
International Journal of Future Generation Communication and Networking 

  Vol. 13, No. 4, (2020), pp. 2471–2478 

 

ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

2471 

Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural 

Networks Using Supervised Learning Algorithm 
 

 

*P. Liyaz1, A. Kumar2, K.Sathish3, P. Leelavathi4, B. Surendra Reddy5  

 
1Assistant Professor, Department of CSE, Sri Venkateswara College of Engineering (SVCE), 

Tirupati, Andhra Pradesh, India. 

E-mail:- liyaz.liyaz2009@gmail.com 
2Assistant Professor, Department of CSE, Sri Venkateswara College of Engineering (SVCE), 

Tirupati, Andhra Pradesh, India. 

E-mail:- kumarcse5801@gmail.com 
3Assistant Professor, Department of CSE, Sreenivasa Institute of Technology and 

Management Studies(SITAMS), Chittoor, Andhra Pradesh, India. 

E-mail:- sathish1234u@gmail.com 
4Assistant Professor, Department of CSE, Sreenivasa Institute of Technology and 

Management Studies(SITAMS), Chittoor, Andhra Pradesh, India. 

E-mail:- leelacse32@gmail.com 
5Assistant Professor, Department of CSE, Sri Venkateswara College of Engineering (SVCE), 

Tirupati, Andhra Pradesh, India. 

E-mail:- suri1253@gmail.com 

 

Abstract 

 

Preparing a populace of spiking neurons in a multilayer network to fire at different exact 

occasions stays a difficult undertaking. Defer learning and the impact of a postponement on weight 

learning in a spiking neural network (SNN) have not been explored altogether. 

 

We realize that there is nonlinear learning over disseminated multiagent frameworks, where every 

specialist utilizes a solitary concealed layer feedforward neural system (SLFN) structure to 

consecutively limit self-assertive misfortune capacities. these techniques are exceptionally engaging 

for the applications including enormous information. Specifically, every specialist prepares its own 

SLFN utilizing just the information that is uncovered to itself.  

 

Then again, the point of the multiagent framework is to prepare the SLFN at every specialist just as 

the ideal concentrated clump SLFN that approaches all the information, by trading data between 

neighboring operators. 

 

This paper proposes a novel biologically plausible supervised learning algorithm for learning 

precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity 

learning rule, the proposed learning method trains an SNN through the synergy between weight and 

delay learning.  

 

The loads of the covered up and yield neurons are balanced in equal. The proposed learning 

technique catches the commitment of synaptic postponements to the learning of synaptic loads. 

Communication between various layers of the system is acknowledged through biofeedback signals 

sent by the yield neurons. The prepared SNN is utilized for the arrangement of spatiotemporal info 

designs. 

 

The proposed learning strategy additionally prepares the spiking system not to fire spikes at 

undesired occasions which add to misclassification. Trial assessment on benchmark informational 
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collections from the UCI AI vault shows that the proposed strategy has tantamount outcomes with old 

style rate-based strategies, for example, profound conviction organize and the autoencoder models. 

 

 

 Keywords: Sequential learning, single hidden layer feedforward neural networks (SLFNs). 

Multilayer neural network, spiking neural network (SNN), supervised learning, synaptic delay. 

 

Introduction 

 

SPIKE-timing-subordinate versatility (STDP) assumes a noticeable job in learning organic 

neurons, and it speaks to one type of synaptic pliancy which supports synaptic weight changes 

dependent on the exact occasions of pre and postsynaptic spikes STDP features the significant job of 

exact spike times in data handling in the brain. 

What's more, the fast tactile preparing saw in the visual, sound-related, and olfactory frameworks 

bolsters the suspicion that data is encoded in the exact planning of the spikes. Besides, utilizing exact 

planning of spikes brings about a higher data encoding limit contrasted and rate-based coding, and it 

can likewise pass on the data identified with pace of spikes in a multispike coding plan. 

 

Besides, as neural action is metabolically costly, the high number of spikes associated with rate 

coding plan requests a lot of vitality and assets. 

 

Right now, novel directed learning calculation propelled by STDP is proposed to prepare a SNN to 

fire numerous spikes at exact wanted occasions. Neighborhood synaptic biochemical occasions, 

delivered by approaching spikes, are utilized to modify loads and deferrals properly. What's more, 

neurons in the yield and concealed layers collaborate with one another through a biofeedback signal 

sent by the yield neurons to prepare the system. 

