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Abstract 

 

Monitoring driver fatigue, inattention, and lack of sleep is very important in preventing motor vehicles 

accidents. An efficient system for automatic driver vigilance should make use of physiological, 

behavioral and car measurements. The driver distraction system is often performed by supervised 
classifiers, which require an adequate amount of labeled instances to train the classifier. All of these 

classifiers depend upon the quality and quantity of the training set used to train the classifier, whose 

reliability is a fundamental issue for an accurate mapping of the investigated area. Support Vector 
Machines (SVMs) are one of the successful classifier applied for driver inattention detection 

applications. SVMs are nonparametric statistical approaches for addressing supervised classification 

and regression problems. Therefore, there is no assumption made on the underlying data distribution. 
In the original formulation of SVMs, the method is presented with a set of data samples, and the SVM 

training algorithm aims to determine a hyperplane that linearly divides the data set into two classes. 

The term optimal separating hyperplane is used to refer to the decision boundary that minimizes 

misclassification attained during the training phase. Learning refers to finding an optimal decision 
boundary to separate the training patterns and then to separate test data under the same configuration. 

The crucial part for any kernel-based technique, including SVMs, is the proper definition of a kernel 

function that accurately reflects the similarity among samples. This research work addresses two 
problems of SVM, one is the kernel function selection and the other is the training time. A convex-hull 

and geometry based SVMs is proposed here for driver distraction detection. The proposed Convex-hull 

& Geometry based SVM (CG-SVM) doesn't require a kernel function and a training time too. In this 

way, the complexity of SVM is much reduced while preserving the driver distraction detection accuracy. 
The performance of the proposed CG-SVM is studied with the Ford challenge driver distraction 

database received from 2011 International Joint Conference on Neural Networks. 
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1. INTRODUCTION  

 

Driver distraction is one of the major risk factor of motor accidents. Recent statistics show that 16% of 

the accidents were happen due to driver inattention or distraction. Nowadays the usage of in-vehicle 
information systems such as navigation systems, smart phones, audio systems and other smart devices 

are increasing and they distract the drivers and cause the problem of inattention. A study from NHTSA 

shown that the drivers are distracted by these information devices approximately for about 10 seconds, 
and nine out of ten drivers are using mobile phones while driving. Though the information devices are 

helpful to the drivers, it is also difficult for drivers to avoid distraction and direct an adequate level of 

attention to the road. One simple solution is to develop intelligent in-vehicle systems, which would 
assist the drivers as well as produce context based feedback to avoid distraction (Lee, 2009; Toledo et 

al., 2008). For example, in a heavy traffic situation, the intelligent system could hold the mobile calls, 

until the driver can get off the road. Development of such system must monitor the driver behavior to 
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identify the safe driving behavior, and then assist them accurately and non-intrusively (Lee et al., 2008). 
Distraction can be defined as a deviation of a driver’s attention away from the actions precarious for 

safe driving toward a competing activity. The distraction could be either visual distraction or cognitive 

distraction, represented as “eye-off-road” and “mind-off-road” (Liang & Lee, 2010; Victor et al., 2015). 

A typical algorithm that monitors driver’s glance behavior to detect the visual distraction, whereas 
driver’s expression and behavior could be studied to identify the cognitive distraction (Liang et al., 

2012).    

 
A drivers’ behavior can be measured by a set of psychological, physiological and physical parameters. 

Various algorithms has been developed to detect driver inattention, most of them are classification 

approaches, where the driver’s state is identified as drowsy or not, distracted or not. However, this 
problem could also be viewed as a regression problem, where the driver’s state could be measured with 

various continuous behaviors. Moreover, the previous methods make use of single source of driver’s 

state to detect their inattention. In this paper, the combination of different sources: physiological, 

behavioral and psychological data are received from driver’s state, in addition to that the vehicle 
information also considered for the driver inattention classification.   In previous studies, two data 

mining methods—Support Vector Machines (SVMs) and Dynamic Bayesian Networks (DBNs)—

successfully detected cognitive distraction from driver visual behavior and driving performance (Liang 
et al., 2007a, b). Since the driver’s data would be over-fitting and noisy, this paper proposed a machine-

learning method based on Support Vector Machine (SVM) for driver distraction recognition. 

