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Abstract 

The finding of this paper is to introduce a new similarity measure on interval valued 

intuitionistic fuzzy numbers (IVIFNs) which computes the distance between intervals 

valued intuitionistic fuzzy sets. Some properties and some relations of this new measure 

are also studied. Finally, a new method is proposed for solving pattern recognition 

problem. 
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1. Introduction 

 
Fuzzy set was introduced by Zadeh [19] in the year 1965. This idea is effectively 

applied in various fields as a result of its convenience. Fuzzy set was summed up to 

intuitionistic Fuzzy set (IFS) by Atanassov [1] in 1986 and further to vague set developed 

by Gau and Buehrer [5] in 1993. Both these sets are utilized to process uncertain or 

dubious data. The IFS describes the degrees of belongingness and non-belongingness by 

enrollment and non-membership functions individually. Fuzzy set was further developed 

to interval valued fuzzy sets (IVFS) by Gorzalaczany [6] and Turksen [15] and interval 

valued intuitionistic fuzzy sets (IVIFS) by Atanassov and Gargov [2]. 

Various authors have investigated IVFSs and its compatible topics. Cheng and Li [11] 

contemplated the connection among entropy and closeness proportion of IVFSs. 

Similarity measure and distance measure serve as a tool to solve practical applications. 

Both these measures, being counter parts of IFS, symbolize two expressions of the same 

measure. The similarity measure estimates the degree of similarity and hence the distance 

measure between IFSs. Similarity measures between two fuzzy sets have been 

characterized by numerous creators [8-10], [12]. M.Venkatachalapathy, R.Pandiarajan, 

S.Ganeshkumar[18], developed a special type of generalized quadratic fuzzy numbers. 

S.Muthuperumal, P.Titus & M.Venkatachalapathy [17], using an  triangular fuzzy 

numbers. 

The approach of this paper is coordinated as follows: The definition of IFSs, IVIFSs, 

properties of distance measure and similarity measure, comparable, comparable by 

vagueness, comparable by impreciseness are briefly introduced in section 2. In section 3, 

novel distance measure for IVIFS is introduced and analyzed. In section 4, novel 

similarity measure for IVIFNs is introduced and categorized. In section 5, a new method 

for solving pattern recognition problem is introduced by using the proposed measure. In 

section 6, conclusion and future scope are given. 
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2. Preliminaries 
 

2.1 Definition [2] 

 AnIVIFS on a nonempty set X is defined as A = { x, μA x , ϑA x  : x ∈ X}, where 

μA x = [μA x , μA
 x ]  and ϑA x = [ϑA x , ϑA x ]  are closed sub-intervals of [0, 1] 

which satisfy the condition 0 ≤ μA
 x + ϑA (x) ≤ 1.The collection of all IVIFS on X is 

denoted byIVIFS(X). An IVIFS on singleton set is called IVIF Number. The collection of 

all IVIF Numbers is denoted by IVIFN. 

 

2.2 Definition [13]  

Two IVIFNs , A = ( Aa1
 , Ab1

 ,  Ac1 
, Ad1

 )  and B = ( Ba2
 , Bb2

 ,  Bc2 
, Bd2

 , are 

said to be comparable, A ≤1 B , if Aa1
≤ Ba2

 , Ab1
≤ Bb2

, Ac1 
≥ Bc2 

 and Ad1
≥ Bd2

. 

 

2.3 Definition [14]: 

Two IVIFNs , A = ( Aa1
 , Ab1

 ,  Ac1 
, Ad1

 )  and B = ( Ba2
 , Bb2

 ,  Bc2 
, Bd2

 , are 

said to be comparable by vagueness, A ≤2 B , if Ba2
≤ Aa1

, Ab1
≤ Bb2

,Ac1 
≤ Bc2 

and 

Bd2
≤ Ad1

. 

 

2.4 Definition [14] 

Two IVIFNs , A = ( Aa1
 , Ab1

 ,  Ac1 
, Ad1

 )  and B = ( Ba2
 , Bb2

 ,  Bc2 
, Bd2

 , are 

said to be comparable by impreciseness  A ≤3 B , ifBa2
≤ Aa1

,Ab1
≤ Bb2

, Bc2 
≤ Ac1 

 and 

Ad1
≤ Bd2

. 

Distance is a measure of the difference between two elements of a set. In the case 

of IVIFSs, the distance between two elements must satisfy the following axioms. 

