A new oscillation criteria of first order nonlinear advanced differential equation with several deviating arguments.

${ }^{1}$ RAMA RENU, ${ }^{2}$ SRIDEVI RAVINDRAN
${ }^{1}$ Associate professor
Department of Mathematics
Quaid-E-Millath Government College for Women, University of Madras, Chennai,600002, INDIA
${ }^{2}$ Research Scholar Department of Mathematics Quaid-E-Millath Government College for Women, University of Madras, Chennai,600002, INDIA
${ }^{1}$ Email: renurama68@gmail.com, ${ }^{2}$ Email: sridevisubramoniam@gmail.com

Abstract

In this paper, we established a new oscillation criteria for first order nonlinear advanced differential equation with several non monotone arguments. A new oscillation condition involving limsup and liminf is obtained. An example illustrating the result is also given.

Keywords: non monotone, nondecreasing, several deviating arguments, Grönwall inequality.

1.Introduction

Consider the first order nonlinear advanced differential equation of the form
$u^{\prime}(t)-\sum_{i=1}^{m} p_{i}(t) g_{i}\left(u\left(\sigma_{i}(t)\right)\right)=0 \quad t \geq t_{0}>0$.
Througout this paper, we assume the following hypotheses hold :
$\left(\mathrm{H}_{1}\right) p_{i}(t), \sigma_{i}(t) \in C\left(\left[t_{0,} \infty\right), R\right), \sigma_{i}(t)$ is non-monotone or nondecreasing.
$\left(\mathrm{H}_{2}\right) \sigma_{i}(t) \geq t$ for $t \geq t_{0}$ and $\lim _{t \rightarrow \infty} \sigma_{i}(t)=\infty$ for $1 \leq i \leq m$.
$\left(\mathrm{H}_{3}\right) g_{i} \in C(R, R)$ and $u g_{i}(u)>0$ for $u \neq 0$ for $1 \leq i \leq m$.
By a solution $\mathrm{u}(\mathrm{t})$ of (1.1) we mean an absolutely continuous function on $\left[\sigma_{i}(T), \infty\right)$ for some $T \geq t_{0}$ and satisfying (1.1) for atmost all $t \geq T$. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros. Otherwise it is called non oscillatory.

In the special case for $m=1,(1.1)$ reduces to
$u^{\prime}(t)-p(t) g(u(\sigma(t)))=0 \quad t \geq t_{0}>0$.
where the functions p, σ are real valued functions, $\sigma(t) \geq t$ for $t \geq t_{0}$ and $\lim _{t \rightarrow \infty} \sigma(t)=\infty$.

Recently, there has been a considerable interest in the study of the oscillatory behaviour of the following special form of (1.1)
$u^{\prime}(t)-p(t) u(\sigma(t))=0, \quad t \geq t_{0}$
In 1983, Fukagai and Kusano [7] proved that if

$$
\lim _{t \rightarrow \infty} \int_{t}^{\sigma(t)} p(s) d s>\frac{1}{e}
$$

then all solution of (1.3) are oscillatory, while if

$$
\int_{t}^{\sigma(t)} p(s) d s \leq \frac{1}{e} \text { for all sufficiently large } \mathrm{t},
$$

then (1.3) has a non-oscillatory solution.
In 1990, Zhou[14] proved that if $\sigma(t) \leq \sigma_{0}, 1 \leq i \leq m$ and

$$
\liminf _{t \rightarrow \infty} \sum_{i=1}^{m} p_{i}(t)\left(\sigma_{i}(t)-t\right)>\frac{1}{e},
$$

then all solution of (1.3) are oscillate.
In 2011, Braverman and Karpuz,[3] proved that the following linear differential equation
$u^{\prime}(t)+p(t) u(\sigma(t))=0, \quad t \geq t_{0}$
where p is a function of non-negative real numbers and $\sigma(t)$ is a non-monotone of positive real numbers such that $\sigma(t)<t$ for $t \geq t_{0}$ and $\lim _{t \rightarrow \infty} \sigma(t)=\infty$. They proved that if

$$
\limsup _{t \rightarrow \infty} \int_{\delta(t)}^{t} p(s) \exp \left\{\int_{\sigma(s)}^{\delta(t)} p(u) d u\right\} d s>1
$$

where $\delta(t)=\sup _{s \leq t} \sigma(s), t \geq 0$, then all solution of (1.4) are oscillate.
The objective of this paper is to find a new condition for all solutions of (1.1) to be oscillatory when the arguments are not necessarily monotone.