 
The rest of the paper is organized as follows: the following section presents the related work on SVM 

and driver inattention detection. Section 3 describes the convention SVM classifier. Section 4 illustrates 

the proposed CG-SVM classifier. Section 5 presents the experimental setup and discusses the results. 

Section 6 concludes the paper.   
 

2. RELATED WORKS 

 
This section presents a study on SVM and a brief literature on driver inattention detection algorithms. 

 

2.1 Study on Support Vector Machine (SVM) 

 
There are numerous SVM variants have been proposed in the literature to tailor SVM fit for higher 

dimensional data. These methods can be divided into four types: (a) reducing training data sets (data 

selection), (b) using geometric properties of SVM, (c) modifying SVM classifiers, (d) decomposition, 
and (e) the other methods. The data selection method chooses the objects which are possible to be the 

Support Vectors (SV) (Li, 2011). These data are used for SVM training. Comparatively, the number of 

support vectors is much smaller than the complete data. Clustering is another effective tool to reduce 
data set size, for example, hierarchical clustering (Yu et al., 2003) and parallel clustering (Pizzuti & 

Talia, 2003).  

The geometric properties of SVM can also be used to reduce the training data. In separable case, the 

maximum-margin hyperplane is equivalent to find the nearest neighbors in the convex hulls of each 
class (Bennett & Bredensteiner, 2000). Spatial neighborhood relations of the objects can be used to 

detect support vectors. Keerthi et al., (2000) proposed an active learning model of sample selection 

which is based on the measurement of neighborhood entropy. Keerthi & Gilbert (2002) proposed an 
algorithm that selects the patterns in the overlap region around the decision boundary. Cervantes et al., 

(2008) presented a SVM model that follows fuzzy C-means clustering to select samples on the 

boundaries of class distribution. The most popular geometric methods are the Nearest Points Problem 
(NPP) and the convex hull. NPP was first reformulated to solve SVM classification in Keerthi et al., 

(2000). The data which are close to those opposite label have high probability to be support vector. The 

Euclidean distance between these data and the opposite label are computed to find the shortest distance. 

The problem of this method is the computation time is O(n2). Gilbert's algorithm (1966) is one of the 
first algorithms for solving the Minimum Norm Problem (MNP) in NPP. The NPP method is also 

extended to solve the SMO-SVM optimization problem in the image processing (Keerthi & Gilbert, 
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2002). Since the support vectors are usually located in local extremum or near extremum, using 
extremes examples from the full training set can reduce training set (Guo & Zhang, 2007). 

 

The main objective of SVM is to find the margin to discriminate the dataset into classes. K-Nearest 

Neighbor (KNN) is one fundamental solution, in addition to that the local data distribution and local 
geometrical property were applied in (Li, 2011; Xia et al., 2006). Minimum enclosing ball is applied to 

SVM classification in Cervantes et al., (2008). Approximately optimal solutions of SVM are obtained 

by Core Vector Machine (CVM) in Tsank et al., (2005). The maximal margin classifier with a given 
precision for separable data was obtained. Convex hull has been applied in training SVM in Bennett & 

Bredensteiner (2000). There are some algorithms to compute the convex hull with finite points. The 

SVM’s performance highly depends on the kernel selection, most of the time, the unsuitable kernel 
function leads to imperfect hyperplane for a nonlinear data samples. In these cases, the closest points in 

the convex hulls are no longer support vectors. In this case, the soft SVM. Although the slack variable 

can be applied to solve the soft margin optimization, it effects the optimal performance of SVM. It is 

evident to obtain the optimum margin with negligible error. Another method is to use the reduced 
convex hull. The intersection parts disappear by reducing the convex hulls. The inseparable case 

becomes separable case. The main disadvantage of the reduced convex hull is the convex hull has to be 

calculated in each reducing step. Variant SVM (v-SVM) can make the intersection set be empty by the 
choice of parameters (Crisp & Burges, 2000). The v-SVM is similar with the reduced convex hull, the 

computation process is complex. Yuille & Rangarajan (2003) proposed a Concave–Convex Procedure 

