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 The article describes a static and dynamic calculation of the composite roller of the chain 

drive. The formulas which determine the internal force factors generated in the transversal section of 

the composite roller under the influence of external loading were obtained. According to the physico-
mechanical parameters of the roller, the deformation and internal force factors occurring in the cross 

section at different values of the elasticity coefficient of the elastic element were determined. In the 

program MAPLE-17 the required connection graphs are obtained. Under the impact of compressive 
forces of the teeth of the sprocket,  the deformation and internal force factors of the chain drive roller 

are reduced to 7 ÷ 20 due to the presence of a flexible element. 
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Introduction. In mechanical engineering, chain drive is used as a transmission, load-bearing 
and fastening, depending on the function of application. The most common type of chains mentioned 

above are motion-transmitting chains. It is known that the chain drive that transmits motion consists of 

leading and driven sprockets and an infinite chain surrounding them [1-9]. 
Among the main disadvantages of existing chain drive structures there is the formation of 

harmful frictional forces that are generated at the kinematic joints of the chain. Short-term wear of the 

chain elements will depend on the excess of the leading and driven network cooling. An increase in 

cooling causes an increase in the amplitude values of the longitudinal and transverse oscillations. This, 
in turn, leads to a decrease in the efficiency and service life of the transmition, as well as an increase in 

the amount of noise. As the load and speed increase in the chain drive, an increase in the value of the 

uneven impact forces in the sprocket-chain connection is observed. As a result, the working elements 
of chain drive become uneven. 

By quenching the shock forces generated at the sprocket teeth and chain joints, the chain drive’s 

working elements can be eroded and the amount of noise can be reduced. This, in turn, leads to a 
significant increase in chain drive’s service life. As a result of scientific research, a new design of the 

chain drive was developed [10-18]. 

 

Materials and methods. The proposed chain drive design consists of a leading and a driven 
sprocket and an infinite chain enclosing them (Figure 1). The chain drive consists of an inner and outer 

plate, a roller, a bushing and a composite roller. The composite roller consists of internal and external 

bushings, respectively, and a flexible element (rubber) bushing located between them. The driven 
sprocket is designed to be composite and has been suggested to be a flexible element in the sprocket 

disc range as well. The composite design of the chain roller is designed to reduce the impact of the 

striking forces generated by the sprocket-chain coupling on the roller-bushing pair[15, 19-21]. 
The structure consists of a leading 1 and a driven sprocket 2 and a chain 3 covering them. The 

drive is equipped with a tensioning roller 4 to ensure that the mains stress is normal. The driven sprocket 

is made up of a toothed flange 2, a base 6, an outgoing shaft 7 and a flexible bushing 5. The chain 

consists of 3 inner 9 and outer 8 plates, a roller 10, a bushing 11 and a composite roller 12. The 
composite roller consists of 12 inner 13 and outer 14 bushings and a flexible element (rubber) 15 located 

between them. The flexible element 15 has a concave shape on the outer surface 16 and is made to fit 

the inside of the outer bushing 14. 
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A-SECTION 

Figure 1. The scheme of chain drive with flexible element. 

 

The proposed chain drive works in the following order: the movement from the leading sprocket 

1 to the driven sprocket 2 is transmitted through the chain 3. The moving driven sprocket 2 is then 
transmitted to the output shaft 7 via a flexible bushing 5 and a base 6. The frictional force and other 

harmful forces generated between the chain 3 and the sprocket 2 are somewhat extinguished as they 

pass through the elastic element 5. When the chain 3 is affected by the leading 1 and the driven 2 
sprockets, we can observe that the force acting on the roller-bushing pair is flat due to the deformation 

of the elastic element 15 in the chain roller 12. Due to the deformation of the elastic element 15, the 

friction between the bushing 11 and the roller 10 is also reduced. This leads to an increase in the service 

life of the chain drive’s elements.Since the outer surface of the rubber bushing 15 has a concave 
appearance, an even distribution of the forces acting through the sprocket tooth is achieved. This leads 

to an increase in chain service life. 

Static calculation of the composite roller. In performing the static calculation of the proposed 
chain drive roller, the roller was assumed to be in the form of a two-layer cylindrical shell (cylindrical 

shell) (Fig. 2). 

In the static calculation of a composite roller, it is important to determine the radial 
displacements generated in the roller under the influence of an external load, i.e., an sprocket tooth. 

This is because exceeding the norm of these displacements will adversely affect the service life of the 

chain drive, causing the roller shaft to fail quickly. The purpose of having a composite design of the 

roller is to balance the impact forces and increase the service life of the rollers. 
 

 

 
 

 

 
 

 

 

 
 

 

 
Figure 2. Composite roller calculation scheme.  

a-overview of roller, b-roller cross section, 𝑟 −middle surface radius, 𝑟0 −roller inner radius, 

𝑅0 −roller outer radius, ℎ −roller outer bushing thickness 

 

Determination of deformation values that are symmetrical to the axis of the outer roller 

of the composite roller. The deformation scheme of the composite roller outer bushing is shown in 

Figure 3 below 
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Figure 3. Deformation scheme of the outer bushing of the composite roller. 
 

An arbitrary point in the middle section of 𝐴0 −the outer bushing of the roller described in the 

calculation diagram. As a result of the deformation caused by the external load, 𝐴0 the point moves 

along the axis 𝑥and along the radius 𝑢0 to 𝑤0 a quantity and occupies 𝑧 the position, А0
∗  while the 

arbitrary point 𝐴 at a distance takes the position 𝐴∗: 𝐴0
∗ (𝑢0; 𝑤0); 𝐴∗(𝑢; 𝑤). 

