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Abstract 

In the last few decades, structural health monitoring(SHM) has been a major concern, and in 

the study of data collected from monitoring devices embedded in the networks, it gives engineers 

deep understanding about the failure of civilian infrastructure. Commonly named structural 

health monitoring is the method of applying a damage recognition for climate, civil and 

mechanical engineering facilities With both the growth of technologies sensor networks (SNs) a 

vast number of sensors is fitted with architectural or mechanical systems to receive real-time 

information on their wellbeing, suggesting that data handling in WSN-based SHM is of 

significant importance. Increased SHM innovation has been empowered with the development of 

intelligent sensors and real-time connectivity systems over wireless sensor networks (WSN). 

Recently, predictive time series simulations for structural damage detection due to the function 

coefficients resistance and unresolved structural damage mistakes have been commonly used. 

Machine Learning algorithms (ML) are progressively used to predict damage. The main 

approach is the tool used to estimate the degree of damaged brides via the sensors. In the second 

step artificial neural network (ANN) method enabling the detection level objectively describes 

the generalization error of each bride. 

Keywords: Machine learning Algorithms, Structural health monitoring, Damage detection, 

sensors, artificial neural network (ANN). 

1. Introduction 

For structures including such bridge SHM is mostly necessary and buildings usually mean a 

network of constantly mounted sensors that track the structure's actions. It is often believed that 

SHM means online surveillance, but in general, it may be done if the structure is either in 

operation or is not in operation. Optical fibers, strain resistance tests or acoustic instruments are 

common sensors [1]. Nowadays the safest way to build efficient and trusted structural risk 

monitoring systems is without question to make use of ageing civil infrastructure structures such 

as bridges that go far past their original average lifespan. The degradation has already advanced 

well before considerable damage to the system is found, and the reparations needed are 

considerable and onerous. The building will rarely be dismantled and a fresh one should be built. 

This requires considerable investment which has detrimental environmental and traffic effects 

during substitution. The ability to track a structure in real time and diagnose failure as soon as 

possible helps smart repair methods and offers specific life observations. The requirement for 

such intelligent structural health monitoring systems (SHM) is currently strong for revealed 

purposes.  
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WLAN is a collection of small equipment known as nodes. WLAN is the set of sensors [2]. 

These sensors are distributed dynamically across a region and operated by the batteries. These 

sensor nodes may be static or portable and they are used for researching occurrences in a certain 

area. There may be explosion, smoke, sun, moisture etc. This may be earthquake events. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structural design of Sensor Network  

There are network protocols that have an on-board chip; original data are not transferred 

to other fusion-responsible nodes. The sensor nodes with their processing capability 

perform a basic computation for the data. Figure 1 demonstrates the generally known WSN 

structure. Three main components used in sensors are sensing subsystems, computing 

subsystems and Wireless communication subsystems [3]. A sensor device is used for the 

sensing of data from the node region. To access the raw data, a production subsystem has 

been used. For the transfer of data to a ground station, a wireless networking subsystem 

has been used. 

In similar, there is an electricity supply that includes non-rechargeable cells, so decreased 

electricity consumption and the durability of network life are the key objective in developing 

networks based on WSN, The sensor node layout as shown in Figure 2. 

Figure 2: Sensor Node Design 

WSN connectivity is raising requirement relative to other wireless networks. WSN routing 

protocols are listed according to four networking schemes, the coordination template strategies, 

the template schemes and the efficient routing scheme [4]. Communication network system is 

further grouped into two protocol groups First, plain protocols where every node in the network 

plays the very same part and secondly, hierarchical protocols under which protect the network of 

nodes is configured and the base station is based on different hypotheses.  
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This essay provides an approach to damage detection focused on artificial neural networks, the 

data sets are extracted from a stable bridge situation and two risk possibilities. In fact, this 

information will be obtained straight from measurement taken on the current interest 

configuration without developing a complicated mathematical method. The proposed approach 

allows for the unsupervised training of sensors and artificial neural networks (ANN) [8] with 

data set consisting of acquired accelerations on the healthy bridge. The networks can help predict 

oscillations based on their value observed in preceding instants. Throughout the second phase, 

each network's statistical correlation coefficients support the selection of the cutoff for damage. 

2. Sensor technology in SHM  

Latest advances in sensor technologies have led to the production and deployment of 

Structural Health Monitoring (SHM) [31]systems in multiple structural components including 

bridges, houses, pipelines, power stations and reservoirs. Many sophisticated kinds of sensors are 

being equipped for the tracking of overall integrity regularly by real-time data gathering, from 

wire to wireless sensor nodes. Even then, by use of SHM sensors is still subject to a shocking 

amount of queries [10]. One of the crucial tasks for developing a SHM device is to detect an 

acceptable sensor type which can reach the sensing device's scopes adequately. 