2. Oscillation results

In this section, we present a new oscillation criteria for the equation (1.1) under the assumption that $\sigma_{i}(t), 1 \leq i \leq m$ are not necessarily monotone. Set
$\delta_{i}(t):=\inf _{s \geq t} \sigma_{i}(s), \quad t \geq t_{0}$
Clearly, $\delta_{i}(t)$ are nondecreasing and $\sigma_{i}(t) \geq \delta_{i}(t), 1 \leq i \leq m$ for all $t \geq t_{0}$.
Assume that the function g in (1.1) satisfies the following condition
$\underset{|x| \rightarrow 0}{\limsup } \frac{u}{g_{i}(u)}=L_{i}, \quad 0 \leq L_{i}<\infty, \quad$ for $1 \leq i \leq m$.

Lemma 2.1(Grönwall inequality)

If
$u^{\prime}(t)-p(t) u(t) \geq 0, \quad t \geq t_{0}$,
where $p(t) \geq 0$ and $u(t) \geq 0$, then we have
$u(s) \geq u(t) \exp \left\{\int_{t}^{s} p(u) d u\right\}, \quad s \geq t \geq t_{0}$.

Lemma 2.2[5]

Assume that (1.1) holds and

$$
\liminf _{t \rightarrow \infty} \int_{t}^{\sigma(t)} p(s) d s=m>0
$$

then we have
$\liminf _{t \rightarrow \infty} \int_{t}^{\sigma_{i}(t)} \sum_{j=1}^{m} p_{j}(s) d s=\liminf _{t \rightarrow \infty} \int_{t}^{\delta_{i}(t)} \sum_{j=1}^{m} p_{j}(s) d s=m$,
where $\delta_{i}(t):=\inf _{s \geq t} \sigma_{i}(s), t \geq 0$.

Theorem 2.1

Assume that the hypotheses $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and the condition (2.2) hold. If $\sigma_{i}(t)$ are nonmonotone or non decreasing and if

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(t)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s>\frac{L^{\prime}}{e}, \tag{2.6}
\end{equation*}
$$

where $L^{\prime}=\max _{1 \leq i \leq m} L_{i}$ and $\delta(t)=\min _{1 \leq i \leq m} \delta_{i}(t)$, then all solutions of (1.1) oscillate.

Proof:

Assume the sake of contradiction, that there exists a non oscillatory solution $u(t)$ of (1.1). Since $-u(t)$ is also a solution of (1.1) whenever $u(t)$ is a solution of (1.1), we can confine our discussion only to the case where the solution $u(t)$ of (1.1) is eventually positive. Then, there exists $t_{1}>t_{0}$ such that $u(t)>0, u\left(\sigma_{i}(t)\right)>0$ and $u\left(\delta_{i}(t)\right)>0$ for all $t \geq t_{1}$.
Thus, from (1.1) we have
$u^{\prime}(t) \geq \sum_{i=1}^{m} p_{i}(t) g_{i}\left(u\left(\sigma_{i}(t)\right)\right) \geq 0$ for all $t \geq t_{1}$
and therefore $u(t)$ is an eventually nondecreasing function.

Case(i)

Suppose $L_{i}>0$ for $1 \leq i \leq m$, in view of (2.2) we can choose $t_{2}>t_{1}$, so large such that
$g_{i}(u(t)) \geq \frac{1}{2 L_{i}} u(t) \geq \frac{1}{2 L^{\prime}} u(t)$ for all $t \geq t_{2}$.
By (1.1), we have
$\frac{u^{\prime}(t)}{u(t)}-\sum_{i=1}^{m} p_{i}(t) \frac{g_{i}\left(u\left(\sigma_{i}(t)\right)\right)}{u(t)}=0$ for all $t \geq t_{2}$.
Integrating (2.9) from t to $\delta(t)$, we get
$\ln \frac{u(\delta(t))}{u(t)}-\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \frac{g_{i}\left(u\left(\sigma_{i}(s)\right)\right)}{u(s)} d s=0$ for all $t \geq t_{2}$.
Using (2.8) in (2.10) we get
$\ln \frac{u(\delta(t))}{u(t)}-\frac{1}{2 L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \frac{u\left(\sigma_{i}(s)\right)}{u(s)} d s \geq 0$ for all $t \geq t_{2}$.
By Grönwall inequality, we have
$\ln \frac{u(\delta(t))}{u(t)}-\frac{1}{2 L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \frac{u\left(\delta_{i}(t)\right)}{u(s)} \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s \geq 0$ for all $t \geq t_{2}$.