(CCP) that separates the energy function into a convex function and a concave (non-convex) function. 
By using a non-convex loss function, it forms a nonconvex SVM. But some good properties of SVM, 

for example the maximum margin, cannot be guaranteed (Collobert & Bengio, 2000), because the 

intersection parts of data sets are not satisfied convex conditions. The SVM training time is reduced by 

convex hull approach, however this method decreases the classification accuracy when there are 
outliers.  Chau et al., (2013) introduced a novel method for SVM classification, called convex–concave 

hull. After grid preprocessing, the convex hull and the concave (non-convex) hull are found by Jarvis 

March method. Then the SVM training is performed with these convex-concave hull vertices. This 
approach is much suitable for higher dimension data, as it was shown in the simulation results that this 

SVM variant is able to achieve better accuracy rate with less computation effort for training. However, 

the training time is unavoidable for the supervised classifiers. Here, a Convex-Hull and Geometry based 

Support Vector Machine (CG-SVM) is proposed to improve the SVM classifier which doesn’t require 
kernel methods and no training time. The proposed classifier is applied for driver inattention detection 

and the performance is studied to investigate the significance of CG-SVM.  

 

3. INTRODUCTION TO SUPPORT VECTOR MACHINE CLASSIFIER 

 

Vapnik (1995) introduce the concept of Support Vector Machine (SVM), a set of supervised learning 
model meant for classification and regression. SVM makes use of machine learning concepts to linearly 

separate the data with a hyperplane, while the margin maximizes the prediction accuracy. SVM are the 

systems based on hypothesis space of a linear function with high dimensional data, where the training 

is a learning model based on optimization theory.  Support vector machine was initially popular with 
the NIPS community and now is an active part of the machine learning research around the world. SVM 

models outperforms the conventional ANN models particularly in handwriting recognition problem 

space. Vapnik (1995) developed the foundations for SVM, the efficiency make this model more popular, 
and successfully used for many applications in pattern recognition domain especially. SVM follows the 

approach of structural risk minimization which minimizes the expected risk, rather than empirical risk 

minimization as followed in conventional neural networks which reduces the error on the training data. 
This property makes SVM to outperform with better generalization model that is the main objective of 

statistical learning. Originally SVMs are meant for solving classification problems, however in recent 

times they have been applied for regression problems too (Vapnik et al., 1997).    

 
Consider M training points, where each input xi has N attributes (i.e. is of dimensionality D) and is in 

one of two classes yi = -1 or +1, i.e the training data is of the form 
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 {𝑥𝑖 , 𝑦𝑖} 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑀, 𝑦𝑖 ∈ {−1, 1), 𝑥 ∈ ℜ𝑁   (1) 
Here it is assumed that the data is linearly separable, meaning that, drawing a straight line on a graph 

of x1 vs x2 would separate the two classes when N = 2 and a hyperplane on graphs of x1, x2, … , xD  

when N > 2.  

 

This hyperplane can be defined by 𝑤. 𝑥 + 𝑏 = 0 where: 

 w is normal to the hyperplane  

 
𝑏

‖𝑤‖
 is the perpendicular distance from the hyperplane to the origin. 

Support Vectors are the examples closest to the separating hyperplane and the objective of Support 

Vector Machines (SVM) is to estimate this hyperplane, which optimally separates both classes while 

considering the possible closest members of each class.  

 
Figure 1. Hyperplane through two linearly separable classes 

 

With reference to Figure 1, applying a SVM means selecting the variables w and b  then the training 

data can be described by: 

 𝑥𝑖 . 𝑤 + 𝑏 ≥  +1      𝑓𝑜𝑟 𝑦𝑖 =  +1 (2) 

 𝑥𝑖 . 𝑤 + 𝑏 ≤ −1      𝑓𝑜𝑟 𝑦𝑖 =  −1 (3) 

These two equations can be combined and rewritten as: 

 𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) − 1 ≥ 0 ∀𝑖 (4) 
When the points closest to the separating hyperplanes alone considered, i.e. the Support Vectors (points 

encircled in Figure 1), then the two hyperplanes H1 and H2 that these points lie on can be defined by: 

 𝑥𝑖 . 𝑤 + 𝑏 =  +1     𝑓𝑜𝑟 𝐻1 (5) 

 𝑥𝑖 . 𝑤 + 𝑏 =  −1     𝑓𝑜𝑟 𝐻2 (6) 

Based on Figure 1, the distances d1 and d2 could be defined from hyperplanes H1 and H2 respectively. 