 

2.5 Definition [16] 

 A mapping D: IVIFS(X) × IVIFS(X) 01  is called the distance measure 

onIVIFS X if: For any A, B, C IVIFS(X) 

(D1). 0 ≤ D(A, B) ≤ 1. 

(D2). D A, B = 0 if and only if A = B. 

(D3). D A, B = D(B, A). 

(D4). If A ≤1 B ≤1 C then D A, B ≤ D A, C  and D B, C ≤ D A, C . 

The similarity measure is viewed as a complementary concept of distance 

measure which is defined as follows. 

 

2.6 Definition [16]  

A function S: IVIFS(X) × IVIFS(X)[01]  is called the similarity measure 

onIVIFS(X) if: For any A , B , C  IVIFS(X) 

(S1). 0 ≤ S A, B ≤ 1. 

(S2). S A, B = 1 if and only if A = B. 

(S3). S A, B = S B, A . 

(S4). If, A ≤1 B ≤1 C then S A, B ≥ S A, C  and S B, C ≥ S A, C . 
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2.7 Definition [2-4]  

 Let A =  ( Aa1
 , Ab1

 ,  Ac1 
, Ad1

 )  and B =  ( Ba2
 , Bb2

 ,  Bc2 
, Bd2

 ∈ IVIFN . 

Now, A + B,A ∩ B,  A ∪ B  and Ac  are defined by  

1. A + B =   Aa1
+ Ba2

− Aa1
Ba2

, Ab1
+ Bb2

− Ab1
Bb2

 ,  Ac1 
Bc2

, Ad1
Bd2

   

2. A ∩ B =   min Aa1
, Ba2

 , min Ab1
, Bb2

  ,  max Ac1 
, Bc2 

 , max Ad1
, Bd2

   ,  

3. A ∪ B =   max Aa1
, Ba2

 , max Ab1
, Bb2

  , [min Ac1 
, Bc2 

 , min Ad1
, Bd2

 ] , 

4.  Ac =   Ac1 
, Ad1

 ,  Aa1
, Ab1

  . 

 

2.8 Definition [7] 

            A generalized improved accuracy function GIS of  IVIFN A =   Aa , Ab ,  Ac , Ad  , 

is expressed by  GIS A =
 Aa +Ab  

2
+ K1 1 − Aa − Ac + K2(1 − Ab − Ad ) , where 

GIS ∈  0, 1 . 

 

3. A New Distance Measure on IVIFNS 
 

3.1 Definition   

A map D: IVIFN × IVIFN 01  between two IVIFNs  A = ( a1 , b1 ,  c1, d1 ) 

and B =   a2 , b2 ,  c2 , d2  is defined by D A, B =   
a1−a2

2
 +  

b1−b2

2
  + K1  a1 1 −

a1−c1−a2(1−a2−c2)+K2b11−b1−d1−b2(1−b2−d2) , Where,K1,K2∈0, 1 and 

K1 + K2 ≤ 1. 

 

3.2 Theorem  

 D: IVIFN × IVIFN [01] is a distance measure 

Proof: 

The conditions in Definition 2.5, (D1), (D2), (D3) and (D4), are obvious.  

 

3.3 Theorem  

Let A= ( a1 , b1 ,  c1 , d1 ),B =   a2 , b2 ,  c2, d2  and C =   a3 , b3 ,  c3 , d3   be 

an IVIFNs. Then D A, C ≤ D A, B + D B, C . 

 

Proof: 

Now  D A , C  =   
a1−a3

2
 +  

b1−b3

2
  + K1  a1 1 − a1 − c1 − a3 1 − a3 − c3   +

K2  b1 1 − b1 − d1 − b3(1 − b3 − d3   

≤   
a1 − a2

2
 +  

b1 − b2

2
  + K1  a1 1 − a1 − c1 − a2 1 − a2 − c2   

+ K2  b1 1 − b1 − d1 − b2 1 − b2 − d2   +   
a2 − a3

2
 +  

b2 − b3

2
  

+ K1  a2 1 − a2 − c2 − a3 1 − a3 − c3   

+ K2  b2 1 − b2 − d2 − b3 1 − b3 − d3    

=D A , B  + D B , C  . 