Using $t \leq s \leq \delta(t) \leq \delta_{i}(t)$ and the monotonicity of $u(t)$ we have $\frac{u\left(\delta_{i}(t)\right)}{u(s)} \geq 1$. Therefore (2.12) becomes
$\ln \frac{u(\delta(t))}{u(t)}-\frac{1}{2 L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s \geq 0$.
From (2.6), there exists a constant $d>0$ such that

$$
\begin{equation*}
\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s=8 L^{\prime} d>\frac{L^{\prime}}{e} \text { for all } t \geq t_{2} \geq t_{1} . \tag{2.14}
\end{equation*}
$$

Therefore
$\frac{1}{2 L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s=4 d$.
Combining (2.13) and (2.15) we get
$\ln \frac{u(\delta(t))}{u(t)}-4 d \geq 0$ for all $t \geq t_{3}>t_{2}$,
That is
$\frac{u(\delta(t))}{u(t)} \geq e^{4 d} \geq 4 e d>1$.
Repeating the above procedure, it follows by induction that for any positive integer k ,
$\frac{u(\delta(t))}{u(t)} \geq(4 e d)^{k} \rightarrow \infty$ as $k \rightarrow \infty$,
since $4 e d>1$.
By Lemma (2.2), we have
$\liminf _{t \rightarrow \infty} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u=\liminf _{t \rightarrow \infty} \int_{\delta_{i}(t)}^{\delta_{i}(s)} \sum_{j=1}^{m} p_{j}(s) d s$,
where $\delta_{i}(t)=\inf _{t \leq \mathrm{s}} \sigma_{i}(s), t>0$.
Also from (2.6) and (2.18), it follows that there exists a constant $d>0$ such that

$$
\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s=d>\frac{L^{\prime}}{e} .
$$

From (2.6) there exists a real number $t^{*} \in(t, \delta(t))$ such that
$\int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s>\frac{L^{\prime}}{2 e}$
and
$\int_{i^{*}}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s>\frac{L^{\prime}}{2 e}$.

By (1.1) we have
$u^{\prime}(t) \geq \sum_{i=1}^{m} p_{i}(s) g_{i}\left(u\left(\sigma_{i}(s)\right)\right) \geq 0$ for all $t \geq t_{3}$.
Integrating (2.7) from t to t^{*}, we get

$$
u\left(t^{*}\right)-u(t) \geq \int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) g_{i}\left(u\left(\sigma_{i}(s)\right)\right) d s
$$

or

$$
u\left(t^{*}\right) \geq \int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) g_{i}\left(u\left(\sigma_{i}(s)\right)\right) d s
$$

Using (2.8) in the last inequality we get

$$
u\left(t^{*}\right) \geq \frac{1}{2 L^{\prime}} \int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) u\left(\sigma_{i}(s)\right) d s
$$

Now using Grönwall inequality we get
$u\left(t^{*}\right) \geq \frac{1}{2 L^{\prime}} \int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) u\left(\delta_{i}(t)\right) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s$
or
$u\left(t^{*}\right) \geq \frac{1}{2 L^{\prime}} u(\delta(t)) \int_{t}^{t^{*}} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s$

Now using (2.19) the last inequality becomes
$u\left(t^{*}\right) \geq \frac{u(\delta(t))}{4 e}$ for all $t \geq t_{3}$.
Similarly integrating (2.21) from t^{*} to $\delta(t)$ and also using (2.20), we obtain
$u(\delta(t)) \geq \frac{u\left(\delta\left(t^{*}\right)\right)}{4 e}$ for all $t \geq t_{3}$.

Combining (2.23) and (2.24), we get

$$
u\left(t^{*}\right) \geq \frac{u(\delta(t))}{4 e} \geq \frac{u\left(\delta\left(t^{*}\right)\right)}{16 e^{2}}
$$

That is

$$
\frac{u\left(\delta\left(t^{*}\right)\right)}{u\left(t^{*}\right)} \leq 16 e^{2}<\infty
$$

which is a contradiction to (2.17).