According to the Kirchhoff-love hypothesis [22], the transition are as follows: 

𝑢 = 𝑢0 − 𝑧 ∙ 𝜑      (1) 

Since the thickness of the outer bushing of the composite roller ℎ is a small amount, we can 

obtain its displacement along the axis 𝑜𝑧 as follows: 

𝑤 = 𝑤0       (2) 

Deformations in the layer 𝑧 of the composite roller are determined as follows: 

𝜀𝑥0
=

𝜕𝑢0

𝜕𝑥
;   𝜑 =

𝑑𝑤

𝑑𝑥
.     (3) 

 We accept the following restrictions: 𝑟𝑧 = 𝑟 + 𝑧 ≈ 𝑟. 
In this case, the deformation values (3) take the following form according to expression: 

{
𝜀𝑥 = 𝜀𝑥0

− 𝑧 ∙
𝑑2𝑤

𝑑𝑥2

𝜀𝜃 =
𝑤

𝑟

       (4) 

Determination of the internal force and tension generated in the composite roller. 
Continuing our theoretical research, we consider the internal force and tension factors generated in a 

composite roller. Figure 4 shows the cross-impact power and stress acting on the longitudinal and 

transverse sections of the composite roller element under the influence of external loads. 

Internal stresses and forces arising on the cut of the surface of the composite rollers are 
determined as follows: 

{
𝜎𝑥 =

𝐸

1−𝜇𝜇2 (𝜀𝑥 + 𝜇𝜀𝜃)

𝜎𝜃 =
𝐸

1−μ2 (𝜀𝜃 + 𝜇𝜀𝑥)
      (5) 

{
𝑁𝑥 =

𝐸ℎ

1−𝜇2 (𝜀𝑥0
+ 𝜇 ∙

𝑤

𝑟
)

𝑁𝜃 =
𝐸ℎ

1−𝜇2
(

𝜔

𝑟
+ 𝜇𝜀𝑥0

) .
     (6) 

Let's enter designations: 𝐷 =
𝐸ℎ3

12(1−𝜇2)
, where 𝐷 − is the roller stiffness, 𝜇 − is Poisson's ratio. As a 

result, we obtain the following expressions for the bending moment and relative deformations: 

{
𝑀𝑥 = 𝐷

𝑑2𝑤

𝑑𝑥2

𝑀𝜃 = 𝜇𝐷
𝑑2𝑤

𝑑𝑥2

       (7) 
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{
𝜀𝑥0

=
𝑑𝑢0

𝑑𝑥
=

1

𝐸ℎ
(𝑁𝑥 − 𝜇𝑁𝜃)

𝜀𝜃0
=

𝑤

𝑟
=

1

𝐸ℎ
(𝑁𝜃 − 𝜇𝑁𝑥)

     (8) 

Equations of static equilibrium of a composite roller. Based on the above internal forces, 

stress and relative deformations, we derive the static equilibrium equations of the composite roller. To 

do this, we check the balance of a small elementary part of the composite roller (Figure 5). We define 

the intensity 𝑞𝑧 of the distributed compressive power acting on the middle surface of the outer roller of 

the composite roller by the sprocket tooth in the radial direction and the intensity of the internal elastic 

force (resistance). 

We construct the equations of static equilibrium with respect to all the forces 𝑥 and 𝑧 coordinate 
axes acting on the elementary part of the composite roller: 

{

𝑑𝑁𝑥

𝑑𝑥
+ 𝑞𝑥 = 0

𝑑𝜃

𝑑𝑥
−

1

𝑟
𝑁𝜃 − 𝑞𝑧

∗ = 0
      (9) 

here, as, is defined by the following expression: 

𝑞𝑧
∗ = 𝑞𝑧 − 𝑘𝑤(𝑥)      (10) 

here, 𝑞𝑧 −the compressive force acting on the roller containing the sprocket teeth; 𝑞𝑒𝑙 =
𝑘𝑤(𝑥) −the intensity of the resistive compressive strength of the elastic element (rubber); 𝑘 −  the 

coefficient of elasticity of the flexible bushing in the roller structure; 𝑤(𝑥) − radial displacement. 

 
 

Figure 4. The power and stress acting on the 

lontitudinal and transverse sections of a composite 

roller element under the impact of an external load 

Figure 5. Cylindrical shell balancing scheme 

 

In this case, the static equilibrium equation takes the following form. 
𝑑2𝑀𝑥

𝑑𝑥2 +
1

𝑟
𝑁𝜃 = 𝑞𝑧

∗      (11) 

Substituting (6) from the expression 𝑁𝜃 into the expression (11), written by radial displacement 𝑤(𝑥), 

we obtain:  

𝐷
𝑑4𝜔

𝑑𝑥4 +
𝐸ℎ

𝑟2 𝑤(𝑥) = 𝑞 − 𝑘𝑤(𝑥) −
𝑀

𝑟
𝑁𝑥   (12) 

  

By reducing both sides of the equation to 𝐷, we obtain: 
𝑑4𝑤(𝑥)

𝑑𝑥4 + 4𝛽4𝑤(𝑥) =
1

𝐷
𝑞𝑧 −

𝑀

𝑟𝐷
𝑁𝑥     (13) 

 (13) is the fourth-order differential equation that determines the transverse deformation of a 
roller with an expression structure.  

