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The article describes a static and dynamic calculation of the composite roller of the chain
drive. The formulas which determine the internal force factors generated in the transversal section of
the composite roller under the influence of external loading were obtained. According to the physico-
mechanical parameters of the roller, the deformation and internal force factors occurring in the cross
section at different values of the elasticity coefficient of the elastic element were determined. In the
program MAPLE-17 the required connection graphs are obtained. Under the impact of compressive
forces of the teeth of the sprocket, the deformation and internal force factors of the chain drive roller
are reduced to 7 + 20 due to the presence of a flexible element.
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Introduction. In mechanical engineering, chain drive is used as a transmission, load-bearing
and fastening, depending on the function of application. The most common type of chains mentioned
above are motion-transmitting chains. It is known that the chain drive that transmits motion consists of
leading and driven sprockets and an infinite chain surrounding them [1-9].

Among the main disadvantages of existing chain drive structures there is the formation of
harmful frictional forces that are generated at the kinematic joints of the chain. Short-term wear of the
chain elements will depend on the excess of the leading and driven network cooling. An increase in
cooling causes an increase in the amplitude values of the longitudinal and transverse oscillations. This,
in turn, leads to a decrease in the efficiency and service life of the transmition, as well as an increase in
the amount of noise. As the load and speed increase in the chain drive, an increase in the value of the
uneven impact forces in the sprocket-chain connection is observed. As a result, the working elements
of chain drive become uneven.

By quenching the shock forces generated at the sprocket teeth and chain joints, the chain drive’s
working elements can be eroded and the amount of noise can be reduced. This, in turn, leads to a
significant increase in chain drive’s service life. As a result of scientific research, a new design of the
chain drive was developed [10-18].

Materials and methods. The proposed chain drive design consists of a leading and a driven
sprocket and an infinite chain enclosing them (Figure 1). The chain drive consists of an inner and outer
plate, a roller, a bushing and a composite roller. The composite roller consists of internal and external
bushings, respectively, and a flexible element (rubber) bushing located between them. The driven
sprocket is designed to be composite and has been suggested to be a flexible element in the sprocket
disc range as well. The composite design of the chain roller is designed to reduce the impact of the
striking forces generated by the sprocket-chain coupling on the roller-bushing pair[15, 19-21].

The structure consists of a leading 1 and a driven sprocket 2 and a chain 3 covering them. The
drive is equipped with a tensioning roller 4 to ensure that the mains stress is normal. The driven sprocket
is made up of a toothed flange 2, a base 6, an outgoing shaft 7 and a flexible bushing 5. The chain
consists of 3 inner 9 and outer 8 plates, a roller 10, a bushing 11 and a composite roller 12. The
composite roller consists of 12 inner 13 and outer 14 bushings and a flexible element (rubber) 15 located
between them. The flexible element 15 has a concave shape on the outer surface 16 and is made to fit
the inside of the outer bushing 14.
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A-SECTION

Figure 1. The scheme of chain drive with flexible element.

The proposed chain drive works in the following order: the movement from the leading sprocket
1 to the driven sprocket 2 is transmitted through the chain 3. The moving driven sprocket 2 is then
transmitted to the output shaft 7 via a flexible bushing 5 and a base 6. The frictional force and other
harmful forces generated between the chain 3 and the sprocket 2 are somewhat extinguished as they
pass through the elastic element 5. When the chain 3 is affected by the leading 1 and the driven 2
sprockets, we can observe that the force acting on the roller-bushing pair is flat due to the deformation
of the elastic element 15 in the chain roller 12. Due to the deformation of the elastic element 15, the
friction between the bushing 11 and the roller 10 is also reduced. This leads to an increase in the service
life of the chain drive’s elements.Since the outer surface of the rubber bushing 15 has a concave
appearance, an even distribution of the forces acting through the sprocket tooth is achieved. This leads
to an increase in chain service life.

Static calculation of the composite roller. In performing the static calculation of the proposed
chain drive roller, the roller was assumed to be in the form of a two-layer cylindrical shell (cylindrical
shell) (Fig. 2).

