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A new oscillation criteria of first order nonlinear advanced
differential equation with several deviating arguments.
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Abstract
In this paper, we established a new oscillation criteria for first order nonlinear advanced
differential equation with several non monotone arguments. A new oscillation condition
involving limsup and liminf is obtained. An example illustrating the result is also given.
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1.Introduction

Consider the first order nonlinear advanced differential equation of the form
u'tt) - pi(0)g; (u(o; (t)) =0 t>t, >0, (L)
i=1

Througout this paper, we assume the following hypotheses hold :

(Hy) p,(t), o;(t) e C([t, ), R) , o;(t) is non-monotone or nondecreasing.
(Hz) o;(t) >t for t>t,and !imai(t) =oo for 1<i<m.

(Hy) 9 € C(R,R)and ug;(u) >0 for u=0 for 1<i<m.

By a solution u(t) of (1.1) we mean an absolutely continuous function on [o-i (T),oo)for

some T >t, and satisfying (1.1) for atmost all t>T . A solution of (1.1) is called
oscillatory if it has arbitrarily large zeros. Otherwise it is called non oscillatory.

In the special case for m=1, (1.1) reduces to
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u'tt) - p)gu(e(®) =0  t=t,>0. (1.2)

where the functions p,o are real valued functions, o(t)>t for t>t, and

limor(t) = oo.

t—o0

Recently, there has been a considerable interest in the study of the oscillatory behaviour
of the following special form of (1.1)

u't) - p(t)u(o(t)) =0, t=t, (1.3)
In 1983, Fukagai and Kusano [7] proved that if

o(t) 1
lim j p(s)ds >
t

t—owo e '

then all solution of (1.3) are oscillatory, while if

o(t)
1

I p(s)ds <= for all sufficiently large t,
e

t
then (1.3) has a non-oscillatory solution.

In 1990, Zhou[14] proved that if o(t) <o,, 1<i<m and

Iirtlliwnf Zm: p; (1) (o; (1) —t) > % ,

then all solution of (1.3) are oscillate.

In 2011, Braverman and Karpuz,[3] proved that the following linear differential equation
u'(t)+ p(tu(o(t)) =0, t>t, (1.4)

where p is a function of non-negative real numbers and o (t) is a non-monotone of
positive real numbers such that o(t) <t for t>t; and !im o(t) =oo. They proved that
if

t

limsup j p(s) exp{gjp p(u)du}ds >1

B ) o(s)

where 6 (t) =supo(s), t >0, then all solution of (1.4) are oscillate.

s<t

The objective of this paper is to find a new condition for all solutions of (1.1) to be
oscillatory when the arguments are not necessarily monotone.
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2. Oscillation results

In this section, we present a new oscillation criteria for the equation (1.1) under the
assumption that o, (t), 1<i <m are not necessarily monotone. Set

o.(t) = in!" o.(S), t>t, (2.1)
Clearly, o.(t) are nondecreasing and o;(t) > o, (t), 1<i<m forall t>t,.

Assume that the function g in (1.1) satisfies the following condition

limsup—— =L, 0<L, <oo, for 1<i<m. 2.2)
oo g; (u)

Lemma 2.1(Gronwall inequality)

If
u'(t)— p(tu(t) >0, t>t,, (2.3)
where p(t) >0and u(t) >0, then we have

u(s) > uf(t) exp{j' p(u)du}, sx>txt,. (2.4)

Lemma 2.2[5]

Assume that (1.1) holds and
o(t)
liminf j p(s)ds =m >0

t

then we have

o (t) m S (t) m

liminf ijj(s)ds=lirtninf jzpj(s)ds=m, (2.5)
—0 ) —0 )
where & (t) ::irﬂc o,(s), t>0 .

Theorem 2.1

Assume that the hypotheses (Hz), (Hs) and the condition (2.2) hold. If o;(t) are non-

monotone or non decreasing and if

S(t) m oi(t) m 1
liminf jzpi(s)exp{ | ij(u)du}ds >%, (2.6)

s () =L

where L'=maxL; and &(t) =minJ,(t), then all solutions of (1.1) oscillate.

1<i<m 1<i<m
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Proof:

Assume the sake of contradiction, that there exists a non oscillatory solution wu(t) of
(1.1). Since —u(t) is also a solution of (1.1) whenever u(t) is a solution of (1.1), we can
confine our discussion only to the case where the solution u(t) of (1.1) is eventually

positive. Then, there exists t, > t; such that u(t) >0, u(o;(t)) >0 and u(J;(t)) >0 for

all t>t,.
Thus, from (1.1) we have

u't) > Z p. (1), (U(o; (1)) = 0 forall t>t, @.7)

and therefore u(t) is an eventually nondecreasing function.