 According to expression (6), we express the longitudinal force by radial displacement, and (13) 

we put:  
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𝑁𝑥 =
𝐸ℎ

1−𝜇2 ∙ 𝜇 ∙
𝑤(𝑥)

𝑟
= (

𝜇∙𝐸ℎ

(1−𝜇2)𝑟
) 𝑤(𝑥). 

 In this case, the appearance of expression (13) is as follows: 
 

  
𝑑4𝑤

𝑑𝑥4 + 4𝛽4𝑤(𝑥) =
𝑞𝑧

𝐷
−

𝜇

𝑟𝐷
∙

𝜇𝐸ℎ

(1−𝜇2)𝑟
𝑤(𝑥)   (14) 

here we enter the following definition: 

4𝛽4 =
𝐸ℎ

𝐷𝑟2
[1 +

𝜇2

1 − 𝜇2
+

𝑘 ∙ 𝑟2

𝐸ℎ
] 

In that case, expression (14) takes the following form: 

 
𝑑4𝑤

𝑑𝑥4 + 4𝛽4𝑤 =
𝑞𝑧

𝐷
      (15) 

(15) is the equation of static equilibrium of a roller containing a differential equation. 

 We accept that the intensity of the compressive force acting on the composite roller through the 

sprocket tooth is  𝑐𝑜𝑛𝑠𝑡constant:𝑞𝑧 = 𝑞0 = 𝑐𝑜𝑛𝑠𝑡. 
 We express the general solution of expression (15) using Krylov's fundamental functions [23-

27]:  

    (16) 
We look for a special solution as follows: 

𝑤(𝑥) = 𝐴      (17) 

In that case, we determine 𝐴 −the value by substituting expression (17) into expression (15):  

4𝛽4 ∙ 𝐴 =
𝑞0

𝐷
  out of this , 𝐴 =

𝑞0

4𝐷𝛽4; 𝑤∗(𝑥) =
𝑞0

4𝐷𝛽4.    (18) 

Hence, the complete solution of expression (15) is as follows: 

𝑤(𝑥) = 𝑤1(𝑥) + 𝑤∗(𝑥)  or 

𝑤(𝑥) = С1𝑒−𝛽𝑥𝑐𝑜𝑠𝛽𝑥 + С2𝑒−𝛽𝑥𝑠𝑖𝑛𝛽𝑥 +
𝑞

4𝐷𝛽4     (19) 

here are unknown invariables, which are determined using the following boundary conditions: 

𝑥 = 0;  𝑤(0) = 0; 𝑤′(0) = 0    (20) 

By differentiating the expression (19) once 𝑥 , we obtain the following expression:  

𝑤′(𝑥)=−С1𝛽𝑒−𝛽𝑥 ∙ (𝑐𝑜𝑠𝛽 + 𝑠𝑖𝑛𝛽𝑥) + С2𝛽𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛽𝑥) + 𝑤′(𝑥) (21) 

Substituting (19) and (21) into the conditions, we determine the invariable quantities: 

𝑤(0) = 𝐶1 +
𝑞

4𝐷𝛽4 = 0 ⇒  𝐶1 = −
𝑞

4𝐷∙𝛽4   (22) 

𝑤′(0) = −𝐶1𝛽 + 𝐶2𝛽 + 0 = 0 ⇒ 𝐶1 = 𝐶2   (23) 

Hence, considering expression (19), we can write the function as follows: 

𝑤(𝑥) = −𝐶1𝑒−𝛽𝑥[𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥] +
𝑞

4𝐷𝛽4
 

Or  𝑤(𝑥) =
𝑞

4𝐷𝛽4
[1 − 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥)]    (24) 

 

 Theoretical study of dynamic vibrations under the influence of sprocket teeth of a 

composite roller. We create the differential equation of transverse vibrational motion of a composite 
roller by adding the force of inertia to the static equilibrium equations (15):  

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 + 4𝛽4𝑤(𝑥, 𝑡) +
𝜌ℎ

𝐷
∙

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 = 𝑄0𝑐𝑜𝑠𝑝𝑡    (25) 

here, 𝑄0 =
𝑃0

𝑆𝑐∙𝐷
; 𝑃0 − external force, 𝑆𝑐 − the outer surface of the composite roller; 𝑝 − the 

oscillation frequency of the external pressure force, 𝐷 − cylindrical stiffness; 𝑤 = 𝑤(𝑥, 𝑡) − 

displacement of the roller in transverse bending; 𝑡 −time. 

(25) consists of the sum of the complete solution of the differential equation, the general 
solution, and the special solutions. 

 

Determining the general solution of the differential equation of dynamic vibration. We 

determine the solution of equation (25) without taking into account the external pressure force.  
𝑝ℎ

𝐷
 ∙

𝜕2𝑤

𝜕𝑡2 +
𝜕4𝑤

𝜕𝑥4 + 4𝛽4𝑤 = 0    (26) 
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This equation (26) is a homogeneous differential equation, the solution of which we seek in the 
following function view: 

𝑤(𝑥, 𝑡) = 𝑓(𝑡) ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥)   (27) 

We apply expression (27) to expression (26). To do this, we calculate the following:  

𝜕2𝑤

𝜕𝑡2
= 𝑓′′(𝑡) ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥); 

𝜕4𝑤

𝜕𝑥4
= 4𝛽4𝑓(𝑡) ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥) + 𝑠𝑖𝑛𝛽𝑥) 

𝑝ℎ

𝐷
= 𝐷∗  we apply these symbols. 