In the static calculation of a composite roller, it is important to determine the radial
displacements generated in the roller under the influence of an external load, i.e., an sprocket tooth.
This is because exceeding the norm of these displacements will adversely affect the service life of the
chain drive, causing the roller shaft to fail quickly. The purpose of having a composite design of the
roller is to balance the impact forces and increase the service life of the rollers.

Figure 2. Composite roller calculation scheme.
a-overview of roller, b-roller cross section, r —middle surface radius, r, —roller inner radius,
R, —roller outer radius, h —roller outer bushing thickness

Determination of deformation values that are symmetrical to the axis of the outer roller
of the composite roller. The deformation scheme of the composite roller outer bushing is shown in
Figure 3 below
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Figure 3. Deformation scheme of the outer bushing of the composite roller.

An arbitrary point in the middle section of A, —the outer bushing of the roller described in the
calculation diagram. As a result of the deformation caused by the external load, 4, the point moves
along the axis xand along the radius u,to wya quantity and occupies z the position, Ay while the
arbitrary point A at a distance takes the position A*: Ag(ug; wo); A*(u; w).

According to the Kirchhoff-love hypothesis [22], the transition are as follows:
U=Uy—Z ¢ 1)

Since the thickness of the outer bushing of the composite roller h is a small amount, we can

obtain its displacement along the axis oz as follows:

w=w, 2
Deformations in the layer z of the composite roller are determined as follows:
dug aw
Exy =500 @ = 3)

We accept the following restrictions: r, =r +z = r.
In this case, the deformation values (3) take the following form according to expression:
d?w

Ex = Ex, — ﬁ (4)

0 z
w
&g = ;
Determination of the internal force and tension generated in the composite roller.
Continuing our theoretical research, we consider the internal force and tension factors generated in a
composite roller. Figure 4 shows the cross-impact power and stress acting on the longitudinal and
transverse sections of the composite roller element under the influence of external loads.
Internal stresses and forces arising on the cut of the surface of the composite rollers are

determined as follows:

E
Ox = 1z (Ex + 1)

(5)
E
0o = -,z (€0 + p&x)
Eh w.
Nx = 1_ﬂ2 (EXQ + l'l' ’ 7) (6)

Ng = 1?’;2 (2 + ,usxo).

T

3
Let's enter designations: D = ;2) where D — is the roller stiffness, u — is Poisson's ratio. As a

12(1-p
result, we obtain the following expressions for the bending moment and relative deformations:
d?w
M, = D=
dx (7)
d?w
Mo = uD dx?
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du, 1
€x0 = g = zn (Nx — 1Np) ©
1
£, = % = 2 (Ng — uNy)

Equations of static equilibrium of a composite roller. Based on the above internal forces,
stress and relative deformations, we derive the static equilibrium equations of the composite roller. To
do this, we check the balance of a small elementary part of the composite roller (Figure 5). We define
the intensity q, of the distributed compressive power acting on the middle surface of the outer roller of
the composite roller by the sprocket tooth in the radial direction and the intensity of the internal elastic
force (resistance).

We construct the equations of static equilibrium with respect to all the forces x and z coordinate
axes acting on the elementary part of the composite roller:

dNy _
ax T =0
a8 1 . ©)
- No—q=0
here, as, is defined by the following expression:
qz = qz — kw(x) (10)

here, g, —the compressive force acting on the roller containing the sprocket teeth; q.; =
kw(x) —the intensity of the resistive compressive strength of the elastic element (rubber); k — the
coefficient of elasticity of the flexible bushing in the roller structure; w(x) — radial displacement.

aa,
Qe+,

dN,

de

Figure 4. The power and stress acting on the Figure 5. Cylindrical shell balancing scheme
lontitudinal and transverse sections of a composite
roller element under the impact of an external load

