On Elemental Algebraic Characteristic of ω -Fuzzy Subring, Normal Subring and Ideal

¹Prasanna A, ^{*2}PremkumarM, ³Swaminathan S and ⁴Ismail Mohideen S

¹PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

Email:apj_jmc@yahoo.co.in,

*2 Research Scholar, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Assistant Professor, Department of Mathematics, Kongunadu College of Engineering and Technology, Tiruchirappalli-620020, Tamilnadu, India. Email: mprem.maths3033@gmail.com,

³Assistant Professor, Department of Mathematics, K. RamakrishnanCollege of Engineering Tiruchirappalli, Tamilnadu, India.

Email: nathan.swami013@gmail.com,

⁴Principal, Head and Associate Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous)(Affiliated to Bharathidasan University),

Tiruchirappalli-620020, Tamilnadu, India. Email: simohideen@yahoo.co.in

Abstract

In this paper, introduced the new notion of on elemental Algebraic characteristic of ω – FSR and ω – FI are defined and discussed. The "homomorphism" of ω – FSR, ω – FNSR and ω – FI and their inverse images has been found. A few related results are deliberated.

Mathematics subject classification: 03E72; 08A72; 20N25.

Keywords: Fuzzy Set (FS); Fuzzy Subset (FSb): Fuzzy Subrings (FSR); Fuzzy Normal Subring(FNSR); Fuzzy Ideal(FI); ω -Fuzzy Subrings (ω - FSR); ω - Fuzzy Normal Subring (ω - FNSR); ω -Fuzzy Ideal (ω - FI);

1. Introduction

The pioneering work of L A Zadeh on fuzzy subsets of a set in 1965^[9]. A. B Chakranarty et al. invented the speculation of fuzzy "homomorphism" and algebraic structures in 1993^[1]. The concept of Prime fuzzy ideals in the ring was established by T.K. Mukhrjee et al. in 1989^[5]. V.N. Dixit et al. Presented the idea of Fuzzy rings in 1992[2].

Prasannaet.al.[6] introduced the concept of Fundamental Algebraic characteristics of χ –Fuzzy Subring, Normal Subring, and Ideal.In 1982, Wang-Jin Liu[8],the concept of fuzzy invariant subgroups and fuzzy ideals.D.S. Malik etal.derived from the extension of fuzzy subrings and fuzzy ideals in 1992[3]. V. Veeramani et al. derived from the Some Properties of Intuitionistic Fuzzy Normal Subrings in 2010[7]. T.K. Mukhrjee et al. proposed by the concept of on fuzzy ideals of a ring in 1987[4].

In this paper is arranged as follows; section 2 contains the elementary basic concept of definitions associated with the results, which are thoroughly crucial to the current research. In section 3, we introduce an elemental algebraic characteristic of ω – fuzzy subring (ω – FSR) and ideal (ω – FI) and section 4,describe the algebraic

aspect on "homomorphism" of ω – fuzzy subrings (ω – FSR), normal subrings (ω – FSNR) and ideals (ω – FI).

2. Preliminaries

2.1 Definition [4]

Let *R* be a ring. A function $A: R \to [0,1]$ is said to be a *FSR* of *R* if $(i)A(x-y) \ge min\{\mu_A(x), \mu_A(y)\}$ $(ii)A(xy) \ge min\{\mu_A(x), \mu_A(y)\}, \forall x, y \in R$.

2.2 Definition [7]

A FSRA of a ring R is said to be a FNSR of R if $A(xy) = A(yx), \forall x, y \in R$.