The distance between the hyperplane’s H1 and H2 refers that d1 = d2, a metric known as SVM’s margin. 

In order to place the hyperplane to be as far from the support vectors as possible, the margin has to be 
maximized. 

 

Simple vector geometry shown that the margin is equal to 1/‖𝑤‖ and maximizing it subject to the 
constraint in eq.(3) is same as to finding 

 min‖𝑤‖,     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) − 1 ≥ 0 ∀𝑖 (7) 

Minimizing ‖𝑤‖ is equivalent to minimizing 
1

2
‖𝑤‖2 and the use of this term makes it possible to 

perform Quadratic Programming (QP) optimization further. Hence it is necessary to estimate 

 min
1

2
‖𝑤‖2,     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) − 1 ≥ 0 ∀𝑖 (8) 

In order to satisfy the minimization constraints, it is evident to allocate them Lagrange multipliers 𝛼, 

where 𝛼𝑖 ≥ ∀𝑖: 

 𝐿𝑃 ≡
1

2
 ‖𝑤‖2 − 𝛼[𝑦𝑖(𝑥𝑖. 𝑤 + 𝑏) − 1 ∀𝑖] (9) 
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≡
1

2
 ‖𝑤‖2 − ∑ 𝛼𝑖[𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) − 1 ]

𝐿

𝑖=𝑖

 

≡
1

2
 ‖𝑤‖2 − ∑ 𝛼𝑖𝑦𝑖(𝑥𝑖. 𝑤 + 𝑏) + ∑ 𝛼𝑖

𝐿

𝑖=1

 ]

𝐿

𝑖=𝑖

 

 

It is likely to estimate the w and b which minimizes, and the  which maximizes eq(9), while satisfying 

the constraint 𝛼𝑖 ≥ 0 ∀𝑖. This is possible by differentiating LP with respect to w and b and setting the 
derivatives to zero: 

 
𝜕𝐿𝑃

𝜕𝑤
= 0 ⇒  𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝐿
𝑖=1    (10) 

 
𝜕𝐿𝑃

𝜕𝑏
= 0 ⇒  ∑ 𝛼𝑖𝑦𝑖 = 0𝐿

𝑖=1  (11) 

Substituting equations (10) and (11) into (9) gives a new formulation which, being dependent on  , 

which is to be maximized  

 𝐿𝐷 ≡  ∑ 𝛼𝑖
𝐿
𝑖=1 −

1

2
 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗𝑖,𝑗   𝑠. 𝑡.  𝛼𝑖 ≥ 0 ∀𝑖 , ∑ 𝛼𝑖𝑦𝑖 = 0𝐿

𝑖=1  (12) 

≡  ∑ 𝛼𝑖

𝐿

𝑖=1

−
1

2
 ∑ 𝛼𝑖𝐻𝑖𝑗𝛼𝑗 ,    𝑤ℎ𝑒𝑟𝑒   𝐻𝑖𝑗 ≡ 𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗

𝑖,𝑗

 

≡  ∑ 𝛼𝑖 −
1

2
𝛼𝑇𝐻𝛼     𝑠. 𝑡. 𝛼𝑖 ≥ 0 ∀𝑖 ,   ∑ 𝛼𝑖𝑦𝑖 = 0

𝐿

𝑖=1

𝐿

𝑖=1

 

This new definition LD is known as the Dual form of the Primary LP. It is worth noting that the Dual 

form requires only the dot product of each input vector xi to be calculated, this is important for the 

Kernel Trick termed in the following text. Having moved from minimizaing LP to maximiaing LD, it is 

necessary to calculate: 

 max
𝛼

[∑ 𝛼𝑖 −
1

2
𝛼𝑇𝐻 𝛼𝐿

𝑖=1 ]       𝑠. 𝑡.       𝛼𝑖 ≥ 0 ∀𝑖      𝑎𝑛𝑑   ∑ 𝛼𝑖𝑦𝑖 = 0𝐿
𝑖=1  (13) 

 

This is a convex quadratic optimization problem, and a QP solver is implemented and return  from 

equation (10) will give us w, after the value of b has to be estimated.  