In this case, the static equilibrium equation takes the following form.
d’M, 1 "
2 t-No=q; (11)
Substituting (6) from the expression Ny into the expression (11), written by radial displacement w(x),
we obtain:

d*w
dx*

D +f—gw(x) =q—kw(x) — %Nx (12)

By reducing both sides of the equation to D, we obtain:

4
LU+ 4p*w(x) = 2q, — =N, (13)
(13) is the fourth-order differential equation that determines the transverse deformation of a
roller with an expression structure.
According to expression (6), we express the longitudinal force by radial displacement, and (13)

we put:
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_ _Eh 'w(x) _ WEhR
Ny = 1-p? H ro ((1—;12)1") W(x)

In this case, the appearance of expression (13) is as follows:

4
At = - L () (14)
here we enter the following definition:
apt =2 1+ i +klr2
P =prm 1-u?  Eh
In that case, expression (14) takes the following form:
4
e aptw =% (15)

(15) is the equation of static equilibrium of a roller containing a differential equation.

We accept that the intensity of the compressive force acting on the composite roller through the
sprocket tooth is constconstant.q, = q, = const.

We express the general solution of expression (15) using Krylov's fundamental functions [23-

27]:
(16)
We look for a special solution as follows:
w(x) =4 (17)
In that case, we determine A —the value by substituting expression (17) into expression (15):
4B* A = % out of this , 4 = 4;‘[’;4; w,(x) = ﬁ. (18)
Hence, the complete solution of expression (15) is as follows:
w(x) = wy(x) + w,(x) or
w(x) = Cie F*cospx + C,e P*sinfx + 4Dqﬁ’4 (19)
here are unknown invariables, which are determined using the following boundary conditions:
x=0; w(0)=0; w(0)=0 (20)

By differentiating the expression (19) once x , we obtain the following expression:
w'(x)=—C;Be B* - (cosp + sinfx) + C,LeFP*(cosp — sinfx) + w' (x) (21)
Substituting (19) and (21) into the conditions, we determine the invariable quantities:

W(O)=C1+#B4:0:> Clz_qu (22)
Hence, considering expression (19), we can write the function as follows:
_ , q
w(x) = —C e P*[cosPx + sinfx] + 2Dp7
or w(x) = -2 [1 — e F*(cosPx + sinfx)] (24)

4D %

Theoretical study of dynamic vibrations under the influence of sprocket teeth of a
composite roller. We create the differential equation of transverse vibrational motion of a composite
roller by adding the force of inertia to the static equilibrium equations (15):

o*w(x,t) ph 0%w(xt)
—e T 4B*w(x, t) + ST = Qocospt (25)
here, Qo = :—f’D; P, — external force, S, — the outer surface of the composite roller; p — the

oscillation frequency of the external pressure force, D — cylindrical stiffness; w = w(x,t) —
displacement of the roller in transverse bending; t —time.

(25) consists of the sum of the complete solution of the differential equation, the general
solution, and the special solutions.

Determining the general solution of the differential equation of dynamic vibration. We
determine the solution of equation (25) without taking into account the external pressure force.

h 8?2 o+
% ST 4w =0 (26)
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This equation (26) is a homogeneous differential equation, the solution of which we seek in the
following function view:

w(x,t) = f(t) - e P*(cospx + sinfix) (27)
We apply expression (27) to expression (26). To do this, we calculate the following:
02 o*
a_t‘;v = f"(t) - e P*(cospx + sinfx); a_x‘?: = 4B*f(t) - e P*(cosfx) + sinfx)
%h = D, we apply these symbols.

Taking into consideration given the above expressions, we construct the following expression
instead of (26):

D.f"(t) +8B*f(t) =0 (28)
If itis k3 = % —, (28) expression gains the following appearence:
£ +kif®) =0 (29)

As a result, we obtain the differential equation of free vibration. Let the initial conditions be as
follows:
t=0;£(0) = fo; fo=wo
, 30
ICY 0
The solution of expression (29) is as follows:
fi(t) = a-sin(kyt + a) (31)

2
. . . k . . .
here , a = /wg + % — free oscillation amplitude; @ = arctg % — free oscillation frequency shift
0

0
phase.
So the general solution looks like this:
w; (x,t) = fi(t)e B*(cos fx + sinfx) (32)
or wy(x,t) = a-sin(kot + ap) - e P*(cosfx + sinfx) .