2.3 Definition [8]

Let R be a ring. A function $A: R \to [0,1]$ is said to be a

(a) FLI of R if

$$(i)A(x - y) \ge \min\{A(x), A(y)\}\$$

$$(ii)A(xy) \ge A(y), \forall x, y \in R$$

(b) FRI of R if

$$(i)A(x - y) \ge \min\{A(x), A(y)\}\$$

$$(ii)A(xy) \ge A(x), \forall x, y \in R$$

(c) FI of R if

$$(i)A(x-y) \ge \min\{A(x), A(y)\}\$$

 $(ii)A(xy) \ge \max\{A(x), A(y)\}, \forall x, y \in R$

2.4 Theorem [3]

If A be a FSR of the ring R then

- $(i) A(0) \ge A(x)$
- $(ii)A(-x) = A(x), \forall x \in R$
- (iii) If R is a ring with unity 1, then $A(1) \ge A(x)$, $\forall x \in R$.

2.5 Definition [1]

Let X and Y be two non-empty sets and $f: X \to Y$ be a mapping. Let A and B be FS of X and Y, respectively. Then the image of A under the map f is signified by f(A) and is well-defined as $f(A)(y) = \begin{cases} Sup\{A(x): x \in f^{-1}(y)\} \\ 0: otherwise \end{cases}$. Also, the pre-image of B under f is denoted by $f^{-1}(B)$ and defined $f^{-1}(B)(x) = Bf(x), \forall x \in X$.

2.6 Definition[1]

The mapping $f: R_1 \to R_2$ from the ring R_1 into a ring R_2 is called a ring "homomorphism" if

$$(i)f(x + y) = f(x) + f(y)$$

 $(ii)f(xy) = f(x)f(y), \forall x, y \in R_1.$

3. On Elemental Algebraic Characteristic of $\omega - FSR$ and $\omega - FI$

3.1 Definition

Let M be a FS of a ring τ . Let $\omega \in [0,1]$. Then the FSM^{ω} of τ is termed the $\omega - FSb$ of τ concerning FSM and is defined by $M^{\omega}(\theta) = \{M(\theta) \land \omega\}, \ \forall \omega \in [0,1].$

3.2 Definition

Let *M* be a *FS* of a ring τ and $\in [0,1]$. Then *M* is termed $\omega - FSR$ of τ if M^{ω} is *FSR* of τ , i.e. if the subsequent conditions hold

$$(i)M^{\omega}(\theta - \varphi) \ge \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$$

$$(ii)M^{\omega}(\theta\varphi) \ge \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}, \forall \theta, \varphi \in \tau$$

If otherwise, M is $\omega - FSR$ of τ if M^{ω} is FSR of τ .

3.3 Definition

Let
$$M$$
 be a FS of a ring τ . Let $\omega \in [0,1]$. Then M is termed $\omega - FLI$ of τ if $(i)M^{\omega}(\theta - \varphi) \ge \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$ $(ii)M^{\omega}(\theta\varphi) \ge M^{\omega}(\varphi), \forall \theta, \varphi \in \tau$.

3.4 Definition

Let
$$M$$
 be a FS of a ring τ . Let $\omega \in [0,1]$. Then M is termed $\omega - FRI$ of τ if $(i)M^{\omega}(\theta - \varphi) \ge \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$ $(ii)M^{\omega}(\theta\varphi) \ge M^{\omega}(\theta), \forall \theta, \varphi \in \tau$.

3.5 Definition

Let
$$M$$
 be a FS of a ring τ . Let $\omega \in [0,1]$. Then M is termed $\omega - FI$ of if $(i)M^{\omega}(\theta - \varphi) \ge \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$ $(ii)M^{\omega}(\theta\varphi) \ge \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}, \forall \theta, \varphi \in \tau$.

3.6 Proposition

Let M^{ω} and N^{ω} be two $\omega - FS$ of a ring τ . Then $(M \cap N)^{\omega} = M^{\omega} \cap N^{\omega}$.