Case(i)
Suppose L, >0 for 1<i<m, in view of (2.2) we can choose t, >t , so large such that
gi(u(t))ziiu(t)ziu(t) forall t>t, . 2.8)
By (1.1), we have
u (t) S g;(u(g (1))
0 21: p(t ) o =0 forall t>t,. (2.9)
Integrating (2.9) from t to o(t), we get
5 m

“(5(0) j Z p,(s) 291 18)) (U((G)(S))) ds=0 forall t>t,. (2.10)
Using (2.8) in (2.10) we get

uEe) 1P u(a (s»
In o j Z (5) =222 ds>0 forall t>t,. (2.11)

By Gronwall inequality , we have

uEw) 1 P8 u(6 ®) o) TS
In TOREE j Zp,( ) 0s) exp{aj('t);p (u)du rds >0 forall t>t,.

(2.12)

Using t<s<o(t)<o(t) and the monotonicity of u(t) we have

u@,®) . 4
u(s)

Therefore (2.12) becomes

uE) 17 BB
In———=— p;(s)exp p;(u)du;ds>0. (2.13)
ut)y 2L I Z 5'[0121:
From (2.6), there exists a constantd > 0 such that
5 m ai(s) m
[ > pis)expd [ > p(u)dujds=8L" d>— forall t>t,>t,. (2.14)
t i=l S () I=1
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Therefore

o) m oi(s) m
PTR I P (S)eXp{ j >p, (U)dU}ds 4d . (2.15)

t =l s (t) J=1

Combining (2.13) and (2.15) we get
YO 4450 forall t>t, >t,,

u(t)
That is
UOWM) 5 g4 3 ged 51 . (2.16)
u(t)
Repeating the above procedure, it follows by induction that for any positive integer k,
LCIQ)I (4ed)* — o0 as k > o0, (2.17)
u(t)
since 4ed >1.
By Lemma (2.2), we have
O'i(S) m ‘) (5) m
liminf [ Xp, (u)du =liminf j > p,(s)ds, (2.18)

& () §=1 & (1) J=1

where &, (t) =inf o;(s), t>0.

t<s

Also from (2.6) and (2.18), it follows that there exists a constant d > 0 such that

50 a(s) m
j ZIO.(S)GXIO{ [ > (u)du}ds d >—

s (t) J=1

From (2.6) there exists a real number t” € (t, 5(t)) such that

' m oi(s) m
IZ p; (s)exp{ I >p, (u)du}ds>2— (2.19)

t i=l s () i=1

and

50 o
J: z D, (s)exp{ j >p, (u)du}ds > (2.20)

5 (t) j=1

By (1.1) we have
u't) > i p;(S)g; (u(o;(s))) =0 forall t>t,. (2.22)

Integrating (2.7) from t to t~, we get

U(E)-u®) = [ 3 p,(5),(u(o; (s))ds

t i=1

or
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Ut 2 [ p,(5)g, (u(or (s)ds

t i=l

Using (2.8) in the last inequality we get

Utz j > p(s)u(o; (5)ds

t i=1l

Now using Gronwall inequality we get

Gi(s) m
u(t’ )>— j y p.(s)u(é(t))exp{ [ 2p, (u)du}

t i<l s (t) J=1

or

oi(s) m
u(t )>—u(5(t»j > p.(s)exp{ [ >p, (u)du} (222)

t i=l s (t) J=1
Now using (2.19) the last inequality becomes

u( (t))

u(t’) > ——= forall t>t,. (2.23)

Similarly mtegrating (2.21) from t* to o(t) and also using (2.20), we obtain

U(5(t )

u(o(t)) 2 ———— forall t>t,. (2.24)

Combining (2.23) and (2.24), we get
> UOE) L LY.

u
( 4e 16e°
That is
ulott™)) (6(t) <16e* <
u(t*) '

which is a contradiction to (2.17).

Case(ii)
Suppose L=0
Assume that
IimsupL:Li =0, 0<L, <o, (2.25)
u—o g U
Since _u® > 0, there exists t, > t; such that
g; (u(t))
(u) 1
U por WLy (2.26)
g;(u) u 3
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where &> 0 is an arbitrary real number. Thus, from (1.1) and (2.26), we have
iy < LN
u'(t) > ;Z P (Du(o; (1) -
i=1

Integrating (2.21) from t to &(t) and using (2.26), we get

o) m

uEO)-u) >~ | Y. p(sulei (s,

That is
S m Gi(s) m
u(&(t»>§ | Zm(s)u(éi(t»exp{ | Zp,-(u)du}ds
t =l s (t) i=t
or
5(t) m 0i(S) m
u(s(D) > 40 | Zpi(s)exp{ | ij(u)du}ds
€ s L
or
1>£
ee
or
o>
e

which is a contradiction to lim _u® =
k>0 g; (u(t))
The proof is completed.

Theorem 2.2

Assume that the assumptions (Hz), (Hs) and the condition (2.2) hold, if

50 m
limsup I > pi(s) exp{ pj(u)du}ds >L, (2.27)
t—>o ¢ i=l j=1

where o (t) is non-monotone or nondecreasing and &(t) is defined as in (2.1), then all the
solutions of (1.1) oscillate.