Determination of the specific solution of the differential equation of dynamic vibration.
We look for a special solution of the differential equation of dynamic oscillation as follows:
wy(x,t) = M - cospt - e P*(cospx + sinfix) (33)
Here we obtain the following expression by substituting p —the external pressure force oscillation
frequency at (33) = (25):
ph

— - p*M +86*M = Qo
: _ Qo
Out of this, M = —8,84'—%’1-;)2 (34)
A custom solution according to the above expressions:
wy(x,t) = M - cospt - e P*(cospx + sinfix) (35)
The complete solution of the forced oscillating motion of the roller would be as follows:
w(x, t) = wyi(x, t) + wy(x, t) (36)

or w(x,t) = [a-sin(ket + ag) + bycospt] - e B*(cospx + sinfx) (37)

2 4
Here : a = /WO +%— free oscillation amplitude; k, = /%— free vibration frequency; a, =
0

arctg W‘; ¢ — shear phase in free oscillation; by =#— forced oscillation amplitude; p —
0 8p+-2p
D

frequency of forced vibration motion.
The amplitude of the forced oscillation motion is calculated by the following expression:

Here, it is called static displacement and dynamic coefficient.
Using the defined analytical expressions, we set the geometric dimensions of the proposed chain
drive roller (Figure 6).

212
ISSN: 2233-7857 IJFGCN
Copyright (©2020 SERSC



International Journal of Future Generation Communication and Networking
Vol. 13, No. 4, (2020), pp. 207-220

B

0200y

&3

=
2

—
525

2
=

-
oot

o

RS

o

|

|

|

|

|

|

|

|

|

|

|

|
ereperere

SR

o

o
G
o

52

i
e

0
::g:gto?‘?

™
&

5

...,
—~
i

&

™
<

.'-

i,
.

R

Figure 6. Geometric parameters of the composite roller

Based on the existing geometric and technological characteristics, we introduce the main
guantities:
- the material of the outer bushing of the composite roller is steel, the value of the modulus of

elasticity for the material: E = 2,06 - 10°MPa = 2,06 - 10° mILZ’

-the force acting on the roller with the impact component through the sprocket tooth: P, =
1300 N;

- the length of the composite roller: [ = 14mm;

- the thickness of the outer bushing of the composite roller: h = 2mm;

- Poisson's coefficient: 4 = 0,3;

- the radius of the composite roller: r = 8mm;

- sprocket radius: R = 77,165mm (D = 154,33mm);

- the angular velocity of the sprocket: w, = 50 s71;

- the linear velocity of the chain v, = w, - R = 3858,25@

- density of steel material: pg, = 0,7850 - 1075 T:fl3
- the surface of the roller: S, = 2nr - 1 = 703, 36mm?
. . . _ P _ N_,
- intensity of external pressure force: Q, = 5 = 1,85 —
3
- content roller stiffness: D = D; = L - 1,51-10° N - mm;
12(1-p?)
Eh N D, ph o] s
Dy=—=64375——=;d1=—=0,043mm; D, =—=1,04-10""" |—
r? mm3 D, D, mm*
8P4 A . .
koi = |2 — free oscillation motion frequency;
D

elastic coefficient of elastic bushing k:g =n=0,2;0,3;0,4;0,5;0,6.
The bending moment, normal stress and relative deformations formed in the cross section of
the composite roller are calculated by the following formulas:

d? . .
=~ b) relative deformation:gg = =;
dar r

E
c) normal stress:gg = el &g,

a) torque: Mg = u-D
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For static, dynamic stress cases, k — transformation graphs were obtained in the MAPLE-17
program at different values of the transverse displacement, relative displacement, and shear change
variables (Figures 7-14).