Proof:

Let $\theta \in \tau$ be any element, then

$$(M \cap N)^{\omega}(\theta) = \{(M \cap N) \wedge \omega\}$$

$$= (\{M(\theta) \wedge N(\varphi)\} \wedge \omega)$$

$$= (\{M(\theta) \wedge \omega\} \wedge \{N(\varphi) \wedge \omega\})$$

$$= \{M^{\omega}(\theta) \wedge N^{\omega}(\varphi)\}$$

$$= (M^{\omega} \cap N^{\omega})(\theta)$$
Hence $(M \cap N)^{\omega}(\theta) = (M^{\omega} \cap N^{\omega})(\theta)$.

3.7 Proposition

Let
$$g: \alpha \to \beta$$
 be a mapping. Let M and N are two FS of α and β respectively, then $(i)g^{-1}(N^{\omega}) = (g^{-1}(N))^{\omega}$ $(ii) g(M^{\omega}) = (g(M))^{\omega}, \forall \omega \in [0,1].$

Proof:

Let $g: \alpha \to \beta$ be a mapping. Let M and N are two FS of α and β , respectively.

$$(i)g^{-1}(N^{\omega})(\varphi) = N^{\omega}(g(\varphi))$$

$$= \{N(g(\varphi)) \wedge \omega\}$$

$$= \{g^{-1}(N)(\varphi) \wedge \omega\}$$

$$= (g^{-1}(N))^{\omega} (\varphi)$$

$$\Rightarrow g^{-1}(N^{\omega})(\varphi) = (g^{-1}(N))^{\omega}$$

$$(ii) g(M^{\omega})(\theta) = Sup\{M^{\omega}(\varphi): g(\varphi) = \theta\}$$

$$= sup(\{M(\varphi) \wedge \omega\}: g(\varphi) = \theta\} \wedge \omega)$$

$$= \{g(M)(\theta) \wedge \omega\}$$

$$= \{g(M)(\theta) \wedge \omega\}$$

$$= (g(M))^{\omega}(\theta)$$

$$\Rightarrow g(M^{\omega}) = (g(M))^{\omega}.$$

3.8 Proposition

If *M* is *FSR* of a ring τ then *M* is additionally $\omega - FSR$ of τ .

Proof:

Let $\theta, \varphi \in \tau$ be every element of the ring τ .

Now,

$$(i) M^{\omega}(\theta - \varphi) = \{M^{\omega}(\theta - \varphi) \land \omega\}$$

$$\geq (\{M^{\omega}(\theta) \land M^{\omega}(\varphi)\} \land \omega)$$

$$= (\{M^{\omega}(\theta) \land \omega\} \land \{M^{\omega}(\varphi) \land \omega\})$$

$$= \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$$

$$\Rightarrow M^{\omega}(\theta - \varphi) \geq \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$$

$$(ii) M^{\omega}(\theta \varphi) = \{M(\theta \varphi) \land \omega\}$$

$$\geq (\{M(\theta) \land M(\varphi)\} \land \omega)$$

$$= (\{M(\theta) \land \omega\} \land \{M(\varphi) \land \omega\})$$

$$= \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$$

$$\Rightarrow M^{\omega}(\theta \varphi) \geq \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\}$$
Therefore, M is $\omega - FSR$ of τ .

3.9 Proposition

The above proposition [3.8] proof it will be needn't be real.

3.9.1 Numerical Example 1

Let the ring $(Z_5, +_5, \times_5)$, where $Z_5 = \{0,1,2,3,4,5\}$. Define the fuzzy set M of Z_5 by $M(\theta) = \begin{cases} 0.7; & \text{if } x = 0 \\ 0.5; & \text{if } x = 1,3 \\ 0.2; & \text{if } x = 2,4 \end{cases}$

It is easy to verify that M isn'tFSR of Z_5 .

However, if we take $\omega = 0.1$, then $M^{\omega}(\theta) = 0.1, \forall \theta \in Z_5$.

Now, it will be easily proved that M^{ω} is FSR of Z_5

∴ Mis ω – FSR of Z_5 .

3.10 Lemma

Let *M* be a *FS* of the ring τ . Let $\omega \le L$, where $L = \{M(\theta) : \forall \theta \in \tau\}$. Then *M* is $\omega - FSR$ of τ .