Case(ii)

Suppose $L=0$
Assume that
$\limsup _{|u| \rightarrow 0} \frac{u}{g_{i}(u)}=L_{i}=0,0 \leq L_{i}<\infty$.
Since $\frac{u(t)}{g_{i}(u(t))}>0$, there exists $t_{4} \geq t_{3}$ such that
$\frac{u}{g_{i}(u)}<\varepsilon$ or $\frac{g_{i}(u)}{u}>\frac{1}{\varepsilon}, t \geq t_{4}$,
where $\varepsilon>0$ is an arbitrary real number. Thus, from (1.1) and (2.26), we have
$u^{\prime}(t)>\frac{1}{\varepsilon} \sum_{i=1}^{m} p_{i}(t) u\left(\sigma_{i}(t)\right)$.
Integrating (2.21) from t to $\delta(t)$ and using (2.26), we get

$$
u(\delta(t))-u(t)>\frac{1}{\varepsilon} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) u\left(\sigma_{i}(s)\right) d s,
$$

That is

$$
u(\delta(t))>\frac{1}{\varepsilon} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) u\left(\delta_{i}(t)\right) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s
$$

or

$$
u(\delta(t))>\frac{u(\delta(t))}{\varepsilon} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(s)} \sum_{j=1}^{m} p_{j}(u) d u\right\} d s
$$

or

$$
1>\frac{L^{\prime}}{e \varepsilon}
$$

or

$$
\varepsilon>\frac{L^{\prime}}{e} .
$$

which is a contradiction to $\lim _{|x| \rightarrow 0} \frac{u(t)}{g_{i}(u(t))}=0$.
The proof is completed.

Theorem 2.2

Assume that the assumptions $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and the condition (2.2) hold, if $\underset{t \rightarrow \infty}{\limsup } \int_{t}^{\delta_{i}(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} p_{j}(u) d u\right\} d s>L^{\prime}$,
where $\sigma_{i}(t)$ is non-monotone or nondecreasing and $\delta(t)$ is defined as in (2.1), then all the solutions of (1.1) oscillate.

Proof:

Assume for the sake of contradiction, that there exists a non oscillatory solution $u(t)$ of (1.1). Since $-u(t)$ is also a solution of (1.1), whenever $u(t)$ is a solution of (1.1) therefore it is enough to prove the theorem for positive solutions of (1.1). Then, there exists $t_{1} \geq t_{0}$ such that $u(t)>0, u\left(\sigma_{i}(t)\right)>0$ and $u\left(\delta_{i}(t)\right)>0,1 \leq i \leq m$, for all $t \geq t_{1}$.Then, from (1.1) we have

$$
u^{\prime}(t) \geq \sum_{i=1}^{m} p_{i}(t) g_{i}\left(u\left(\sigma_{i}(t)\right)\right) \geq 0 \text { for all } t \geq t_{1} .
$$

and therefore $u(t)$ is nondecreasing for all $t \geq t_{2}$.
Again using (2.2), we have a constant $\xi>1$ such that
$g_{i}(u(t)) \geq \frac{1}{\xi L_{i}} u(t) \geq \frac{1}{\xi L^{\prime}} u(t)$ for all $t \geq t_{2}$.
Therefore
$u^{\prime}(t) \geq \sum_{i=1}^{m} p_{i}(t) g\left(u\left(\sigma_{i}(t)\right)\right) \geq \frac{1}{\xi L^{\prime}} \sum_{i=1}^{m} p_{i}(t) u\left(\sigma_{i}(t)\right)$ for all $t \geq t_{2}$.
Integrating (2.28) from t to $\delta(t)$ and using the monotonicity of $u(t)$, we have
$u(\delta(t))-u(t) \geq \frac{1}{\xi L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(t) u\left(\sigma_{i}(s)\right) d s$.
Using Lemma (2.2) in (2.29) and using Grönwall inequality, we have
$u(\delta(t)) \geq \frac{u(\delta(t))}{\xi L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s$.
That is

$$
u\left(\delta(t)\left(1-\frac{1}{\xi L^{\prime}} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s\right) \geq 0\right.
$$

or

$$
\int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s \leq \xi L^{\prime} .
$$

Taking lim supremum, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s \leq \xi L^{\prime} \text { for all } t \geq t_{2} . \tag{2.31}
\end{equation*}
$$

From (2.27) we have

$$
\limsup _{t \rightarrow \infty} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s=M>L^{\prime} .
$$

Then

$$
L^{\prime}<\frac{M+L^{\prime}}{2}<M .
$$

By choosing $\xi=\frac{M+L^{\prime}}{2 L^{\prime}}>1$ we have

$$
\lim _{t \rightarrow \infty} \sup \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\sum_{j=1}^{m} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s=M \leq \xi L^{\prime}=\frac{M+L^{\prime}}{2} .
$$

which is a contradiction to $\frac{M+L^{\prime}}{2}<M$ and the proof is completed.