Taking into consideration given the above expressions, we construct the following expression 

instead of (26): 

𝐷∗𝑓′′(𝑡) + 8𝛽4𝑓(𝑡) = 0     (28) 

If  it is 𝑘0
2 =

8𝛽4

𝐷∗
− , (28) expression gains the following appearence: 

𝑓′′(𝑡) + 𝑘0
2𝑓(𝑡) = 0      (29) 

As a result, we obtain the differential equation of free vibration. Let the initial conditions be as 

follows:  

{
𝑡 = 0; 𝑓(0) = 𝑓0;  𝑓0 = 𝑤0

𝑓′(0) = 𝑣0
    (30) 

The solution of expression (29) is as follows: 

𝑓1(𝑡) = 𝑎 ∙ sin (𝑘0𝑡 + 𝛼)     (31) 

here , 𝑎 = √𝑤0
2 +

𝑣0
2

𝑘0
2 −    free oscillation amplitude; 𝛼 = 𝑎𝑟𝑐𝑡𝑔

𝑤0𝑘0

𝑣0
− free oscillation frequency shift 

phase. 

So the general solution looks like this:   

𝑤1(𝑥, 𝑡) = 𝑓1(𝑡)𝑒−𝛽𝑥(cos 𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥)    (32) 

or 𝑤1(𝑥, 𝑡) = 𝑎 ∙ sin (𝑘0𝑡 + 𝛼0) ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥) . 

 

Determination of the specific solution of the differential equation of dynamic vibration. 

We look for a special solution of the differential equation of dynamic oscillation as follows: 

𝑤2(𝑥, 𝑡) = 𝑀 ∙ 𝑐𝑜𝑠𝑝𝑡 ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥)   (33) 

Here we obtain the following expression by substituting 𝑝 −the external pressure force oscillation 

frequency at (33) ⇒ (25): 

−
𝜌ℎ

𝐷
𝑝2𝑀 + 8𝛽4𝑀 = 𝑄0 

Out of this,  𝑀 =
𝑄0

8𝛽4−
𝜌ℎ

𝐷
∙𝑝2

        (34) 

A custom solution according to the above expressions: 

𝑤2(𝑥, 𝑡) = 𝑀 ∙ 𝑐𝑜𝑠𝑝𝑡 ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥)  (35) 

The complete solution of the forced oscillating motion of the roller would be as follows: 

𝑤(𝑥, 𝑡) = 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡)    (36) 

or  𝑤(𝑥, 𝑡) = [𝑎 ∙ 𝑠𝑖𝑛(𝑘0𝑡 + 𝛼0) + 𝑏0𝑐𝑜𝑠𝑝𝑡] ∙ 𝑒−𝛽𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥) (37) 

Here : 𝑎 = √𝑤0 +
𝑣0

2

𝑘0
2 − free oscillation amplitude;  𝑘0 = √

8𝛽4

𝐷
− free vibration frequency; 𝛼0 =

𝑎𝑟𝑐𝑡𝑔
𝑤0∙𝑘0

𝑣0
− shear phase in free oscillation; 𝑏0 =

𝑄0

8𝛽4−
𝜌ℎ

𝐷
𝑝2

− forced oscillation amplitude; 𝑝 − 

frequency of forced vibration motion. 

The amplitude of the forced oscillation motion is calculated by the following expression:
     

Here,  it is called static displacement and   dynamic coefficient. 

Using the defined analytical expressions, we set the geometric dimensions of the proposed chain 
drive roller (Figure 6). 
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Figure 6. Geometric parameters of the composite roller 

 

 Based on the existing geometric and technological characteristics, we introduce the main 
quantities: 

 - the material of the outer bushing of the composite roller is steel, the value of the modulus of 

elasticity for the material: 𝐸 = 2,06 ∙ 105𝑀𝑃а = 2,06 ∙ 105 𝑁

𝑚𝑚2; 

 -the force acting on the roller with the impact component through the sprocket tooth: 𝑃0 =
1300 𝑁;  
 - the length of the composite roller:  𝑙 = 14𝑚𝑚; 
 - the thickness of the outer bushing of the composite roller: ℎ = 2𝑚𝑚; 

 - Poisson's coefficient: 𝜇 = 0,3; 

 - the radius of the composite roller: 𝑟 = 8𝑚𝑚; 
 - sprocket radius: 𝑅 = 77,165𝑚𝑚 (𝐷 = 154,33𝑚𝑚); 

 - the angular velocity of the sprocket: 𝜔2 = 50 𝑠−1; 

 - the linear velocity of the chain 𝑣0 = 𝜔2 ∙ 𝑅 = 3858,25
𝑚𝑚

с
 

 - density of steel material: 𝜌𝑠𝑡 = 0,7850 ∙ 10−5 𝑘𝑔

𝑚𝑚3 

 - the surface of the roller: 𝑆𝑠 = 2𝜋𝑟 ∙ 𝑙 = 703, 36𝑚𝑚2 

 - intensity of external pressure force:   𝑄0 =
𝑃0

𝑆𝑠
= 1,85

𝑁

𝑚𝑚2 ; 

- content roller stiffness: 𝐷 = 𝐷1 =
𝐸ℎ3

12(1−𝜇2)
= 1,51 ∙ 105 𝑁 ∙ 𝑚𝑚;  

𝐷0 =
𝐸ℎ

𝑟2
= 6437,5

𝑁

𝑚𝑚3
; 𝑑1 =

𝐷0

𝐷1
= 0,043 𝑚𝑚; 𝐷∗ =

𝜌ℎ

𝐷1
= 1,04 ∙ 10−10 [

𝑠2

𝑚𝑚4
] 

 𝑘𝑜𝑖 = √
8𝛽4

𝜌ℎ

𝐷

− free oscillation motion frequency; 

elastic coefficient of elastic bushing 𝑘:
𝑘

𝑝
= 𝑛 = 0,2; 0,3; 0,4; 0,5; 0,6. 