Proof:

```
Let M be a FS of the ring \tau and \omega \leq L

Since \omega \leq L \Rightarrow L \geq \omega

Implies that \{M(\theta): \forall \theta \in \tau\} \geq \omega

\Rightarrow M(\theta) \geq \omega, \forall \theta \in \tau

\therefore M^{\omega}(\theta - \varphi) \geq \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\} and M^{\omega}(\theta\varphi) \geq \{M^{\omega}(\theta) \land M^{\omega}(\varphi)\},

Hence M is \omega = FSR of \tau.
```

3.11 Theorem

If intersection of two $\omega - FSR$'s of a ring τ is additionally $\omega - FSR$ of τ .

Proof:

```
Let \theta, \varphi \in \tau be every element of the ring \tau.
Then.
(i)(M \cap N)^{\omega}(\theta - \varphi) = \{(M \cap N)(\theta - \varphi) \land \omega\}
                                                     = (\{M(\theta - \varphi) \land N(\theta - \varphi)\} \land \omega)
                                                     = (\{M(\theta - \varphi) \land \omega\} \land \{N(\theta - \varphi) \land \omega\})
                                                     = \{M^{\omega}(\theta - \varphi) \wedge N^{\omega}(\theta - \varphi)\}\
                                                    \geq (\{M^{\omega}(\theta) \land M^{\omega}(\varphi)\} \land \{N^{\omega}(\theta) \land N^{\omega}(\varphi)\})
                                                     = (\{M^{\omega}(\theta) \land N^{\omega}(\theta)\} \land \{M^{\omega}(\varphi) \land N^{\omega}(\varphi)\})
                                                     = \{ (M^{\omega} \cap N^{\omega})(\theta) \land (M^{\omega} \cap N^{\omega})(\varphi) \}
                                                     = \{ (M \cap N)^{\omega}(\theta) \land (M \cap N)^{\omega}(\varphi) \}
                 \Rightarrow (M \cap N)^{\omega}(\theta - \varphi) \ge \{(M \cap N)^{\omega}(\theta) \land (M \cap N)^{\omega}(\varphi)\}
                 (ii)(M \cap N)^{\omega}(\theta\varphi) = \{(M \cap N)(\theta\varphi) \land \omega\}
                                                    = (\{M(\theta\varphi) \land N(\theta\varphi)\} \land \omega)
                                                     = (\{M(\theta\varphi) \wedge \omega\} \wedge \{N(\theta\varphi) \wedge \omega\})
                                                    = \{M^{\omega}(\theta\varphi) \wedge N^{\omega}(\theta\varphi)\}
                                                   \geq (\{M^{\omega}(\theta) \land M^{\omega}(\varphi)\} \land \{N^{\omega}(\theta) \land N^{\omega}(\varphi)\})
                                                   = (\{M^{\omega}(\theta) \land N^{\omega}(\theta)\} \land \{M^{\omega}(\varphi) \land N^{\omega}(\varphi)\})
                                                    = \{ (M^{\omega} \cap N^{\omega})(\theta) \land (M^{\omega} \cap N^{\omega})(\varphi) \}
                                                     = \{ (M \cap N)^{\omega}(\theta) \cap (M \cap N)^{\omega}(\varphi) \}
                 \Rightarrow (M \cap N)^{\omega}(\theta\varphi) \ge \{(M \cap N)^{\omega}(\theta) \cap (M \cap N)^{\omega}(\varphi)\}\
                 Therefore M \cap N is \omega - FSR of \tau.
```

3.12 Theorem

Let M be FNSR of a ring τ . Then M is additionally $\omega - FNSR$ of τ .