3 Example

Example 3.1.

Consider the equation

$$
u^{\prime}(t)-\frac{1}{25} u\left(\sigma_{1}(t)\right) \ln \left(\left|12+u\left(\sigma_{1}(t)\right)\right|\right)-\frac{2}{25} u\left(\sigma_{2}(t)\right) \ln \left(\left|15+u\left(\sigma_{1}(t)\right)\right|\right)=0, \quad t>0,
$$

where
$\sigma_{1}(t)=\left\{\begin{aligned} 5 t-20 k+1, & \text { if } t \in[5 k, 5 k+1] \\ -2 t+15 k+8, & \text { if } t \in[5 k+1,5 k+2] \\ 4 t-15 k-4, & \text { if } t \in[5 k+2,5 k+3] \\ -2 t+15 k+14, & \text { if } t \in[5 k+3,5 k+4] \\ 5 k+6, & \text { if } t \in[5 k+4,5 k+5]\end{aligned}\right.$

Figure 1.The graph of $\sigma_{1}(\mathrm{t}), \sigma_{2}(\mathrm{t})$

Figure 2.The graph of $\delta_{1}(\mathrm{t}), \delta_{2}(\mathrm{t})$

By (2.1), we have
$\delta_{1}(t)=\inf _{s \geq t} \sigma_{1}(s)=\left\{\begin{aligned} 5 t-20 k+1, & \text { if } t \in[5 k, 5 k+3 / 5] \\ 5 k+4, & \text { if } t \in[5 k+3 / 5,5 k+2] \\ 4 t-15 k-4, & \text { if } t \in[5 k+2,5 k+5 / 2] \\ 5 k+6, & \text { if } t \in[5 k+5 / 2,5 k+5]\end{aligned}\right.$
and $\delta_{2}(t)=\inf _{s \geq t} \sigma_{2}(s)=\delta_{1}(t)+2, k \in N_{0}$ and N_{0} is the set of non negative integers.
Therefore
$\delta(t)=\min _{1 \leq i \leq 2}\left\{\delta_{i}(t)\right\}=\delta_{1}(t)$.
If we put $\quad p_{1}=\frac{1}{25}, \quad p_{2}=\frac{2}{25}, \quad g_{1}(u)=u \ln \left(\left|12+u\left(\sigma_{1}(t)\right)\right|\right) \quad$ and $\quad g_{2}(u)=$ $u \ln \left(\left|15+u\left(\sigma_{2}(t)\right)\right|\right)$.

Then we have
$L_{1}=\limsup _{|u| \rightarrow 0} \frac{u}{g_{1}(u)}=\limsup _{|u| \rightarrow 0} \frac{u}{u \ln \left(12+\left|u\left(\sigma_{1}(t)\right)\right|\right)}=\frac{1}{\ln 12}$
$L_{2}=\limsup _{|x| \rightarrow 0} \frac{u}{g_{2}(u)}=\limsup _{|x| \rightarrow 0} \frac{u}{u \ln \left(15+\left|u\left(\sigma_{2}(t)\right)\right|\right)}=\frac{1}{\ln 15}$
$L^{\prime}=\max \left\{L_{1}, L_{2}\right\}=L_{1}=\frac{1}{\ln 12}$.