The bending moment, normal stress and relative deformations formed in the cross section of 

the composite roller are calculated by the following formulas: 

a) torque: 𝑀𝜃 = 𝜇 ∙ 𝐷
𝑑2𝑤

𝑑𝑟2 ; b) relative deformation:𝜀𝜃 =
𝑤

𝑟
; 

c) normal stress:𝜎𝜃 =
𝐸

1−𝜇2 ∙ 𝜀𝜃 ; 
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For static, dynamic stress cases, 𝑘 − transformation graphs were obtained in the MAPLE-17 
program at different values of the transverse displacement, relative displacement, and shear change 

variables (Figures 7-14). 

Result and discussion: The graph of the change in the dependence of the transverse static 

displacement 𝑤(𝑥) of the composite roller on the  𝑘 −different coefficients of the elastic element along 
its length is given in Figure 7. When the existing chain drive roller is affected by an external load force, 

𝑃0 = 1300 𝑁 the nominal value of the transverse static displacement  i.e 𝑘 = 0., (Fig. 7, graph 1) equals 

to 𝑤 = 2,6 ∙ 10−4𝑚𝑚. The nominal value of the static displacement in the value of the coefficient𝑘 =
0,2 of elasticity (Fig. 7, graph 2) 𝑤 = 2,3 ∙ 10−4𝑚𝑚, 𝑘 = 0,3 (Fig. 7, graph 3) 𝑤 = 2,05 ∙
10−4𝑚𝑚,𝑘 = 0,4,  (Fig. 7, graph 4) 𝑤 = 1,95 ∙ 10−4𝑚𝑚,𝑘 = 0,5, when the force acting on the roller 

of the proposed composition is affected by force 𝑃0 = 1300 𝑁 by the tooth.  (Fig. 7, graph 5) 𝑤 =
1,88 ∙ 10−4𝑚𝑚, 𝑘 = 0,6 (Fig. 7, graph 6) 𝑤 = 1,709 ∙ 10−4𝑚𝑚. 

From the analysis of the graphs in Figure 7, it can be concluded that the transverse static 
displacement values decrease as the elastic coefficient of the elastic element increases. This in turn leads 

to a reduction in frictional forces and harmful shocks in the roller-bushing pair located under the roller. 

Figure 8 shows graphs of 𝑡 − time-dependent change 𝑘 −in the various coefficients of the 

elastic element, based on the maximum static value 𝑤𝑚𝑎𝑥 of the transverse dynamic displacement 

𝑤𝑑(𝑥, 𝑡)of the composite roller along its length. 

The transverse dynamic displacements of the existing chain drive roller are nominal value, i.e. 𝑘 = 0 

(Fig. 8, graph. 1) 𝑤𝑑 = 2,56 ∙ 10−4𝑚𝑚, maximum value 𝑤𝑑 = 2,90 ∙ 10−4𝑚𝑚, and amplitude value . 

When the elastic element in the proposed composite roller has a value of the coefficient of elasticity 

𝑘 = 0,2 (Fig. 8, Figure 2), the minimum value of the dynamic displacement in the composite roller is 

𝑤𝑑 = 2,17 ∙ 10−4𝑚𝑚, the maximum value is 𝑤𝑑 = 2,44 ∙ 10−4𝑚𝑚, and the amplitude value is , at 

𝑘 = 0,3 , (Fig. 8, Figure 3) the minimum value of the dynamic displacement on the content roller is 

𝑤𝑑 = 2,03 ∙ 10−4𝑚𝑚, the maximum value is 𝑤𝑑 = 2,27 ∙ 10−4𝑚𝑚, the amplitude value is 𝑤𝑑а =
0,24 ∙ 10−4𝑚𝑚, at  𝑘 = 0,4, the minimum value of the dynamic displacement 𝑤𝑑 = 1,89 ∙ 10−4𝑚𝑚 

on the content roller (Fig. 8, Figure 4) 𝑤𝑑 = 2,11 ∙ 10−4𝑚𝑚 is the maximum value, and the amplitude 

value of the dynamic displacement is , at  𝑘 = 0,5  , 𝑤𝑑 = 1,77 ∙ 10−4𝑚𝑚 is the minimum value of the 

dynamic displacement on the roller (Fig. 8, Figure 5), and 𝑤𝑑 = 1,98 ∙ 10−4𝑚𝑚 is the maximum value, 

and  at  𝑘 = 0,6 , 𝑤𝑑 = 1,66 ∙ 10−4𝑚𝑚 is the amplitude value of the dynamic displacement on the 

roller, 𝑤𝑑 = 1,66 ∙ 10−4𝑚𝑚 is the minimum value of the dynamic displacement on the composite roller 

(Fig. 8, Fig. 6) 𝑤𝑑 = 1,86 ∙ 10−4𝑚𝑚 is the maximum value of, and the amplitude value of the dynamic 

displacement is   

 

  
Figure 7. The change in the transverse 

static displacement 𝑤(𝑥) of the composite roller 

Figure 8. Based on 𝑤𝑚𝑎𝑥the maximum static 

value of the transverse dynamic displacement of 
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depending on the  𝑘 − different coefficients of 
the elastic element along the length of the roller. 