Structural health monitoring absolutely depends on the precise and large observations in actual 

environments of the structural aspect state, the coordination with the control system of this data 

and the alert warning needed should the uneven pattern ever be detected. Structural health 

monitoring sensors are built to promote the control activities and to allow maintenance 

technicians to use resources to make decisions that protect the security of the facilities and the 

community [13]. A standard health monitoring device consists of a sensor network that monitors 

various parameters, such as stress, friction, vibration, orientation, pressure and wind, associated 

with the current state of both the structure and its surroundings. Different forms of SHM sensors 

have become the latest innovations in sensor science study for structural health tracking. This 

provides the most commonly used SHM sensors for structural monitoring. 

2.1. Sensors for Optical Fiber  

In latest days, optical sensors have evolved quite successfully. These sensors could be used to 

calculate different factors in civil engineering. Examples usually involve pressures, physical 

motions, frequency of friction, motion, strain, moisture content. The structure monitoring may be 

regional or worldwide [12]. The regional method based on the component actions whereas the 

overall approach is linked to different structural control. For varied uses like strain control of the 

concrete components inside a bridge, fiber-optical sensors were tested shown in figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3. Sensors for Optical Fiber 

2.2. SHM in Strain Gauges 
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In structural health monitoring, strain gauges are by far the most common type of load cells 

used. A stress gauge is an instrument used for calculating stress regardless of the force applied to 

an object. The most popular type of pressure gauge consists of a lightweight, insulated support 

that supports a metallic sheet construction. A suitable sticky material binds the gauge to the 

piece. When the film is exposed to force, the strain gauge changes, and can be calculated. It is 

deformed. These sensors have been used most frequently for building structural systems to track 

tension. 

Strain gauge Stripe shown in figure 4, it is a stress gauge is a type of strain gauge consisting of 

two or even more strain gauges, which are arranged similarly to measure strains in various 

directions [31]. The application of many strain gauges makes for a more detailed measurement of 

the stress on the continuous measurement. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Strain Gauge Rosette 

3. Category of ML methods for SHM 

Machine learning method can be categorized as per their existence into three major areas: 1) 

supervised learning 2) unsupervised learning 3) semi-supervised learning [14]. The supervised 

learning framework offers "labeled data" learning structures, i.e. examples of defined outputs 

(pair of output data and input data). Regulations for classifying new data sources are generated 

with labeled data. In the data sets composed of 'unlabeled data,' meaning data sets with undefined 

outputs that are in line to the general rule and can thus be clustered together, non-supervised 

learning requires the identification of patterns. From both the point of view of the SHM, 

unattended learning can for example, be used for the identification of damage by the collection of 

systemic data analysis and supervised learning to detect form and magnitude of damage[15] 

could be used for benefit. 

Semi-controlled learning, which is a mixture of both the above schemes, generally aims at 

obtaining a segmentation approach using labeled as well as unscheduled knowledge. In tandem 

with other surveillance methods, semi-supervised learning methods have been used to extract 

knowledge on modal bridge properties [17]. Since most SHM challenges need to provide a 

feature with labeled training knowledge (e.g. to evaluate data or forecast new data), supervised 

learning is an adequate way of addressing these problems. In supervised learning [18], the 

algorithms can be classified similar to as logical based algorithms (e.g. decision trees and rule-

based classifiers), as concept-based or neural networks. 

  Supervised learning in which the input and anticipated output are provided to the machine. 

The device is meant to identify and make assumptions the complex patterns and 

interrelationships among them based on this training with the correct answers. Unsupervised, in 
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which the device is educated to find the common characteristics in the information and provide a 

grouping institution. Almost all analytical techniques deal with some method of identity or 

sensors of damage.. 

The civil engineering areas are typically referred to as the Structural Health Monitoring or 

SHM as the relevant damage recognition field of study. One could argue that during its growth 

two dominant "competing" concepts were established for SHM, each from a different perspective 

[19]. The actual content is split into design SHM and information SHM. The first perspective is 

based in particular on the establishment, in its standard (and damaged) situation, of a simulation 

environment based on the law of the investment framework and when further data are collected 

they can be verified for model compliance and diagnosis can be made of any differences if the 

structure has been amended.  

4. Techniques implemented in SHM 

4.1. Wireless sensor networks (WSN) 

WSN and ANN have structural similarity which allows the mapping of an ANN 

algorithm [16] into a WSN as a computing system for parallel and distributed systems. In 

reality, a single-to-one match occurs, as a sensor mote will reflect and execute neural 

network brain cell or node calculations, whereas wireless communications between the 

neurons/signals are similar to the cells in the brain. A WSN transceiver is a simple 

computer with an embedded microcontroller [21], a radio transceiver as a linking system 

for wireless communications as well as a range of sensors shown in figure 2. Calculation 

capacity associated with neuron dynamics is enough to execute several nodes in real time 

for most purposes. Therefore a WSN with sensors connected to each beam, it can 

measure damage in beam in bridges using parameters. The damage detecting process 

using sensors are given flow chart figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Damage detecting process using sensor  

4.2. Artificial Neural Networks 
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For the presented work, the ANNs were built and trained via the MATLAB Neural Network 

Toolbox. Before a training stage the structure of ANN should be built and mostly relies on the 

quantity of available data, which can be used to simulate bridge data [33]. In fact, the monitoring 

provides information is affected by different causes of error as well as several studies have 

examined the impact of organizational and environmental uncertainty on the harm detection 

mechanism [23] shown in figure 6. 