Result and discussion: The graph of the change in the dependence of the transverse static
displacement w(x) of the composite roller on the k —different coefficients of the elastic element along
its length is given in Figure 7. When the existing chain drive roller is affected by an external load force,
Py = 1300 N the nominal value of the transverse static displacement i.e k = 0., (Fig. 7, graph 1) equals
tow = 2,6 - 10~*mm. The nominal value of the static displacement in the value of the coefficientk =
0,2 of elasticity (Fig. 7, graph 2) w=2,3-10"*mm, k =0,3 (Fig. 7, graph 3) w = 2,05-
10~*mm,k = 0,4, (Fig. 7, graph 4) w = 1,95 - 10~*mm,k = 0,5, when the force acting on the roller
of the proposed composition is affected by force P, = 1300 N by the tooth. (Fig. 7, graph 5) w =
1,88 - 10~*mm, k = 0,6 (Fig. 7, graph 6) w = 1,709 - 10~ *mm.

From the analysis of the graphs in Figure 7, it can be concluded that the transverse static
displacement values decrease as the elastic coefficient of the elastic element increases. This in turn leads
to a reduction in frictional forces and harmful shocks in the roller-bushing pair located under the roller.

Figure 8 shows graphs of t — time-dependent change k —in the various coefficients of the

elastic element, based on the maximum static value w,,,, Of the transverse dynamic displacement
wy (x, t)of the composite roller along its length.
The transverse dynamic displacements of the existing chain drive roller are nominal value, i.e. k =0
(Fig. 8, graph. 1) w,; = 2,56 - 10~ *mm, maximum value w; = 2,90 - 10~*mm, and amplitude value .
When the elastic element in the proposed composite roller has a value of the coefficient of elasticity
k = 0,2 (Fig. 8, Figure 2), the minimum value of the dynamic displacement in the composite roller is
wy = 2,17 - 10~*mm, the maximum value is wy; = 2,44 - 10~*mm, and the amplitude value is , at
k = 0,3, (Fig. 8, Figure 3) the minimum value of the dynamic displacement on the content roller is
wg = 2,03 - 10"*mm, the maximum value is w,; = 2,27 - 10~*mm, the amplitude value is wy, =
0,24 - 10~*mm, at k = 0,4, the minimum value of the dynamic displacement w; = 1,89 - 10~ *mm
on the content roller (Fig. 8, Figure 4) wy = 2,11 - 10~ *mm is the maximum value, and the amplitude
value of the dynamic displacement is , at k = 0,5 , w; = 1,77 - 10~ *mm is the minimum value of the
dynamic displacement on the roller (Fig. 8, Figure 5), and w,; = 1,98 - 10~ *mm is the maximum value,
and at k=0,6,w,; = 1,66-10"*mm is the amplitude value of the dynamic displacement on the
roller, w; = 1,66 - 10~*mm is the minimum value of the dynamic displacement on the composite roller
(Fig. 8, Fig. 6) wy = 1,86 - 10~*mm is the maximum value of, and the amplitude value of the dynamic
displacement is

0.00025 i-ffﬁhlﬂhi_] = 0_09023\ I\ !\ l\ /\ A

e Y

| I
|
|
0.00020 T i vV VIV IV
// ESEaE - AAdd
0.00015 LI e 'l_f'H' 4 2000041 ‘
w-mm disp ] ! Wl 2P | J
. | 0.00022 4 e
0.00010 i : Vl i
] | |
! : 0.00020 [\
0.00005 4 : - N
— 0.00018 —V
0 _—“___________ 4 Gt +
0 3 10 13 0 5 10 15 20
x-mm coordinate Y0
[—1 2——3—4—>5 6] [—1i—2—3—a—5 ¢
Figure 7. The change in the transverse Figure 8. Based on w,,,,,.the maximum static
static displacement w(x) of the composite roller  value of the transverse dynamic displacement of
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depending on the k — different coefficients of the composite roller along the length of the
the elastic element along the length of the roller. roller w;(x, t), t — the time-dependent
Here, 1-k=0;2-k=02; 3—k= variation of the elastic element at k different-
03;4—-k=045—-k=05 6—-—k=0,6. coefficients.