Proof:

Assume for the sake of contradiction, that there exists a non oscillatory solution u(t) of
(1.1). Since —u(t) is also a solution of (1.1), whenever u(t) is a solution of (1.1)
therefore it is enough to prove the theorem for positive solutions of (1.1). Then, there
exists t, >t, such that u(t) >0,u(o;(t)) >0 and u(s;(t)) >0,1<i<m, forall t>t
.Then, from (1.1) we have

u'(t)zi p.(1)g. (u(o, () = 0 forall t>t,.
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and therefore u(t) is nondecreasing for all t >t,.

Again using (2.2), we have a constant £ >1 such that

g;(u) = giLu(t) > iu(t) forall t>t,.

Therefore
VO =Y p Ol 1) > éiLZ p,(Du(o; (1) forall t21,. (229)
Integratir;g (2.28) from tto o(t) andiusing the monotonicity of u(t), we have
5(t) m
u(s () —u(t) >— f Z p; (t)u(o;(s))ds . (2.29)
Using Lemma (2.2) in (2.29) and using Gronwall inequality, we have
U(é‘(t)) S(t) m m Gi(s)
u(s(t) > —=4 K IZpi(s)exp >, j p;(u)du pds. (2.30)
=l 0
That is
1 5(t) m m oi(s)
u@o)| 1-— s) ex (u)duds {>0,
(60| 1= j 2P () p{ {) p, (u) }
or

() m

m 5i(s)
JZpi(S)exp{Z j pj(u)du}dssgL'.

= s

Taking lim supremum, we have

51 m m oi(s)
Ilmsup j Z p,(s)exp{z J' pj(u)du}dssgL' forall t>t,. (2.31)

t i=l j=1 8 (t)
From (2.27) we have
S(t) m m Gi(s)
limsup .[ D ps)expid’ I p,(u)durds=M >L".
R i1 5(0)

Then

>1 we have

M
By choosing & = i

=l 5. (1) 2

S(t) m m oi(s) M +L|
!imsupIZpi(s)exp ZI p,(u)dufds=M <&L'= .
—w i)

which is a contradiction to < M and the proof is completed.
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3 Example
Example 3.1.

Consider the equation

u '(t)—%u(al(t))ln(|12+u(al(t))|) —%u(az (E)IN(L5+u(o,®)) =0, t>0,

where
5t —20k +1, if t e[5k,5k +1]
— 2t +15k +8, if t €[5k +1,5k + 2]
o,(t)= 4t —15k — 4, if t e[5k +2,5k +3]
— 2t +15k +14, if t e[5k +3,5k +4]
5k +6, if t €[5k +4,5k +5]
The graph of G( ) The graph of 5(1)
14 137
13 12
12 117
114 104
101 o
o o
5 7
4 22
; :
H N
14 14
I S T $ 9 10 %1 3 3 1§ 3 & 7 % 5 n
Figure 1.The graph of a1(t), o2(t) Figure 2.The graph of &4(t), d2(t)

By (2.1), we have

5t — 20k +1, if t <[5k, 5k +3/5]
5k +4, if t e[Bk +3/5,5k +2
5,(t) =inf o,(s) = ftelSk+3 ]
set 4t—15k — 4, if t €[5k +2,5k +5/2]
5k + 6, if t e[5k +5/2,5k +5]

and &, (t) =inf o,(s) =5,(t)+2, ke Nyand N, is the set of non negative integers.
s>t
Therefore
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5(t)=min {51} =5,0).

1 2
If we put plzg, pzzg, g, (U)=uln(12+u(o,(t))) and g,(u)=

uln((15+u(o, (1))

Then we have

L, =limsup =limsup ! _ 1
W0 Gy (U) oo uln@A2+u(oy(®)))  Inl2

L, =limsup——=Ilimsup u _ 1t
W0 9,(U) o uln@@5+|u(o,(t)))  Inl5

Now at t =5k +2.5, k € N,we have

oM 2 2 oi(s)
I_Zp.(s)eXp{Z | p, (u)du}ds

=1 5(t)

s(t) o1 (s) () o3 (8)
- j pl(S)exp{ | (p1<u>+p2<u»du}ds+ | pz(s)exp{ [ (pl(u)+p2<u»du}

() 5 (1)

5k+6 4s-15k-4 5k+6 4s-15k-2
I iexp{ '[ §du}ds+ j iexp{ I §du}ds
5k+2.5 25 5k+6 5k+2.5 5 5k+8 €

5k+6 5k+6

= | iexp{ (4s—20k — 10)}ds+ | iexp{ (45— 20k — 10)}
5k+2525 5k+2.5
5k+6 3

= —exp {— (4s—20k - 10)}ds
5k;[2 5 25

1
=—[ex ——1

4[ P 25 ]
=1.091338899928 >1

5(0 m o-|(t) m L 1
I|m|nf s)ex u)du s >1
!Zp.() p1 | 2o, > =

5 () i=t

5(0) ai (1)
) : 1
l d 1>L'=
imsup f Zp,(s)exp{ I 2.0;(u) u}ds> g™

&) 11
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That is, all conditions of Theorem2.1 and Theorem2.2 are satisfied. Therefore all
solutions of (1.1) oscillate.
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