 

The trial results show an improvement in learning precision over existing serious SNN structures and 

similar execution to best in class rate-based neural models. 

 

At the hour of an undesired yield spike of the readout neuron (i.e., where there is a genuine yield 

spike and there are no ideal spikes), the learning calculation ought to decrease the all out PSP of the 

readout neuron at the hour of the undesired yield spike to evacuate it by applying the accompanying 

three procedures in equal. 

 

First, the readout neuron sends a feedback to excitatory hidden neurons to instruct them to remove 

their output spikes. 

 

The second process is applied at the time of the undesired output spike and consists of a reduction of 

the readout neuron weights that have spikes at the undesired output spike time or shortly before it by 

using anti-STDP similar to ReSuMe. 

The third process reduces the readout neuron total PSP at the time of the undesired spike by adjusting 

the delays of the readout neuron based on EDL. 

 

Existing System 

 

The first supervised learning algorithms for multilayer SNNs using the precise timing of spikes could 

train only a single spike for each neuron. 

 

SpikeProp is the multilayer SNN which motivated by the old style back-engendering calculation as 

one of the primary administered learning strategies for feedforward multilayer SNNs. 

To improve the presentation of SpikeProp components like Back proliferation with energy, 

QuickProp, strong spread dependent on versatile learning rate. In every one of these strategies, 

neurons in the information, yield, and shrouded layers can just fire a solitary spike. 



International Journal of Future Generation Communication and Networking 

  Vol. 13, No. 4, (2020), pp. 2471–2478 

 

ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

2473 

Conversely, numerous spikes altogether increment the wealth of the neural data portrayal. What's 

more, preparing a neuron to fire numerous spikes is all the more naturally conceivable contrasted with 

single-spike learning techniques. 

Fleeting encoding through different spikes moves significant data which can't be communicated by a 

solitary spike coding plan or a rate coding plan. In spite of the fact that the specific instrument of data 

coding in the brain isn't clear, organic proof shows that numerous spikes have a vital job in the brain. 

 

For example, mapping between spatiotemporal spiking tangible data sources made out of spike trains 

to exact planning of spikes is a fundamental quality of neuronal circuits of the zebra finch brain to 

execute very much coordinated engine successions. It is recommended that utilizing both spike timing 

and spike rate speeds up. These techniques utilize a mix of both corresponded and uncorrelated 

spiking signals. 

 

Along these lines, there is valuable data in the spike rate that can't be caught by the exact planning of 

single spikes. Encoding data in the exact planning of numerous spikes which are utilized right now 

catch the data in the spike rate as well as the data in bury spike interims. 

 

Proposed System 

 

The aim of the proposed supervised learning algorithm is to train a multilayer SNN to map 

spatiotemporal input patterns to their corresponding desired spike trains which implements a 

classification of the spatiotemporal input patterns. The network is composed of an input, a hidden, and 

an output layer. 

An output neuron, called a readout neuron, is fully connected to the hidden neurons. A spatiotemporal 

input pattern is emitted by the neurons in the input layer. Each input neuron is randomly connected to 

a fraction number of hidden neurons. The proposed method trains the spiking network by adjusting 

the learning parameters of the hidden and output neurons in parallel. 

 

 

 

A. Overview of the Proposed Learning Method 

 The proposed learning technique expects to prepare the multilayer SNN to empower every readout 

(yield) neuron to fire real yield spikes at wanted occasions and to counterbalance undesired yield 

spikes. A remote regulating signal is considered for a yield neuron like ReSuMe. 

 

At the hour of an ideal spike where there are no real yield spikes at the readout neuron, the system 

learning parameters are changed in accordance with increment the absolute PSP of the readout neuron 

to hit the edge level and create a genuine yield spike at the ideal time by utilizing naturally 

conceivable nearby occasions. The yield neuron does the accompanying three exercises in equal at the 

ideal spike time. 

 

To begin with, at the hour of the ideal spike, the yield neuron imparts back a guidance sign 

(biofeedback) that shows the hour of wanted spike to the concealed neurons. In the wake of accepting 

the guidance signal, an excitatory concealed neuron potentiates its loads dependent on STDP to fire a 

yield spike (shrouded spike) at a particular time interim before the ideal time. 