 
Any data sample satisfying equation (11) which is a Support Vector xs will have the form: 

 𝑦𝑠(𝑥𝑠 . 𝑤 + 𝑏) = 1 (14) 

Substituting in equation (10): 

 𝑦𝑠(∑ 𝛼𝑚𝑦𝑚𝑥𝑚 . 𝑥𝑠 + 𝑏𝑚∈𝑆 ) = 1 (15) 

 

where S denotes the set of indices of the support vectors, and it is estimated by finding the indices 𝑖 
where 𝛼𝑖 > 0. Multiplying through by 𝑦𝑠 and then using 𝑦𝑠

2 = 1 from equations (1) and (2): 

 𝑦𝑠
2(∑ 𝛼𝑚𝑦𝑚𝑥𝑚 . 𝑥𝑠 + 𝑏𝑚∈𝑆 ) = 𝑦𝑠 (16) 

 𝑏 = 𝑦𝑠 − (∑ 𝛼𝑚𝑦𝑚𝑥𝑚. 𝑥𝑠 + 𝑏𝑚∈𝑆 ) (17) 

 

Instead of taking an arbitrary support vector xs, it is superior to yield an average of all the support vectors 
in S: 

 𝑏 =
1

𝑁𝑠
∑ (𝑦𝑠 − ∑ 𝛼𝑚𝑦𝑚𝑥𝑚  . 𝑥𝑠𝑚∈𝑆 )𝑠∈𝑆  (18) 

Now the variables w and b that defined the separating hyperplane’s optimal orientation and hence the 
Support Vector Machine.  

 

SVM Kernels 
 

SVM is much more suitable for linear data, constructing a hyperplane is simpler here. This is not the 

case with most of the data, it might be inseparable or non-linear. Kernel functions are equipped at this 
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situation to map non-linear data such data into a high-dimensional space, to make it linearly separable. 
Figure 2 shows one such data mapping from non-linear to linear space.  

 

  
Figure 2. Kernels in SVM 

The problem space mapping is achieved by defining the Kernel: 

 𝐾(𝑥, 𝑦) =  Φ(𝑥). Φ(𝑦) (19) 
Mapping the data into feature space allows us to estimate a similarity measure on the basis of the dot 

product as shown in Figure 3. The classification performance highly depends on careful selection of 

feature space.  

 〈𝑥1, 𝑥2〉  ← 𝐾(𝑥1, 𝑥2) =  〈Φ(𝑥1). Φ(𝑥2)〉 (20) 
 

 
Figure 3. Feature Space Representation 

 

For a conventional SVM with linear data, one major focus is to find w & b and to mean that the problem 

is solved. For the non-linear problem space, the kernel tricks are used to find the support vectors in 

nonlinear boundaries. 
 Choosing a precise kernel could be done by trial and error on the test set, moreover, the kernel selection 

is application specific, influences the SVM’s performance at the most. The proposed CG-SVM resolves 

this problem using geometry approach.  

 

4. THE PROPOSED CONVEX-HULL & GEOMETRY BASED SUPPORT VECTOR 

MACHINE 

 

Consider a binary classification problem with the training data given in the form {𝑥𝑖 , 𝑦𝑖}, 𝑖 =
1, … , 𝑀, 𝑦𝑖 ∈ {−1, +1}, 𝑥𝑖 ∈ ℜ𝑁. To separate classes, SVM classifier finds a separating hyperplane that 

maximizes the margin, which is defined as the distance between the hyperplane and closest samples 
from the classes. To achieve this, at first, each class is approximated with a convex hull (Bennett & 