Here, 1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

 

the composite roller along the length of the 

roller 𝑤𝑑(𝑥, 𝑡), 𝑡 −  the time-dependent 

variation of the elastic element at  𝑘  different-

coefficients.  

 Here , 1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

 

From the analysis of the graphs (Fig. 8) it can be concluded that we can observe a decrease in 

the values of dynamic displacement and amplitude as 𝑘 the coefficient of elasticity increases. With a 

decrease in the dynamic displacement 𝑤𝑑  and its amplitude value 𝑤а , a reduction in the amount of 

harmful effects on the chain elements and, in turn, a slowing down of the degradation process is 

achieved. 
Figure 9 shows the graph of the static moment generated in the cross section of a composite 

roller along its length, depending on 𝑘 −the different coefficients of the elastic element. The value of 

the static moment generated in the cross section of the existing chain drive roller (Fig. 9, graph 1),  static 

moment formed in the cross section when 𝑘 = 0,2 is the value of the coefficient of elasticity of the 

roller of the proposed composition (Fig. 9, graph 2) , at  𝑘 = 0,3 static moment generated in the cross 

section (Fig. 9, graph 3), 𝑀𝑠𝑡 = 4,73𝑁 ∙ 𝑚𝑚 𝑘 = 0,4 (Fig. 9, graph 4), 𝑀𝑠𝑡 = 4,59𝑁 ∙ 𝑚𝑚 𝑘 =
0,5  (Fig. 9, graph 5), 𝑀𝑠𝑡 = 4,44 𝑁 ∙ 𝑚𝑚 (Fig. 9, graph 6) . 𝑀𝑠𝑡 = 4,31𝑁 ∙ 𝑚𝑚 𝑘 = 0,6. 

It can be concluded from the graph that we can observe that the static torque generated in the 

cross section of the roller decreases as the coefficient of elasticity of the elastic element increases. This 

in turn means a reduction in static impact on other elements of the chain connected to the roller. 

Figure 10 shows graphs of the dynamic moment 𝑀𝑑 generated in the cross section of a 

composite roller along the length of the roller, at 𝑘 − different coefficients of the elastic element, 

𝑡 −depending on time. From the graphs (Fig. 10.1) we can see that the dynamic moment 𝑀𝑑  generated 

by the cross-sectional value 𝑘 = 0 of the existing chain drive roller under the influence of the force 

from the sprocket tooth 𝑀𝑑 = 5,01 𝑁 ∙ 𝑚𝑚 is the minimum value of the roller length, the maximum 

value of 𝑀𝑑 = 5,69 𝑁 ∙ 𝑚𝑚, and the amplitude value of ∆𝑀𝑑 = 0,68𝑁 ∙ 𝑚𝑚.  

 

 

Figure 9. Static torque generated in the cross 

section of a composite roller along the length of 

the roller, the dependence of the elastic element 

on 𝑘 − different coefficients  

Here,  1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

 

10-расм.. Figure 10. Depending on the length of 

the roller of the dynamic moment 𝑀𝑑generated 

in the cross section of the composite roller, the 
elastic element is different. 

 in 𝑘 −coefficients, change over 𝑡 −time 

here , 1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 
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Also, at the value of  𝑘 = 0,2 the coefficient of elasticity of the proposed transmission roller 

flexible element (Fig. 10, graph 2), 𝑀𝑑 = 4,63  𝑁 ∙ 𝑚𝑚 is the minimum value of the dynamic moment 

generated in the cross section of the roller 𝑀𝑑 = 5,21 𝑁 ∙ 𝑚𝑚 is the maximum value, and the amplitude 

change ∆𝑀𝑑 = 0,58 𝑁 ∙ 𝑚𝑚.  𝑀𝑑 = 4,47 𝑁 ∙ 𝑚𝑚. The minimum value of the dynamic moment 

generated in the cross section of the roller containing the value 𝑘 = 0,3 (Fig. 10, graph 3). the maximum 

value is 𝑀𝑑 = 5,02 𝑁 ∙ 𝑚𝑚, the amplitude change ∆𝑀𝑑 = 0,55 𝑁 ∙ 𝑚𝑚 , at the value of 𝑘 = 0,4 (Fig. 

10, graph 4), minimum value of dynamic moment is 𝑀𝑑 = 4,32 𝑁 ∙ 𝑚𝑚, maximum value  is 𝑀𝑑 =
4,82 𝑁 ∙ 𝑚𝑚, the amplitude change ∆𝑀𝑑 = 0,50 𝑁 ∙ 𝑚𝑚, at the value of 𝑘 = 0,5  (Fig. 10, graph 5), 

the minimum value of the dynamic moment is 𝑀𝑑 = 4,21 𝑁 ∙ 𝑚𝑚 the maximum value is 𝑀𝑑 =
4,66 𝑁 ∙ 𝑚𝑚, and the amplitude change is ∆𝑀𝑑 = 0,45𝑁 ∙ 𝑚𝑚, 𝑘 = 0,6 at the value of (Fig. 9, graph 

6), the minimum value of the dynamic moment is  𝑀𝑑 = 4,09 𝑁 ∙ 𝑚𝑚 the maximum value is 𝑀𝑑 =
4,52 𝑁 ∙ 𝑚𝑚, and the amplitude change is ∆𝑀𝑑 = 0,43 𝑁 ∙ 𝑚𝑚. 