Proof:

```
Let \theta, \varphi \in \tau be any element of the ring \tau.

Then M^{\omega}(\theta\varphi) = \{M(\theta\varphi) \wedge \omega\}

= \{M(\varphi\theta) \wedge \omega\}

= M^{\omega}(\varphi\theta)

Therefore M is \omega - FNSR of \tau.
```

3.13 Lemma

Let M is FLI of a ring τ , then M is additionally $\omega - FLI$ of τ .

Proof:

During this Proposition [3.8], we'd like only to prove that

$$M^{\omega}(\theta\varphi) \ge M^{\omega}(\varphi), \forall \theta, \varphi \in \tau$$

$$M^{\omega}(\theta\varphi) = \{M(\theta\varphi), \omega\}$$

$$\ge \{M(\varphi) \land \omega\}$$

$$= M^{\omega}(\varphi)$$
Implies that $M^{\omega}(\theta\varphi) \ge M^{\omega}(\varphi)$

$$\therefore Mis\omega - FLI \text{ of } \tau.$$

3.14 Lemma

Let *M* is *FRI* of a ring τ , then *M* is additionally $\omega - FRI$ of τ .

Proof:

During this Proposition [3.8], we'd like only to prove that $M^{\omega}(\theta\varphi) \geq M^{\omega}(\theta), \forall \ \theta, \varphi \in \tau$ $M^{\omega}(\theta\varphi) = \{M(\theta\varphi), \omega\}$ $\geq \{M(\theta) \wedge \omega\}$ $= M^{\omega}(\theta)$ Implies that $M^{\omega}(\theta\varphi) \geq M^{\omega}(\theta)$ $\therefore Mis\omega - FRI \text{ of } \tau.$

4. On Algebraic Aspect on "homomorphism" of $\omega - FSR$, $\omega - FNSR$ and $\omega - FI$

4.1 Theorem

Let $N\omega - FSR$ of τ_2 .

Let $g: \tau_1 \to \tau_2$ be a ring "homomorphism" from the ring τ_1 into a ring τ_2 . Let N be $\omega - FSR$ of τ_2 . Then $g^{-1}(N)$ is $\omega - FSR$ of τ_1 .

Proof:

Let $\theta_1, \theta_2 \in \tau_1$ be any element. Then

(i) $g^{-1}(N^\omega)(\theta_1 - \theta_2) = N^\omega \left(g(\theta_1 - \theta_2)\right)$ $= N^\omega \left(g(\theta_1) - g(\theta_2)\right)$ $\geq \{N^\omega (g(\theta_1)) \land N^\omega (g(\theta_2))\}$ $= \{g^{-1}(N^\omega)(\theta_1) \land g^{-1}(N^\omega)(\theta_2)\}$ $\Rightarrow g^{-1}(N^\omega)(\theta_1 - \theta_2) \geq \{g^{-1}(N^\omega)(\theta_1) \land g^{-1}(N^\omega)(\theta_2)\}$ (ii) $g^{-1}(\theta_1\theta_2) = N^\omega \left(g(\theta_1\theta_2)\right)$ $= N^\omega \left(g(\theta_1) - g(\theta_2)\right)$ $\geq \{N^\omega \left(g(\theta_1)\right) \land N^\omega \left(g(\theta_2)\right)\}$ $= \{g^{-1}(N^\omega)(\theta_1) \land g^{-1}(N^\omega)(\theta_2)\}$ $\Rightarrow g^{-1}(\theta_1\theta_2) \geq \{g^{-1}(N^\omega)(\theta_1) \land g^{-1}(N^\omega)(\theta_2)\}$ Therefore $g^{-1}(N^\omega) = (g^{-1}(N))^\omega$ is FSR of τ_1 $\therefore g^{-1}(N)$ is $\omega - FSR$ of τ_1 .

4.2 Lemma

Let $g: \tau_1 \to \tau_2$ be a ring "homomorphism" from the ring τ_1 into a ring τ_2 .Let N be $\omega - FNSR$ of τ_2 . Then $g^{-1}(N)$ is $\omega - FNSR$ of τ_1 .