This shows how the temperature and traffic mass usually will contribute to fluctuations in the 

bridge's modal characteristics within 5% to 10%. By learning the noise injection, the influence of 

input errors can be minimized. In addition to the unspoiled backgrounds of the FE model before 

the ANN was used, Gaussian noise was applied 

Figure 6. Using ANN to detect damage 

There were 6 concrete beams with sizes 91×16×12 cm shown in the figure 7. In the experimental 

stage the cube strength property of 60 MPa on the concrete and a tensile fracturing power of 3.8 

MPa on the scratch. The beam comes equipped with an optical fiber sensor; the frequency of 

signal was 1.30 Hz. 

Figure 7. The sample 91cm supported beam 

4.3. Damage Detection Algorithm 

As stated before, HD optic fibers measure with an extremely high resolution. Herein, for a 91 

cm beam we may end up with a dataset with more than 1100 features applying below algorithm 

find damage result in beams based on result generate the profile graph shown in figure 8. 

Although there might be applications where this kind of detail might be required, for the current 
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(and most probably in any similar one) project, this abundance of information is unnecessary, 

and will increase the computational complexity for no concrete reason. Thus, a simple down 

sampling algorithm was implemented. 

% Determine down sampling values 

OD: Original data set 

finD : Final data set 

nstart : number of original features 

nfinal : number of final features 

rem = nstart − nfinal % nstart 

div = int (nstart − nfinal / nstart ) 

% Down sampling algorithm 

Dr = Dr(1 : end − rem) 

Initialize finD 

for i=1 : l ength (Dr) 

Initialize helper array temp 

for j=1 : nfinal 

a = mean(Dr( i , div *( j )+1 : i , div *( j +1))) 

end 

Append an in finD 

End 

The following figures show the strain profiles acquired for all the experimental beams are 

presented, after being pre-filtered by the processing described above: 
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Figure 8. Strain profiles for all the real beams 

The damage classification had some diversity, depending on both the loading pattern that was 

applied and also the levels of the signal noise. In particular, from the measured strain profiles, the 

ones that were considered to be the most problematic were the Beams 2 and 6. However, only 

Beam 2 detected the Hazardous level a little later than what it should have. For the rest of the 

beams, the hazardous damage was at approximately 45%-83% of the total beam capacity (Table 

1), although the severe threshold of harm will enable an examination successfully and prevent 

the complete destruction of the concrete feature. 

Table 1. Results obtained for all beams 

 B1 B2 B3 B4 B5 B6 

Training loss 0.00125 0.00109 0.00232 0.00060 0.00132 0.00272 

CV loss 0.00114 0.00104 0.00236 0.00060 0.00134 0.00282 

Small 

damage 
12% 22% 12% 19% 15% 16% 

Significant 

damage 
38% 61% 33% 59% 38% 29% 

Hazardous 

damage 
52% 90% 47% 85% 56% 69% 

 

As seen from the results, the detection system that was built was efficient and could detect 

damage in three different levels. In some cases (Beams 1 and 3) the classification might be more 

overprotective than what is should be, but that way the designer can be more confident that there 

will be no critical damage omission in the more noisy examples (Beam 2). 

5. Conclusions 
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The technique offers a technique for the damage diagnosis of weakened bridges that improves 

both protection and bridge cost mitigation. The approach provides an entry into an artificial 

neural network by using documented deck accelerations in the bridge. After correctly trained 

data, the next accelerations can be expected. The difference between the calculated value and the 

network value would serve as the key indicator of injury. The analysis involves a comparative 

estimation of the network's prediction errors by choosing the risk index threshold based on the 

threshold chosen and will measure the anticipated overall cost associated with the damage 

detection strategy. The optimum is the least expensive within the period of viable levels. 

The results achieved allow some generalized drawing conclusions: the two sensors in the 

middle of the bridge seem the most powerful for distinguishing between healthy and damaged 

data clearly not taking into consideration where the damage happens in the bridge. This is 

because the response from the assisted bridge is illuminated in the half-way span. Eventually, the 

ANN was implemented and the fault was successfully found with the modal maximal amplitudes 

of the other three sensor nodes using artificial neural networks to increase the network's life 

cycle. 

Future studies may require the creation, through the automatic implementation of the fault 

detection process, of a solid threshold that would distinguishes between faults and defective 

operations. 
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