 

The particular time interim is equivalent to the postpone identified with the association between the 

excitatory concealed neuron and the yield neuron. The impact of the created shrouded spike (i.e., the 

PSP produced by the concealed spike) is moved to the ideal spike time after the related deferral 

between the shrouded neuron and the yield neuron. The potentiation of the excitatory concealed 

neuron loads is halted when the shrouded neuron terminating rate arrives at a specific worth, in light 

of the fact that an organic neuron can't fire with a boundless rate, and a hard-headed period will 

guarantee an upper bound on the neuron terminating rate. 
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The excitatory concealed neuron weight potentiation at the hour of an ideal spike is likewise halted 

when a genuine spike is created at the hour of the ideal spike by the yield neuron. What's more, the 

criticism triggers an inhibitory concealed neuron to attempt to evacuate its yield spikes terminated a 

particular time interim before the ideal time by utilizing the long haul gloom (LTD) of hostile to 

STDP. 

 

The time interim is equivalent to the deferral between the inhibitory shrouded neuron and the readout 

neuron. The shrouded neuron yield spikes before the time interim influences the PSP of the readout 

neuron at the ideal time, i.e., the concealed spikes create deferred PSPs at the ideal time. The decrease 

of the inhibitory concealed spikes encourages the readout neuron to expand its complete PSP at the 

ideal time to hit the edge level. 

 

Second, similar to ReSuMe the output neuron potentiates its weights that have a spike shortly before 

the desired time based on STDP to increase its PSP at the desired time to fire. 

 

The third activity at the time of a desired spike where there are not any actual output spikes of the 

readout neuron is the adjustment of delays of the readout neuron to increase the PSP of the readout 

neuron at the desired time, based on EDL. All the above mentioned activities are repeated at the time 

of other desired spikes in a multispike coding scheme. 

 

At the hour of an undesired yield spike of the readout neuron (i.e., where there is a genuine yield 

spike and there are no ideal spikes), the learning calculation ought to decrease the all out PSP of the 

readout neuron at the hour of the undesired yield spike to expel it by applying the accompanying three 

procedures in equal. 

 

First, the readout neuron sends a feedback to excitatory hidden neurons to instruct them to remove 

their output spikes. Each excitatory hidden neuron removes its spike fired at a precise time interval 

before the time of the undesired spike by using LTD based on anti-STDP and reduces its weights. The 

time interval for the hidden neuron is equal to the delay between the hidden neuron and the readout 

neuron. 

 

Thus, the decrease of the excitatory shrouded neuron loads can help the readout neuron to diminish its 

all out PSP and to evacuate the undesired yield spike. Unmistakably the weight decrease ought to be 

applied to the excitatory neurons that have various yield spikes. 

 

Accordingly, the LTD is applied to the excitatory neurons when their terminating rates are higher than 

an edge rate. The limit rate is set by experimentation. What's more, the criticism triggers each 

inhibitory concealed neuron to potentiate its loads dependent on the longterm potentiation of STDP. 

 

The weight potentiation increments inhibitory concealed spikes before an exact time interim (the time 

interim is equivalent to the deferral between the shrouded neuron and the readout neuron) before the 

undesired spike time to help the readout neuron to lessen its complete PSP at the undesired yield spike 

time. 

 

The second process is applied at the time of the undesired output spike and consists of a reduction of 

the readout neuron weights that have spikes at the undesired output spike time or shortly before it by 

using anti-STDP similar to ReSuMe. The third process reduces the readout neuron total PSP at the 

time of the undesired spike by adjusting the delays of the readout neuron based on EDL. 

 

The concealed layer spikes assume a significant job in the age of the system yield spikes (both at 

wanted and undesired occasions). Produced spikes by various concealed neurons agreeably increment 

the PSP of the yield neuron at an ideal time and help it to fire at the ideal time. 

 

What's more, when the multifaceted nature of a learning task is expanded by expanding the quantity 

of wanted spikes and furthermore by expanding the quantity of various preparing designs for each 
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class, it gets troublesome or difficult to prepare a solitary neuron to fire at all the ideal occasions for 

all the preparation designs. 