Proof:

Let
$$N$$
 be $\omega - FNSR$ of τ_2 and $\theta_1, \theta_2 \in \tau_1$ be any element.

$$g^{-1}(N^{\omega})(\theta_1\theta_2) = N^{\omega}(g(\theta_1\theta_2))$$

$$= N^{\omega}(g(\theta_1)g(\theta_2))$$

$$= N^{\omega} (g(\theta_2)g(\theta_1))$$

$$= N^{\omega} (g(\theta_1\theta_2))$$

$$= g^{-1}(N^{\omega}(\theta_1\theta_2))$$

$$\Rightarrow g^{-1}(N^{\omega}) = (g^{-1}(N))^{\omega} \text{ is } FNSR \text{ of } \tau_1$$

$$\therefore g^{-1}(N) \text{is } \omega - FNSR \text{ of } \tau_1.$$

4.3 Theorem

Let $g: \tau_1 \to \tau_2$ be a ring "homomorphism" from the ring τ_1 into a ring τ_2 . Let N be $\omega - FLI$ of τ_2 . Then $g^{-1}(N)$ is $\omega - FLI$ of τ_1 .

Proof:

Let *N* be $\omega - FLI$ of τ_2 and $\theta_1, \theta_2 \in \tau_1$ be any element.

Then, invisible of the theorem [4.1],

We have only proved that

$$g^{-1}(N^{\omega})(\theta_1\theta_2) \ge g^{-1}(N^{\omega})(\theta_2)$$
Now,
$$g^{-1}(N^{\omega})(\theta_1\theta_2) = N^{\omega}(g(\theta_1\theta_2))$$

$$= N^{\omega}(g(\theta_1)g(\theta_2))$$

$$\ge N^{\omega}(g(\theta_2))$$

$$= g^{-1}(N^{\omega})(\theta_2)$$

Thus implies that $g^{-1}(N^{\omega})(\theta_1\theta_2) \ge g^{-1}(N^{\omega})(\theta_2)$ Thus implies also $g^{-1}(N^{\omega}) = (g^{-1}(N))^{\omega}$ is *FLI* of τ_1 $\therefore g^{-1}(N)$ is $\omega - FLI$ of τ_1 .

4.4 Theorem

Let $g: \tau_1 \to \tau_2$ be a ring "homomorphism" from the ring τ_1 into a ring τ_2 . Let N be $\omega - FRI$ of τ_2 . Then $g^{-1}(N)$ is $\omega - FRI$ of τ_1 .

Proof:

It will be easier to prove that will be got the same as theorem[4.3].

4.5 Theorem

Let $g: \tau_1 \to \tau_2$ be a ring "homomorphism" from the ring τ_1 into a ring τ_2 . Let N be $\omega - FI$ of τ_2 . Then $g^{-1}(N)$ is $\omega - FI$ of τ_1 .

Proof:

It will be obtained the same as theorem[4.3] and [4.4].

4.6 Theorem

Let $g: \tau_1 \to \tau_2$ be "surjective" ring "homomorphism" and M be $\omega - FSR$ of τ_1 . Then g(M) is $\omega - FSR$ of τ_2 .

Proof:

Let *M* be $\omega - FSR$ of τ_1 .

Let $\varphi_1, \varphi_2 \in \tau_2$ be any element. Then \exists some $\theta_1, \theta_2 \in \tau_1$ such $g(\theta_1) = \varphi_1$ and $g(\theta_2) = \varphi_2$. (Since that θ_1, θ_2 needn't be unique)

$$\begin{split} (i)g(M^{\omega})(\varphi_{1}-\varphi_{2}) &= (g(M))(\varphi_{1}-\varphi_{2}) \\ &= \{g(M)(g(\theta_{1})-g(\theta_{2}))\wedge\omega\} \\ &= \{g(M)(g(\theta_{1}-\theta_{2}))\wedge\omega\} \\ &\geq \{M(\theta_{1}-\theta_{2})\wedge\omega\} \\ &= M^{\omega}(\theta_{1}-\theta_{2}) \\ &\geq \{M^{\omega}(\theta_{1})\wedge M^{\omega}(\theta_{2})\}, \end{split}$$