Hence D A, C ≤ D A, B + D B, C . 
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3.4 Theorem  

 Let A , B , C IVIFN, if A ≤1 B ≤1 C , then D A , C  = D A , B  + D B , C  . 

 

3.5 Theorem   

Let A =  a1, c1 and B =  a1 , c1  be two IFNs. Then  

D A, B =  a1 − a2 +  a1 1 − a1 − c1 − a2 1 − a2 − c2  (K1 + K2). 

 

3.6 Theorem  

LetA =  a1 , b1 ,B =  a2 , b2  be two IVFNs.Then 

 D A, B =   
a1−a2

2
 +  

b1−b2

2
  + K1( a1 b1 − a1 − a2(b2 − a2) ) + K2( b1 a1 − b1 −

b2(a2−b2)). 

 

3.7 Theorem  

 Let A = a1 and B = a2  be two Fuzzy numbers defined on singleton set.Then 

D A, B =  a1 − a2 . 

 

3.8 Theorem  

Let A = ( a1 , b1 ,  c1, d1 )  B =   a2 , b2 ,  c2 , d2  ∈ IVIFN . Then 

D A ∪ B, A =  
 a1 − max a1 , a2  

2
+

 b1 − max b1, b2  

2
 

+ K1  a1 1 − a1 − c1 – max a1 , a2 (1 − max a1, a2 − min⁡{c1, c2})   

+ K2  b1 1 − b1 − d1 – max b1 , b2 (1 − max b1 , b2 − min⁡{d1, d2})  . 

 

3.9 Theorem   

Let = ( a1 , b1 ,  c1 , d1 ) ,  B =   a2 , b2 ,  c2, d2  ∈ IVIFN . Then 

D A ∩ B, A =  
 a1 − min a1, a2  

2
+

 b1 − min b1, b2  

2
 

+ K1  a1 1 − a1 − c1 – min a1, a2 (1 − min a1, a2 − max⁡{c1 , c2})   

+K2  b1 1 − b1 − d1 – min b1, b2 (1 − min b1 , b2 − max⁡{d1 , d2})  . 

 

3.10 Theorem  

The distance between two crisp numbersA = ([0, 0], [1, 1]) and  

B = ([1, 1], [0, 0]) is obtained as one (D A, B = 1), which supports our existing crisp set 

theory.  

 

3.11Theorem  

 Let A, B be two IVIFNs, if A ≤1 B, then (i). D A ∪ B, A = D A, B , (ii).D A ∩

B, B=DA, B. 

 

Proof: 

 Since A ≤1 B, we have A ∪ B = Band A ∩ B = A. 
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3.12 Theorem   

LetA = ( a1 , b1 ,  c1, d1 ) ∈ IVIFN.Then (i). D 0, A = GIS(A. 

 

3.13 Theorem   

LetA = ( a1 , b1 ,  c1, d1 ) ∈ IVIFN. Then 

D A, Ac =  
(a1−c1)

2
 +  

(b1−d1)

2
 + K1  a1 1 − a1 − c1(1 − c1)  + K2  b1 1 − b1 −

d1 1−d1). 

 

4. A New Similarity Measure on 𝐈𝐕𝐈𝐅NS 
 

4.1 Definition  

 A map S: IVIFN ×  IVIFN [01] between two IVIFN, 

 𝐴 = ( a1 , b1 ,  c1 , d1 ),B =   a2 , b2 ,  c2 , d2   is defined as S A, B = 1 − D A, B . 

 

4.2 Theorem  

 S: IVIFN × IVIFN [01] is a distance measure 

Proof: 

 

The conditions in Definition 2.6, (S1), (S2), (S3) and (S4), are obvious.  

4.3 Theorem  

Let= ( a1 , b1 ,  c1 , d1 ),B =   a2 , b2 ,  c2, d2  and C =   a3 , b3 ,  c3 , d3   be an 

IVIFNs. Then S A, C ≥ S A, B + S B, C . 

 

Proof: 

We know that,  D A, C ≤ D A, B + D B, C , implies that 

 1 − D A, C ≥ 1 − D A, B + 1 − D B, C . Hence S A, C ≥ S A, B + S B, C . 

 

4.4 Theorem  

The similarity between two crisp numbersA = ([0, 0], [1, 1]) and  

B = ([1, 1], [0, 0]) is obtained as one (S A, B = 0), which supports our existing crisp set 

theory.  