 

Various gatherings of concealed neurons can contribute in producing diverse wanted spikes and 

agreeably drive a readout neuron to fire at all the ideal occasions for all the preparation designs. 

 

In Sections B and C, first the training rule of the output neurons is explained and then the training of 

the hidden neurons weights is described in detail. 

 

B. Training the Output Neurons 

 

The weights and delays of each output neuron are trained by EDL. The delay adjustments in 

cooperation with the weight adjustments train an output neuron to increase its total PSP at a desired 

time to generate an actual output spike, and also the adjustments help the output neuron to reduce its 

PSP at undesired spike times and to remove undesired actual output spikes. The weights are trained by 

the following equation: 

 
𝑑𝑤𝑜ℎ(𝑡)

𝑑𝑡
 = [𝑠𝑜

𝑑(𝑡) − 𝑠𝑜
𝑎(𝑡)][a+∫ ψ(𝑠)𝑠𝑠ℎ(𝑡 − 𝑑𝑜ℎ − 𝑠)𝑑𝑠]

+∞

0
           (1) 

 

where woh and doh are the weight and delay related to the connection between the hth hidden neuron 

and the oth output neuron, respectively. sdo (t) and sao (t) are desired and actual output spike trains of 

the oth output neuron, respectively. sh(t) is the spike train fired by hth hidden neuron. a is a non-

Hebbian parameter that can speed up the learning. _(s) is a learning window similar to that of STDP 

and has an exponential function as described by 

 

ψ(s)={𝐴𝑒−
𝑠

𝑡   
,     𝑠≥0

0,    𝑠 < 0
                                                  (2) 

 

where τ and A are the exponential decay time constant and the amplitude of the learning window, 

respectively. 

xoh(t), a local variable called spike trace, is used to train the delay related to the synapse that connect 

hth excitatory hidden neuron to oth output neuron. xoh(t) is governed by 

 

xoh=(t)= {𝐴𝑒−
𝑡−𝑡

ℎ
𝑓

−𝜀𝑜ℎ 

𝑡
,   𝑡ℎ

𝑓
<𝑡<𝑡ℎ

𝑓+1
         

𝐴,                         𝑡 = 𝑡ℎ
𝑓

                    (3) 

 

where t fh is the firing time of the f th spike of the hth excitatory hidden neuron, τ is the time constant 

of the exponential function, εoh is the delay between the hth excitatory. 
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Figure 1. Synaptic weight between ith input neuron and the hth excitatory hidden neuron whi is 

potentiated in proportion to the value of STDP time window [ ψ(t-ti)] at  t = �̂�𝒐
𝒇
 to generate 

hidden spike at the desired time  t = �̂�𝒐
𝒇
 . The generated excitatory input will be fed to the oth 

output neuron, and it increases the total PSP of the neuron at the desired time. 

 

 
 Figure 2. whi, the synaptic weight between ith input neuron and the hth excitatory hidden 

neuron, is reduced in proportion to ψ(t-ti), at t = �̂�𝒐
𝒇
 (the time of the f th actual output spike of 

the oth output neuron). The reduction might lead to the cancelation of the hidden spike at th and 

consequently the reduction of the total PSP of the oth output neuron generated at t = �̂�𝒐
𝒇
 and 

remove the actual output at t = �̂�𝒐
𝒇
 . 

 

C. Effect of Network Setups on the Learning Performance 

 

First, the effects of the different maximum allowable delays and the number of desired output 

spikes in each class on the performance of the learning method are explored. Then, the running time 

for the proposed method is reported. In the following simulation, the performance of the network is 

first evaluated on the Fisher IRIS data set. The IRIS data features are converted to spike times using 

population coding, where each feature value is encoded by M identically shaped overlapping Gaussian 

functions where M is set to 40. The IRIS data have four features for each pattern so there are 4×M = 

160 input spikes obtained which are then applied to 160 input synapses. The high number of input 

synapses increases the number of input spikes, and consequently reduces the length of silent windows 

inside a spatiotemporal input pattern and helps the neuron to fire at multiple desired times. In 

addition, there are nine extra input synapses with input spikes at fixed times for all patterns. The fixed 

times are the same as the times of desired spikes corresponding to all classes. These inputs act as bias 

inputs and act as the reference start times in a multispike coding scheme. There are 360 hidden 

neurons in the hidden layer. The total time duration of the input spatiotemporal pattern is set to 100 

ms, T = 100 ms. 