From the analysis of the graphs it can be seen that as the coefficient of elasticity of the composite 

roller bushing increases, the value of the dynamic moment generated in the cross section of the roller 

decreases. This, in turn, indicates that the flexible bushing has the property of quenching external 
dynamic forces. 

Figure 11 shows a graph of the transverse relative deformation 𝜀𝑠 of a composite roller with 

respect to different coefficients 𝑘of the elastic element along its length. The value of static relative 

deformation (in 𝑘 = 0) formed in the cross section of the existing chain drive roller under the influence 

of external load (Fig. 11 – graph 1) is  𝜀𝑠 = 3,42 ∙ 10−5. When 𝑘 = 0,2the value of the coefficient of 

elasticity of the roller bushing of the proposed composite roller (Fig. 11, graph 2), 𝜀𝑠 = 2,9 ∙ 10−5 is 

the value of static relative deformation formed in the cross section of the roller is determined by 𝑘 =
0,3 (Fig. 11.3) 𝜀𝑐 = 2,7 ∙ 10−5, 𝑘 = 0,4 (Fig. 11.4- graph)  𝜀𝑐 = 2,5 ∙ 10−5, 𝑘 = 0,5 (Fig. 11, graph 5) 

𝜀𝑠 = 2,23 ∙ 10−5, and 𝑘 = 0,6 (Fig. 11, graph 6) 𝜀𝑠 = 2,22 ∙ 10−5. 

It can be concluded from the graph that we can see that the value of  ε of the static relative 

deformation decreases with increasing coefficient of elasticity of the elastic element in the composition 

of the composite roller. 

Figure 12 shows a graph of the transverse 𝜀𝑑 −dynamic relative deformation of a composite 

roller with respect to the 𝑘coefficients of elasticity of the elastic element along the length of the roller. 

At the maximum value 𝑘 = 0  of the relative static deformation formed in the cross section of the 

existing chain drive roller under the influence of external load (Fig. 12, graph 1).  𝜀𝑑 = 3,62 ∙ 10−5 

minimum value is 𝜀𝑑 = 3,19 ∙ 10−5 , while the amplitude value is ∆𝜀𝑑 = 0,43 ∙ 10−5. The maximum 

value of the dynamic relative deformation of the cross section of the roller when 𝑘 = 0,2 the value of 

the coefficient of elasticity of the roller bushing of the proposed composition (Fig. 12, graph 2) is 𝜀𝑑 =
3,05 ∙ 10−5, minimum value is 𝜀𝑑 = 2,71 ∙ 10−5 while the amplitude value is ∆𝜀𝑑 = 0,34 ∙ 10−5,  at 

𝑘 = 0,3 (Fig. 12, graph 3) maximum value of relative deformation is 𝜀𝑑 = 2,82 ∙ 10−5, minimum value 

is 𝜀𝑑 = 2,52 ∙ 10−5 while the amplitude value is ∆𝜀𝑑 = 0,30 ∙ 10−5, at 𝑘 = 0,4 (Fig. 12, graph 4) 

maximum value of relative deformation is 𝜀𝑑 = 2,64 ∙ 10−5, minimum value is 𝜀𝑑 = 2,36 ∙ 10−5 while 

the amplitude value is ∆𝜀𝑑 = 0,28 ∙ 10−5, 𝑘 = 0,5 (Fig. 12, graph 5) maximum value of relative 

deformation is 𝜀𝑑 = 2,47 ∙ 10−5, minimum value is 𝜀𝑑 = 2,22 ∙ 10−5 the amplitude value is ∆𝜀𝑑 =
0,25 ∙ 10−5, 𝑘 = 0,6  (Fig. 12, graph 6) maximum value of relative deformation is 𝜀𝑑 = 2,32 ∙ 10−5, 

minimum value is 𝜀𝑑 = 2,19 ∙ 10−5 the amplitude value is  ∆𝜀𝑑 = 0,13 ∙ 10−5.  

It can be concluded from the graph that 𝜀𝑑 the relative dynamic deformation and ∆𝜀𝑑  amplitude 

value of the transverse dynamics of the roller decreases as the elastic coefficient of elasticity of the 

composite roller increases. 
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Figure 11. Variation of the transverse 𝜀(𝑥)- 
static relative deformation of the composite 

roller along the length of the roller with 𝑘 −
 different coefficients of the elastic element 

Here , 1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

 

Figure 12. Variation of the transverse dynamic 

relative deformation 𝜀(𝑥, 𝑡) of the composite 

roller depending on the 𝑘 different coefficients 

of the elastic element along the length of the 
roller 

Here , 1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

 

Figure 13 shows the change graphs of the static stress 𝜎(𝑥)generated in the cross section of the 

composite roller under the influence of external load depending on the 𝑘 different coefficients of the 

elastic element along its length. Nominal value of static stress 𝜎 generated in the cross section of the 

existing chain drive roller under the influence of external load at 𝑘 = 0 (Fig. 13, graph 1) 𝜎 =

0,925
𝑁

𝑚𝑚2, the coefficient of elasticity of the roller elastic element of the proposed composition is 𝑘 =

0,2  static stress is 𝜎 nominal value of (Figure 13. Graph 2) 𝜎 = 0,777
𝑁

𝑚𝑚2, at 𝑘 = 0,3  ( Figure 13. 