 

5 . Application of the Proposed Similarity Measure to Pattern  

     Recognition Problem 
 

Assume that there are three IFS X =  c1, c2 , c3  representing three patterns. The 

three patterns are written as follows: 

P1 =    0.4,0.4 ,  0.3,0.3 , (0.2,0.2) ,  
P2 =    0.3,0.3 ,  0.3,0.3 , (0.3,0.3) , 
P3 =    0.5,0.5 ,  0.5,0.5 , (0.5,0.5) . 
Assume that a sample Q =    0.4,0.4 ,  0.3,0.3 , (0.2,0.2)  is to be distinguished. 
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Table1: 

The similarity measure between the known pattern and the unknown pattern in 

Example(Patterns not discriminated are in bold type) 

 

Existing measure 𝑺(𝑷𝟏, 𝑸) 𝑺(𝑷𝟐, 𝑸) 𝑺(𝑷𝟑, 𝑸) 

𝑆𝐶 = 1 −   
𝑆𝐴 𝑥𝑖 − 𝑆𝐵(𝑥𝑖)

2𝑛
 

𝑛

𝑖=1

 
1 1 1 

𝑆𝐻

= 1

−   
 𝜇𝐴 𝑥𝑖 − 𝜇𝐵(𝑥𝑖) −  𝜗𝐴 𝑥𝑖 − 𝜗𝐵(𝑥𝑖) 

2𝑛
 

𝑛

𝑖=1

 

1 1 1 

𝑆𝐷𝐶 = 1 −    
𝜑𝐴 𝑥𝑖 − 𝜑𝐵(𝑥𝑖)

𝑛
 

𝑛

𝑖=1

𝑝
𝑝

 

1 1 1 

𝑆𝐻𝐵 =
1

2
 𝜌𝜇  𝐴, 𝐵 + 𝜌𝜗 𝐴, 𝐵   

1 0.93 0.8 

𝑆𝑒
𝑝

= 1 −   
 𝜑𝑡 𝑥𝑖 + 𝜑𝑓 𝑥𝑖  

𝑝

𝑛

𝑛

𝑖=1

𝑝

 

1 0.93 0.8 

𝐶𝐼𝐹𝑆 =
1

𝑛

 𝜇𝐴 𝑥𝑖 
𝑛
𝑖=1 𝜇𝐵 𝑥𝑖 + 𝜗𝐴(𝑥𝑖)𝜗𝐵(𝑥𝑖)

 𝜇𝐴
2 𝑥𝑖 + 𝜗𝐴

2 𝑥𝑖  𝜇𝐵
2  𝑥𝑖 + 𝜗𝐵

2 𝑥𝑖 
 

1 1 1 

 
 

𝑃 = 1 for 𝑆𝐻𝐵 , 𝑆𝑒
𝑝

 

The similarity degrees of 𝑆(𝑃1 , 𝑄) , 𝑆(𝑃2 , 𝑄)  and 𝑆(𝑃3 , 𝑄)  calculated for all 

similarity measure are shown in table 1. 

The proposed similarity measure 𝑆 can be calculated by above example as: 

𝑆 𝑃1 , 𝑄 = 1, 𝑆 𝑃2 , 𝑄 = 0.76(𝐾1 + 𝐾2), 𝑆 𝑃3 , 𝑄 = 0.08(𝐾1 + 𝐾2) . 

It is clearly that 𝐵  is equal to 𝐴1 , which indicates that sample 𝐵  should be 

distinguished to 𝐴1. However, the similarity degree of 𝑆(𝑃1 , 𝑄), 𝑆(𝑃2 , 𝑄) and 𝑆(𝑃3 , 𝑄) are 

equal to each other when 𝑆𝐶 , 𝑆𝐻 , 𝑆𝐷𝐶 , and 𝐶𝐼𝐹𝑆  are employed. These four similarity 

measures will not be enough to discriminate the difference between the three patterns. 

This means that the proposed similarity measure is more applicable and be useful with 

majority of the existing measures. 
 

6. Conclusions and Future Scope 
 

In this Research paper a novel distance measure between IVIFNs is introduced and is applied 

to pattern recognition problem. The novel proposed distance measure has been verified. The 

distance measure proposed in this paper can be extended to any triangular, trapezoidal, IFNs or any 

two generalized IFNs. Using the distance measure practical fuzziness problem of pattern 

recognition and clustering can be solved. 
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