  
                      (2.22) 

 

Now using (2.19) the last inequality becomes 

  

* ( ( ))
( )

4

u t
u t

e


  for all 3t t .                       (2.23) 

Similarly  integrating (2.21)  from *t  to ( )t  and also using (2.20), we obtain 

 
*( ( ))

( ( ))
4

u t
u t

e


   for all 3t t .                           (2.24)

  

Combining  (2.23) and (2.24), we get 

  

*

2

( ( )) ( ( ))
( *)

4 16

u t u t
u t

e e

 
  . 

That is 

  
2( ( *))

16
( *)

u t
e

u t


   . 

which is a contradiction to  (2.17). 

 

Case(ii) 

Suppose 0L   

  Assume that  

0

limsup 0,
( )

i
u i

u
L

g u

   0 iL   .                      (2.25) 

Since 
( )

0
( ( ))i

u t

g u t
 , there exists 4 3t t  such that  

( )i

u

g u
  or  

( ) 1ig u

u 
 ,  4t t ,                      (2.26) 
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where 0   is an arbitrary real number. Thus, from (1.1) and (2.26), we have 

1

1
'( ) ( ) ( ( ))

m

i i

i

u t p t u t
 

  .         

Integrating (2.21) from t  to ( )t  and using (2.26), we get 

( )

1

1
( ( )) ( ) ( ) ( ( ))

t m

i i

it

u t u t p s u s ds



 
 

   , 

That is 

  

( )( )

1 1( )

1
( ( )) ( ) ( ( ))exp ( )

i

i

st m m

i i j

i jt t

u t p s u t p u du ds





 
  

  
  

  
    

or 

  

( )( )

1 1( )

( ( ))
( ( )) ( )exp ( )

i

i

st m m

i j

i jt t

u t
u t p s p u du ds








  

  
  

  
    

or 

  
'

1
L

e
  

or 

  
'L

e
  . 

which is a contradiction to 
0

( )
lim 0

( ( ))u
i

u t

g u t
 . 

The proof is completed. 

 

Theorem 2.2 

 

Assume that the assumptions (H2), (H3) and the condition (2.2) hold, if
( )

1 1

limsup ( )exp ( ) '
i t m m

i j
t i jt

p s p u du ds L



  

 
 

 
  ,                               (2.27) 

where ( )i t is non-monotone or nondecreasing and ( )t is defined as in (2.1), then all the 

solutions of (1.1) oscillate. 

Proof:    

Assume for the sake of contradiction, that there exists a non oscillatory solution ( )u t  of 

(1.1). Since ( )u t  is also a solution of (1.1), whenever ( )u t  is a solution of (1.1) 

therefore it is enough to prove the theorem for positive solutions of (1.1). Then, there 

exists 1 0t t  such that ( ) 0, ( ( )) 0iu t u t   and ( ( )) 0,1iu t i m    , for all 1t t

.Then, from (1.1) we have 

  
1

'( ) ( ) ( ( ( ))) 0
m

i

i

i iu t p t g u t


   for all 1t t .    
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 and therefore ( )u t is nondecreasing for all 2t t . 

Again using (2.2), we have a constant 1   such that 

1 1
( ( )) ( ) ( )

'
i

i

g u t u t u t
L L 

   for all 2t t . 

 Therefore 

1 1

1
'( ) ( ) ( ( ( ))) ( ) ( ( ))

'

m m

i i i i

i i

u t p t g u t p t u t
L

 
 

    for all 2t t .                     (2.28) 

Integrating (2.28) from t to ( )t  and using the monotonicity of ( )u t , we have  

( )

1

1
( ( )) ( ) ( ) ( ( ))

'

t m

i i

it

u t u t p t u s ds
L



 
 

   .                                                         (2.29) 

 Using Lemma (2.2) in (2.29) and using Gr�̈�nwall inequality, we have  . 

( )( )

1 1 ( )

( ( ))
( ( )) ( )exp ( )

'

i

i

st m m

i j

i jt t

u t
u t p s p u du ds

L








  

  
  

  
   .                   (2.30) 

That is 

  

( )( )

1 1 ( )

1
( ( ) 1 ( )exp ( ) 0

'

i

i

st m m

i j

i jt t

u t p s p u du ds
L






  

   
   
    

   , 

or 

  

( )( )

1 1 ( )

( )exp ( ) '
i

i

st m m

i j

i jt t

p s p u du ds L






 

  
 

  
   . 