 

 

Conclusion 

 

This paper proposed a BPSL for multilayer SNNs. It utilizes the exact planning of different 

spikes, which is an organically conceivable data coding plan. The learning parameters of neurons in 

the concealed layer and yield layer are found out in equal utilizing STDP, hostile to STDP, and 

postpone learning. The recreation results show that the proposed strategy has improved the 

presentation of the principal completely directed calculation that learns numerous spikes in all layers. 

The improvement of the proposed strategy can be credited to various properties of the proposed 

technique. 

 

To start with, it has utilized the terminating times of spikes terminated by the concealed neurons to 

prepare the loads of the shrouded neurons where the terminating time of shrouded neurons isn't 

considered and the loads of a shrouded neuron are balanced by similar qualities regardless of the 
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neuron terminating at the ideal occasions or not terminating by any means. In the proposed strategy, 

weight learning, in view of the terminating times of the concealed neurons, alters the loads suitably 

and forestalls superfluous weight changes. 

 

Another property of the proposed strategy is the fitting utilization of the EPSP and the IPSP delivered 

by the shrouded excitatory and inhibitory neurons to viably change their loads, where equivalent 

weight refreshes are applied to both excitatory and inhibitory neurons, which can decrease the 

learning execution. Another property of the proposed technique that improves its presentation 

contrasted with the learning strategy is the suitable thought of the impact of postponements on the 

weight learning. 

 

It was demonstrated that the deferral after a concealed neuron essentially affects the yield of the 

spiking system, henceforth it ought to be considered during the preparation of the loads of the 

shrouded neuron. For instance, an excitatory concealed neuron should fire sooner than an ideal yield 

spike contingent upon the deferral after the shrouded neuron, as portrayed in Section B and C. 

 

The created PSP by the terminated shrouded spike is moved to the ideal time by the postponement. 

The impact of the postponement on the weight modifications of concealed neurons and it was 

demonstrated this brought about a lower exactness contrasted with the proposed strategy on the IRIS 

informational index. The presentation of the proposed strategy was likewise contrasted and different 

calculations on various informational collections. The outcomes demonstrated that the proposed 

technique can accomplish a higher precision contrasted with a solitary layer SNN. 

 

Moreover, the strategy has practically identical exactness with the best outcome accomplished by best 

in class rate-based neural models including autoencoders and DBNs. The outcomes likewise indicated 

that a high number of wanted spikes can lessen the precision of the strategy by expanding the 

intricacy of the learning task, and an exceptionally low number of wanted spikes can't catch all the 

transient data of info information. 

 

Despite the fact that the postpone learning builds the multifaceted nature of the learning strategy and 

thus the running time, it was indicated that postponements can expand the learning execution of the 

proposed strategy. Moreover, delays are an organically conceivable property of SNNs. Another 

property of the proposed technique is its multilayer structure that expands the computational expense 

of each learning age. 

 

Be that as it may, the outcomes demonstrated that it can likewise decrease the quantity of learning 

ages and can improve its exactness contrasted with the comparable multilayer spiking system 

proposed by Sporea and Grüning. The ablity of the proposed strategy to successfully become familiar 

with various wanted spikes recommends that this methodology might be reasonable for 

neuroprosthetic applications. 

 

In a naturally conceivable neuron model, the yield of a neuron depends on synaptic data sources, yet 

in addition on the inner elements of the neuron. Accordingly, a potential heading for future work is to 

join the neuron interior elements in the proposed strategy, also with the impact of the synaptic weight 

and postponements, which may prompt another learning calculation with conceivably better. For 

example, Zhang et al.have proposed a unique terminating edge to make the spiking system learning 

hearty to clamor. 

 

A comparable technique can be applied to the multilayer spiking system proposed right now further 

improve its presentation. It is conceivable to stretch out the learning calculation to more layers 

(profound SNNs). In any case, more layers may lessen the impact of preparing of prior layers on the 

system yield. Structuring powerful learning strategies for profound spiking systems will be explored 

later on work. 
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