For all
$$\theta_1, \theta_2 \in \tau_1$$
 such that $(\theta_1) = \varphi_1$ and $g(\theta_2) = \varphi_2$

$$= \left\{ \{M^{\omega}(\theta_1) \colon g(\theta_1) = \varphi_1 \} \land \{M^{\omega}(\theta_2) \colon g(\theta_2) = \varphi_2 \} \right\}$$

$$= \left\{ g(M^{\omega})(\varphi_1) \land g(M^{\omega})(\varphi_2) \right\}$$
Thus implies that $g(M^{\omega})(\varphi_1 - \varphi_2) \ge \{g(M^{\omega})(\varphi_1) \land g(M^{\omega})(\varphi_2) \}$.

$$(ii) \ g(M^{\omega})(\varphi_1 \varphi_2) = \left(g(M) \right)^{\omega} (\varphi_1 \varphi_2)$$

$$= \left\{ g(M) \left(g(\theta_1) g(\theta_2) \right) \land \omega \right\}$$

$$= \left\{ g(M) \left(g(\theta_1) g(\theta_2) \right) \land \omega \right\}$$

$$= \left\{ g(M) \left(g(\theta_1 \theta_2) \right) \land \omega \right\}$$

$$= \left\{ M(\theta_1 \theta_2) \land \omega \right\}$$

$$= M^{\omega}(\theta_1 \theta_2)$$

$$\ge \left\{ M^{\omega}(\theta_1) \land M^{\omega}(\theta_2) \right\}$$
For all $\theta_1, \theta_2 \in \tau_1$ such that $(\theta_1) = \varphi_1$ and $g(\theta_2) = \varphi_2$

$$= \left\{ \left\{ M^{\omega}(\theta_1) \colon g(\theta_1) = \varphi_1 \right\} \land \left\{ M^{\omega}(\theta_2) \colon g(\theta_2) = \varphi_2 \right\} \right\}$$

$$= \left\{ g(M^{\omega})(\varphi_1) \land g(M^{\omega})(\varphi_2) \right\}$$
Thus implies that $g(M^{\omega})(\varphi_1 \varphi_2) \ge \left\{ g(M^{\omega})(\varphi_1) \land g(M^{\omega})(\varphi_2) \right\}$.
Thus $g(M^{\omega}) = \left(g(M) \right)^{\omega}$ is FSR of τ_2 and hence $g(M)$ is $\omega - FSR$ of τ_2 .

4.7 Theorem

Let $g: \tau_1 \to \tau_2$ be "surjective" ring "homomorphism" and M be $\omega - FNSR$ of τ_1 . Then g(M) is $\omega - FNSR$ of τ_2 .

Proof:

```
Let M be \omega - FNSR of \tau_1.

Let \varphi_1, \varphi_2 \in \tau_2 be any element.

Then \exists some \theta_1, \theta_2 \in \tau_1 such g(\theta_1) = \varphi_1 and g(\theta_2) = \varphi_2.

(Since that \theta_1, \theta_2 needn't be unique)

In this view of the theorem [4.6],

we want only to prove that (g(M))^{\omega}(\varphi_1\varphi_2) = g(M^{\omega})(\varphi_2\varphi_1)

(g(M))^{\omega}(\varphi_1\varphi_2) = g(M^{\omega})(g(\theta_1)g(\theta_2))

= g(M^{\omega})(g(\theta_1\theta_2))

= \{M^{\omega}(\theta_1\theta_2): g(\theta_1\theta_2) = \varphi_1\varphi_2\}

= \{M^{\omega}(\theta_2\theta_1): g(\theta_1\theta_2) = \varphi_1\varphi_2\}

= g(M^{\omega})(g(\theta_2)g(\theta_1))

= (g(M))^{\omega}(\varphi_2\varphi_1)

\Rightarrow (g(M))^{\omega} is FNSR of \tau_2

\therefore g(M) is \omega - FNSR of \tau_2.
```

4.8 Theorem

Let $g: \tau_1 \to \tau_2$ be "bijective" ring "homomorphism" and M be ω –FLI of τ_1 . Then g(M) is ω –FLI of τ_2 .