Here,1—-k=0;2—-k=02;3—k=
03;4—-k=04,5—-k=05,6—-—k=0,6.

From the analysis of the graphs (Fig. 8) it can be concluded that we can observe a decrease in
the values of dynamic displacement and amplitude as k the coefficient of elasticity increases. With a
decrease in the dynamic displacement w, and its amplitude value w,, a reduction in the amount of
harmful effects on the chain elements and, in turn, a slowing down of the degradation process is
achieved.

Figure 9 shows the graph of the static moment generated in the cross section of a composite
roller along its length, depending on k —the different coefficients of the elastic element. The value of
the static moment generated in the cross section of the existing chain drive roller (Fig. 9, graph 1), static
moment formed in the cross section when k = 0,2 is the value of the coefficient of elasticity of the
roller of the proposed composition (Fig. 9, graph 2) , at k = 0,3 static moment generated in the cross
section (Fig. 9, graph 3), Mg, = 4,73N -mm k = 0,4 (Fig. 9, graph 4), Mg; = 4,59N -mm k =
0,5 (Fig. 9, graph 5), My, = 4,44 N - mm (Fig. 9, graph 6) . Mg, = 4,31N -mm k = 0,6.

It can be concluded from the graph that we can observe that the static torque generated in the
cross section of the roller decreases as the coefficient of elasticity of the elastic element increases. This
in turn means a reduction in static impact on other elements of the chain connected to the roller.

Figure 10 shows graphs of the dynamic moment M, generated in the cross section of a
composite roller along the length of the roller, at k — different coefficients of the elastic element,
t —depending on time. From the graphs (Fig. 10.1) we can see that the dynamic moment M, generated
by the cross-sectional value k = 0 of the existing chain drive roller under the influence of the force
from the sprocket tooth M; = 5,01 N - mm is the minimum value of the roller length, the maximum
value of M; = 5,69 N - mm, and the amplitude value of AM; = 0,68N - mm.

oMU LIA LN TN LALLALLY
A AISATARTARTA
L
50 52
M-N moment 5.0
418 M-N moment
4831 TR TR
\
NI
44 - | ;
LU
2 4 6 8§ 10 12 14 + : j
x-mm coovdinate 0 5 10 15 20
t-s. time
1 2 3 4 5
p > | 1 2 3 4 5 6

Figure 9. Static torque generated in the cross 10-pacm.. Figure 10. Depending on the length of
section of a composite roller along the length of  the roller of the dynamic moment M, generated
the roller, the dependence of the elastic element in the cross section of the composite roller, the

on k — different coefficients elastic element is different.
Here, 1—-k=0;2—-k=0,2;3—k = in k —coefficients, change over t —time
03;4—k=04,5—-k=05;,6—-—k=0,6. here,1—-k=0;2—-k=02; 3— k=

03,4—-k=045—-k=05 6—k=0,6.
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Also, at the value of k = 0,2 the coefficient of elasticity of the proposed transmission roller
flexible element (Fig. 10, graph 2), M; = 4,63 N - mm is the minimum value of the dynamic moment
generated in the cross section of the roller M; = 5,21 N - mm is the maximum value, and the amplitude
change AM; = 0,58 N-mm. My = 4,47 N-mm. The minimum value of the dynamic moment
generated in the cross section of the roller containing the value k = 0,3 (Fig. 10, graph 3). the maximum
value is My = 5,02 N - mm, the amplitude change AM; = 0,55 N - mm , at the value of k = 0,4 (Fig.
10, graph 4), minimum value of dynamic moment is M; = 4,32 N - mm, maximum value is M; =
4,82 N - mm, the amplitude change AM; = 0,50 N - mm, at the value of k = 0,5 (Fig. 10, graph 5),
the minimum value of the dynamic moment is My; = 4,21 N - mm the maximum value is My =
4,66 N - mm, and the amplitude change is AM; = 0,45N - mm, k = 0,6 at the value of (Fig. 9, graph
6), the minimum value of the dynamic moment is M; = 4,09 N - mm the maximum value is M; =
4,52 N - mm, and the amplitude change is AM; = 0,43 N - mm.