Taking lim supremum, we have 

 

( )( )

1 1 ( )

limsup ( )exp ( ) '
i

i

st m m

i j
t

i jt t

p s p u du ds L








 

  
 

  
    for all 2t t .                        (2.31) 

 From (2.27) we have 

                           

( )( )

1 1 ( )

limsup ( )exp ( ) '
i

i

st m m

i j
t

i jt t

p s p u du ds M L






 

  
  

  
   . 

Then  

                           
'

'
2

M L
L M


  . 

By choosing  
'

1
2 '

M L

L



   we have 

                         

( )( )

1 1 ( )

'
limsup ( )exp ( ) '

2

i

i

st m m

i j
t

i jt t

M L
p s p u du ds M L








 

   
   

  
   . 

which is a contradiction to 
'

2

M L
M


 and the proof is completed.   
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3  Example 

Example 3.1.  

Consider the equation 

  1 1 2 1

1 2
'( ) ( ( )) (12 ( ( )) ) ( ( )) (15 ( ( )) ) 0,

25 25
u t u t ln u t u t ln u t           0t  ,  

where  

1

5 20 1, [5 ,5 1]

2 15 8, [5 1,5 2]

( ) 4 15 4, [5 2,5 3]

2 15 14, [5 3,5 4]

5 6, [5 4,5 5]

t k if t k k

t k if t k k

t t k if t k k

t k if t k k

k if t k k



   

     


     
      


   

            

               

                Figure 1.The graph of 𝜎1(t), 𝜎2(t)            Figure 2.The graph of δ1(t), δ2(t) 

 

 By (2.1), we have  

1 1

5 20 1, [5 ,5 3 5]

5 4, [5 3 5,5 2]
( ) inf ( )

4 15 4, [5 2,5 5 2]

5 6, [5 5 2,5 5]

s t

t k if t k k

k if t k k
t s

t k if t k k

k if t k k

 


   


   
  

    
    

                   

and 
2 2 1( ) inf ( ) ( ) 2

s t
t s t  


   , 0k N and 0N is the set of non negative integers. 

Therefore 
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  1
1 2

( ) min ( ) ( )i
i

t t t  
 

  . 

If  we put 1

1

25
p  , 2

2

25
p  , 1( )g u = 1(12 ( ( )) )uln u t  and 2 ( )g u = 

2(15 ( ( )) )uln u t .  

Then we have                          

1
0 01 1

1
limsup limsup

( ) (12 ( ( )) ) 12u u

u u
L

g u uln u t ln 

  


 

2
0 02 2

1
limsup limsup

( ) (15 ( ( )) ) 15u u

u u
L

g u uln u t ln 

  


 

 1 2 1

1
' max ,

12
L L L L

ln
   . 

Now at 5 2.5t k  , 0k N we have  

( )( ) 2 2

1 1 ( )

( )exp ( )
i

i

st

i j

i jt t

p s p u du ds



 

  
 
  

  

1 2

1 2

( ) ( )( ) ( )

1 1 2 2 1 2

( ) ( )

( )exp ( ( ) ( )) ( )exp ( ( ) ( ))

s st t

t t t t

p s p u p u du ds p s p u p u du ds

  

 

      
      

      
   

 

5 6 4 15 4 5 6 4 15 2

5 2.5 5 6 5 2.5 5 8

5 6 5 6

5 2.5 5 2.5

5

5 2.5

1 3 2 3
exp exp

25 25

1 3 2 3
exp (4 20 10) exp (4 20 10)

25 25

3 3
exp (4 20 10)

25 25

k s k k s k

k k k k

k k

k k

k

k

du ds du ds
e e

s k ds s k ds
e e

s k ds

     

   

 

 



   
   

   

   
        

   

 
   

 

   

 
6

1 42
[exp 1]

4 25

1.091338899928 1



 

 

  

( )( )

1 1( )

' 1
liminf ( )exp ( ) 1

25 25 12

i

i

tt m m

i j
t

i jt t

L
p s q u du ds

ln






 

  
   

  
    

( )( )

1 1( )

1
limsup ( )exp ( ) 1 '

12

i

i

tt m m

i j
t i jt t

p s q u du ds L
ln




  

  
   

  
                                      

 . 
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That is, all conditions of Theorem2.1 and Theorem2.2 are satisfied. Therefore all 

solutions of (1.1) oscillate. 
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