Proof:

```
Let M be \omega -FLI of \tau_1.

Let \varphi_1, \varphi_2 \in \tau_2 be any element.

Then \exists some \theta_1, \theta_2 \in \tau_1 such g(\theta_1) = \varphi_1 and g(\theta_2) = \varphi_2.

In this view of the theorem [4.6],

we want only to prove that (g(M))^{\omega}(\varphi_1\varphi_2) \geq (g(M))^{\omega}(\varphi_2)

(g(M))^{\omega}(\varphi_1\varphi_2) = \{g(M)(g(\theta_1)g(\theta_2))\wedge\omega\}

= \{g(M)(g(\theta_1\theta_2))\wedge\omega\}

= \{M(\theta_1\theta_2)\wedge\omega\}

= M^{\omega}(\theta_1\theta_2)
```

```
\geq M^{\omega}(\theta_{2})
= \{M^{\omega}(\theta_{2}) \land \omega\}
= \{g(M)(g(\theta_{2})) \land \omega\}
= \{g(M)(\varphi_{2}) \land \omega\}
= (g(M))^{\omega}(\varphi_{2})
Thus implies that (g(M))^{\omega}(\varphi_{1}\varphi_{2}) \geq (g(M))^{\omega}(\varphi_{2})
Hence (g(M))^{\omega} is FLI of \tau_{2}
\therefore g(M) is \omega - FLI of \tau_{2}.
```

4.9 Theorem

Let $g: \tau_1 \to \tau_2$ be "bijective" ring "homomorphism" and M be $\omega - FRI$ of τ_1 . Then g(M) is $\omega - FRI$ of τ_2 .

Proof:

During this proof, it will be obtained the same as theorem[4.8].

Acknowledgments

Authors would like to thank referees for their helpful comments.

5. References

- 1. A. B Chakranarty and S.S. Khare, "Fuzzy homomorphism and algebraic structures", Fuzzy Sets and Systems, 59 (1993), 211-221.
- V.N. Dixit, R. Kumar and A. Naseem, "On Fuzzy rings", Fuzzy Sets and Systems, 49(1992), 205-213.
- 3. D.S. Malik and J.N. Mordeson, "Extension of fuzzy subrings and fuzzy ideals", Fuzzy Sets and System 45 (1992), 245-251.
- 4. T.K. Mukhrjee and M.K. Sen, "On fuzzy ideals of a ring" Fuzzy Sets and Systems, 21 (1987), 99-104.
- 5. T.K. Mukhrjee and M.K. Sen, "Prime fuzzy ideals in ring" Fuzzy Sets and Systems, 32 (1989),337-341.
- 6. A. Prasanna, M. Premkumar and S. Ismail Mohideen, "On Fundamental Algebraic attributes of χ –Fuzzy Subring, Normal Subring and Ideal" International Journal of Recent Technology and Engineering, 8, 6 (2020), 5033-5037.
- 7. V. Veeramani, K. Arjunan and N. Palaniappan, "Some Properties of Intuitionistic Fuzzy Normal Subrings", Applied Mathematical Sciences, 4, 43(2010), 2119 2124.
- 8. Wang-Jin Liu, "Fuzzy invariant subgroups and fuzzy ideals", Fuzzy Sets and Systems, 8 (1982), 133-139.
- 9. L.A. Zadeh, "Fuzzy sets", Information and Control, 8 (1965), 338-353.