From the analysis of the graphs it can be seen that as the coefficient of elasticity of the composite
roller bushing increases, the value of the dynamic moment generated in the cross section of the roller
decreases. This, in turn, indicates that the flexible bushing has the property of quenching external
dynamic forces.

Figure 11 shows a graph of the transverse relative deformation & of a composite roller with
respect to different coefficients kof the elastic element along its length. The value of static relative
deformation (in k = 0) formed in the cross section of the existing chain drive roller under the influence
of external load (Fig. 11 — graph 1) is &, = 3,42 - 107°. When k = 0,2the value of the coefficient of
elasticity of the roller bushing of the proposed composite roller (Fig. 11, graph 2), &, = 2,9+ 1075 is
the value of static relative deformation formed in the cross section of the roller is determined by k =
0,3 (Fig. 11.3) &, = 2,7 - 1075, k = 0,4 (Fig. 11.4- graph) . = 2,5-107>, k = 0,5 (Fig. 11, graph 5)
& = 2,23-107°, and k = 0,6 (Fig. 11, graph 6) &, = 2,22 - 107>,

It can be concluded from the graph that we can see that the value of ¢ of the static relative
deformation decreases with increasing coefficient of elasticity of the elastic element in the composition
of the composite roller.

Figure 12 shows a graph of the transverse £; —dynamic relative deformation of a composite
roller with respect to the kcoefficients of elasticity of the elastic element along the length of the roller.
At the maximum value k = 0 of the relative static deformation formed in the cross section of the
existing chain drive roller under the influence of external load (Fig. 12, graph 1). &; = 3,62 -107°
minimum value is e; = 3,19 - 10~° , while the amplitude value is Ae; = 0,43 - 1075, The maximum
value of the dynamic relative deformation of the cross section of the roller when k = 0,2 the value of
the coefficient of elasticity of the roller bushing of the proposed composition (Fig. 12, graph 2) is e; =
3,05 - 107>, minimum value is &5 = 2,71 - 10~° while the amplitude value is Ae; = 0,34 -107°, at
k = 0,3 (Fig. 12, graph 3) maximum value of relative deformation is e; = 2,82 - 10>, minimum value
is g4 = 2,52 107> while the amplitude value is Ae; = 0,30 -107°, at k = 0,4 (Fig. 12, graph 4)
maximum value of relative deformation is ¢; = 2,64 - 10~°, minimum value is ¢, = 2,36 - 10~° while
the amplitude value is As; = 0,28-107°, k = 0,5 (Fig. 12, graph 5) maximum value of relative
deformation is &; = 2,47 - 10~°, minimum value is 5 = 2,22 - 1075 the amplitude value is Ag; =
0,25-107% k = 0,6 (Fig. 12, graph 6) maximum value of relative deformation is e; = 2,32 - 107°,
minimum value is e; = 2,19 - 10~> the amplitude value is Ae; = 0,13 - 1075,

It can be concluded from the graph that €, the relative dynamic deformation and As; amplitude
value of the transverse dynamics of the roller decreases as the elastic coefficient of elasticity of the
composite roller increases.
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Figure 11. Variation of the transverse (x)-
static relative deformation of the composite
roller along the length of the roller with k —
different coefficients of the elastic element
Here,1-k=0;2-k=02;3—k =
03;4—-k=04,5—-k=05 6—k=0,6.

Figure 12. Variation of the transverse dynamic
relative deformation e(x, t) of the composite
roller depending on the k different coefficients
of the elastic element along the length of the
roller
Here,1-k=0;2-k=02; 3—k =

03,4—-k=045—-k=056—k=0,6.