Graph 3) static stress 𝜎 = 0,733
𝑁

𝑚𝑚2, at 𝑘 = 0,4  ( Figure 13. Graph 4) static stress 𝜎 = 0,681
𝑁

𝑚𝑚2, at 

𝑘 = 0,5 ( Figure 13. Graph 3) static stress  𝜎 = 0,633
𝑁

𝑚𝑚2, at 𝑘 = 0,6 ( Figure 13. Graph 3)  static 

stress 𝜎 = 0,598
𝑁

𝑚𝑚2  . 

From the graph we can see that 𝜎 the value of static stress decreases with increasing coefficient 

of elasticity of the elastic element in the composition of the roller.  

Figure 14 shows a graph of the change in the 𝜎𝑑 dynamic stress generated in the cross section 

of a composite roller depending on the   𝑘 different coefficients of elasticity of the elastic element along 
the length of the roller.  
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Figure 13. Variation of the transverse static 

stress σ(x)  of the composite roller along the 

length of the roller depending on the 𝑘 different 
coefficients of the elastic element 

Here ,  1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

 

Fig. 14. The change in the transverse dynamic 

stress σ(x,t) of the composite roller , depending 

on the 𝑘 −different coefficients of the elastic 
element along the length of the roller. 

Here , 1 − 𝑘 = 0;  2 − 𝑘 = 0,2;  3 − 𝑘 =
0,3;  4 − 𝑘 = 0,4;  5 − 𝑘 = 0,5;  6 − 𝑘 = 0,6. 

From the graph we can see that the maximum value of the amount of stress generated in the 

cross section of the roller of the existing chain extension chain under the influence of external load (Fig. 

14, graph 2) minimum value and amplitude value 𝜎𝑑 = 1,248
𝑁

𝑚𝑚2, when the coefficient of elasticity of 

𝜎𝑑 = 0,908
𝑁

𝑚𝑚2  the roller elastic element ∆𝜎𝑑 = 0,34
𝑁

𝑚𝑚2, of the proposed composition is 𝑘 = 0,2, 

dynamic stress is 𝜎𝑑 the maximum value (Fig. 14, graph 2) 𝜎𝑑 = 0,865
𝑁

𝑚𝑚2, minimum value  𝜎𝑑 =

0,772
𝑁

𝑚𝑚2  and amplitude value , at the value 𝑘 = 0,3 stress is 𝜎𝑑 the maximum value (Fig. 14, graph 

3) 𝜎𝑑 = 0,801
𝑁

𝑚𝑚2, minimum value 𝜎𝑑 = 0,721
𝑁

𝑚𝑚2  and amplitude value  ∆𝜎𝑑 = 0,080
𝑁

𝑚𝑚2 , at the 

value  𝑘 = 0,4 stress is  𝜎𝑑  the maximum value (Fig. 14, graph 4), 𝜎𝑑 = 0,749
𝑁

𝑚𝑚2, minimum value 

𝜎𝑑 = 0,674
𝑁

𝑚𝑚2  and amplitude value  ∆𝜎𝑑 = 0,075
𝑁

𝑚𝑚2 , at  𝑘 = 0,5 stress 𝜎𝑑 the maximum value 

(Fig. 14, graph 5), 𝜎𝑑 = 0,698
𝑁

𝑚𝑚2  minimum value 𝜎𝑑 = 0,629
𝑁

𝑚𝑚2  and amplitude value ∆𝜎𝑑 =

0,069
𝑁

𝑚𝑚2, at the value of 𝑘 = 0,6 the maximum value of stress  𝜎𝑑 (Fig. 14, graph 5), 𝜎𝑑 = 0,651
𝑁

𝑚𝑚2 

minimum value 𝜎𝑑 = 0,589
𝑁

𝑚𝑚2  and amplitude value is  ∆𝜎𝑑 = 0,062
𝑁

𝑚𝑚2. 

By analyzing the graph, we can observe an increase in the 𝑘coefficient of elasticity of the elastic 

bushing in the proposed composite roller and a decrease in the dynamic stress 𝜎𝑑 and ∆𝜎𝑑 its amplitude 

value. It should be noted that it is possible to achieve a decrease in dynamic stress 𝜎𝑑 at the expense of 

the elastic element. 

 

Conclusions 

1. To perform a static calculation of a composite roller chain drive roller, a two-layer cylindrical shell 

(cylindrical shell) model of the composite roller was selected. 
2. In order to check the strength and stiffness of the chain drive roller to the external compressive forces 

under the influence of the sprocket teeth, analytical formulas for determining the internal force factors 

generated in it are given. 
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3. Using static equilibrium equations, the formulas for determining the absolute and relative 
deformations of the transverse deformations formed in its sections along the length of the chain drive 

roller are given. 

4. Expressions expressing the physico-mechanical dimensions of the proposed composite roller and the 

coefficient of elasticity of the elastic element at different values of the deformation and internal force 
factors formed in the cross section were obtained and graphs of the required parameters were obtained 

using MAPLE-17. 

5. Theoretical study of the dynamic oscillations of the composite roller under the influence of star teeth 
was carried out, the required graphs were obtained in MAPLE-17 program along the length of the roller, 

the transverse absolute and relative deformations of its sections, as well as expressions determining 

internal force factors. 
6. Under the influence of the compressive forces of the sprocket teeth, it was found that the deformation 

and internal force factors generated in the chain drive roller decrease due to 7 ÷ 20the presence of a 

flexible element. 
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