Now at $t=5 k+2.5, k \in N_{0}$ we have

$$
\begin{aligned}
& \int_{t}^{\delta(t)} \sum_{i=1}^{2} p_{i}(s) \exp \left\{\sum_{j=1}^{2} \int_{\delta_{i}(t)}^{\sigma_{i}(s)} p_{j}(u) d u\right\} d s \\
& =\int_{t}^{\delta(t)} p_{1}(s) \exp \left\{\int_{\delta_{1}(t)}^{\sigma_{1}(s)}\left(p_{1}(u)+p_{2}(u)\right) d u\right\} d s+\int_{t}^{\delta(t)} p_{2}(s) \exp \left\{\int_{\delta_{2}(t)}^{\sigma_{2}(s)}\left(p_{1}(u)+p_{2}(u)\right) d u\right\} d s \\
& =\int_{5 k+2.5}^{5 k+6} \frac{1}{25} \exp \left\{\int_{5 k+6}^{4 s-15 k-4} \frac{3}{e} d u\right\} d s+\int_{5 k+2.5}^{5 k+6} \frac{2}{25} \exp \left\{\int_{5 k+8}^{4 s-15 k-2} \frac{3}{e} d u\right\} d s \\
& =\int_{5 k+6}^{5 k+6} \frac{1}{25} \exp \left\{\frac{3}{e}(4 s-20 k-10)\right\} d s+\int_{5 k+2.5}^{5 k+6} \frac{2}{25} \exp \left\{\frac{3}{e}(4 s-20 k-10)\right\} d s \\
& =\int_{5 k+2.5}^{5 k+6} \frac{3}{25} \exp \left\{\frac{3}{25}(4 s-20 k-10)\right\} d s \\
& =\frac{1}{4}\left[\exp \frac{42}{25}-1\right] \\
& =1.091338899928>1 \\
& \liminf \\
& { }_{t \rightarrow \infty} \int_{t}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{j}} \sum_{j=1}^{\sigma_{i}(t)} q_{j}(u) d u\right\} d s>1>\frac{L^{\prime}}{25}=\frac{1}{25 \ln 12} \\
& \limsup \int_{t \rightarrow \infty}^{\delta(t)} \sum_{i=1}^{m} p_{i}(s) \exp \left\{\int_{\delta_{i}(t)}^{\sigma_{i}(t)} \sum_{j=1}^{m} q_{j}(u) d u\right\} d s>1>L^{\prime}=\frac{1}{\ln 12}
\end{aligned}
$$

That is, all conditions of Theorem2.1 and Theorem2.2 are satisfied. Therefore all solutions of (1.1) oscillate.

References

[1] Akca,H., Chatzarakis, G.E., Stavroulakis, I.P.:An oscillation criterion for delay differential equations with several non-monotone arguments. Appl. Math.Lett. 59,
101-108 (2016).
[2] Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer,New York (2012).
[3] Braverman E, Karpuz B. On oscillation of differential and difference equations with nonmonotone delays. Appl Math Comput. 2011;218:3880-3887.
[4]Chatzarakis, G.E., Li, T.: Oscillations of differential equations generated by several deviating arguments. Adv. Differ.Equ. 2017, 292 (2017)
[5] Chatzarakis, G.E., öcalan, $\ddot{o} .:$ Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. Int. J. (2015).
[6]L. H. Erbe and B. G. Zhang, "Oscillation for first order linear differential equations with deviating arguments," Differential and Integral Equations: International Journal for Theory and Applications, vol.1, no. 3, pp. 305-314, 1988.
[7] N. Fukagai and T. Kusano, "Oscillation theory of first order functional differential equations with deviating arguments," Annali di Matematica Pura ed Applicata. Serie Quarta, vol. 136, no. 1, pp. 95-117, 1984.
[8] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs, Clarendon Press, New York, NY, USA, 1991.
[9]Li X. and Zhu D., Oscillation and nonoscillation of advanced differential equations withvariable coe_cients, J. Math. Anal. Appl. 269 (2002), 462-488.
[10]ö. öcalan, N. Kilic , S. Sahin, and U.M. özkan, Oscillation of nonlinear delay differential equations with non-monotone arguments, International Journal of Analysis and Applications, 14(2) (2017), 147-154.
[11] ö. öcalan, N. Kilic and U.M. özkan, Oscillatory behaviour of non-linear advanced differential equation with non-monotone arguments, Acta Math. Univ. Comenianae, Vol. LXXXVIII, 2 (2019), pp. 239-246.
[12]ö. öcalan, N. Kilic, U.M. özkan and Sermin öztürk Oscillatory behavior for nonlinear delay differential equation with several non-monotone arguments, Computational Methods for Differential Equations, Vol. 8, No. 1, 2020, pp. 14-27
[13] B. G. Zhang, Oscillation of solutions of the first-order advanced type differential equations, Sci. Exploration 2(1982), 79-82.
[14] Zhou D. On some problems on oscillation of functional differential equations of first order. JShandong Univ. 1990;25:434-442.