Figure 13 shows the change graphs of the static stress a(x)generated in the cross section of the
composite roller under the influence of external load depending on the k different coefficients of the
elastic element along its length. Nominal value of static stress o generated in the cross section of the
existing chain drive roller under the influence of external load at k = 0 (Fig. 13, graph 1) o =

0,925 ——, the coefficient of elasticity of the roller elastic element of the proposed composition is k =

mm?’
0,2 static stress is ¢ nominal value of (Figure 13. Graph 2) ¢ = 0,777 m’:’nz, at k = 0,3 ( Figure 13.
N

Graph 3) static stress 0 = 0,733 —;, at k = 0,4 (Figure 13. Graph 4) static stress ¢ = 0,681 —

N
mm?
k = 0,5 ( Figure 13. Graph 3) static stress ¢ = 0,633 ,at k = 0,6 (Figure 13. Graph 3) static

stress 0 = 0,598 lez :

From the graph we can see that ¢ the value of static stress decreases with increasing coefficient
of elasticity of the elastic element in the composition of the roller.

Figure 14 shows a graph of the change in the o, dynamic stress generated in the cross section
of a composite roller depending on the k different coefficients of elasticity of the elastic element along

the length of the roller.

at

N
mm?
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Figure 13. Variation of the transverse static Fig. 14. The change in the transverse dynamic
stress o(x) of the composite roller along the stress o(x,t) of the composite roller , depending
length of the roller depending on the k different on the k —different coefficients of the elastic
coefficients of the elastic element element along the length of the roller.
Here, 1—-k=0;2-k=0,2;3—-k= Here,1—-k=0;2—-k=0,2;3—-k =

03;4—-k=04,5-k=056—k=0,6. 03,4—-k=045—-k=056—k=0,6.

From the graph we can see that the maximum value of the amount of stress generated in the
cross section of the roller of the existing chain extension chain under the influence of external load (Fig.

14, graph 2) minimum value and amplltude valueg; =1, 248 >, when the coefficient of elasticity of

of the proposed composition is k = 0,2,
dynamlc stress is g, the maximum value (Fig. 14, graph 2) gq =0, 865 , minimum value o; =
0,77

3) o,y = 0 801 , minimum value o,

= 0 3 stress is a4 the maximum value (Fig. 14 graph
, at the

value k =0, 4 stress is gz the maximum value (Flg 14 graph 4), o; = 0, 749 , minimum value
g = 0,674 —

yat k= 0 5 stress g, the maximum value

— and amplitude value Aad =

0, 069 5, at the value of

minimum value o4 = 0,589 —;
mm

By analyzing the graph, we can observe an increase in the kcoefficient of elasticity of the elastic
bushing in the proposed composite roller and a decrease in the dynamic stress a; and Ao its amplitude
value. It should be noted that it is possible to achieve a decrease in dynamic stress o, at the expense of
the elastic element.

Conclusions

1. To perform a static calculation of a composite roller chain drive roller, a two-layer cylindrical shell
(cylindrical shell) model of the composite roller was selected.

2. In order to check the strength and stiffness of the chain drive roller to the external compressive forces
under the influence of the sprocket teeth, analytical formulas for determining the internal force factors
generated in it are given.
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3. Using static equilibrium equations, the formulas for determining the absolute and relative
deformations of the transverse deformations formed in its sections along the length of the chain drive
roller are given.

4. Expressions expressing the physico-mechanical dimensions of the proposed composite roller and the
coefficient of elasticity of the elastic element at different values of the deformation and internal force
factors formed in the cross section were obtained and graphs of the required parameters were obtained
using MAPLE-17.

5. Theoretical study of the dynamic oscillations of the composite roller under the influence of star teeth
was carried out, the required graphs were obtained in MAPLE-17 program along the length of the roller,
the transverse absolute and relative deformations of its sections, as well as expressions determining
internal force factors.

6. Under the influence of the compressive forces of the sprocket teeth, it was found that the deformation
and internal force factors generated in the chain drive roller decrease due to 7 <+ 20the presence of a
flexible element.
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