Bredensteiner, 2000). A convex hull consists of all points that can be written as a convex combination 

of the points in the original set, and a convex combination of points is a linear combination of data 

points where all coefficients are nonnegative and sum up to 1. More formally, the convex hull of 

samples  {𝑥𝑖}𝑖=1,…,𝐿can be written as 

 𝐻𝑐𝑜𝑛𝑣𝑒𝑥 =  {𝑥 =  ∑ 𝛼𝑖𝑥𝑖  | ∑ 𝛼𝑖 = 1,   𝛼𝑖 ≥ 0𝑀
𝑖=1

𝑀
𝑖=1 } (21) 

Figure 4 depicts convex hulls of two classes. Following this approximation, SVM finds the closest 

points in these convex hulls. Then, these two points are joined with a line fragment. The plane, 

orthogonal to the line fragment that bisects the line, is selected to be the separating hyperplane as shown 

in Figure 4. 
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Figure 4. Two closest points on the convex hulls determine the separating hyperplane 

For the proposed Convex-Hull & Geometry based SVM (CGSVM), initially the data points are plotted 

and a convex hull for each class H1 and H2 has been constructed as shown Figure 5, one class samples 

has been shown with red points and the other with blue points.  

 
Figure 5. Data points with Convex Hull 

In the next step, the centroid for each convex hull Hc1 & Hc2, are estimated and connected throw a 

straight line.  Figure 6 shows the output of convex hull centroids, the green markers and connecting 
them with a straight line, this is to identify the direction of each convex hull.  
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Figure 6. Convex Centroids 

With this, the hyperplane, wx+b=0, could have been made perpendicular to the line which connects the 

centroids. However, the slope won’t be appropriate when the size of the convex hulls varies a lot. Hence, 

the hyperplane is estimated based on geometry approach. Here, after connecting the convex hull 

centroids, the edge from both convex hull which intersect the connecting line is identified and their end-
points are stored .Then each end-point from H1 is connected to the other end-point from H2, whichever 

is closer, this would introduce two new line segments L1 and L2, presented as dashed line in Figure 7.  

 
Figure 7. Connecting the vertex points from H1 and H2 

Further, a straight line connecting mid-points of the lines L1 and L2, derives the hyperplane as illustrated 

in Figure 8.  
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Figure 8. SVM Hyperplane 

In the last step, the support vectors are drawn parallel to the hyperplane, which passes through a vertex 

from H1 and H2 as shown in Figure 10. According to the support vectors, the hyperplane is adjusted to 

make the distance equal between the hyperplane and the soft margin. 

 
Figure 9. Support Vectors and the Margin 

 

The advantage of the proposed CG-SVM over conventional SVM is the time complexity, and the kernel 

function selection. The convex-hull and geometry approach doesn’t take any iterative or training 
procedures, hence it takes O(n) time complexity. Also it doesn’t require to maintain the data samples, 

whereas it is enough to hold the convex hull vertices, hence it won’t require more than O(n) space 

complexity. Comparatively the conventional SVM needs O(n3) and O(n2) time and space complexity 
respectively, the CG-SVM reduces these complexity significantly with O(n) for both time & memory 

requirements.  Hence, the proposed CG-SVM is faster, memory efficient and significantly improves the 

SVM classification’s performance as discussed in the experimental results section. 

 

5. RESULTS AND DISCUSSIONS 
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The performance of the proposed CG-SVM is studied with the Ford’s stay alert driver’s dataset. Each 
sample is representing a sequential data, recorded at every 100ms during a driving session on the road. 

The sample consists of 100 participants of different age level, genders and ethnic backgrounds.  

There were 33 columns of data, collected from 610 drivers, and 1210 trials for each. In total the dataset 

has the dimension of 738100 samples with 33 measures, where the first two columns could be 
ignored as they maintain the sequential numbers, hence, the dataset dimension is reduced to 

738100×31. The dataset is divided into two sets, 510 drivers’ trials training and the rest of 100 

drivers’ trails for testing. 
 

The classification performance is studied with the following parameters. The notations used in the 

formulae are expressed as follows: True Positive (TP) is the number of distracted instances which are 
correctly detected by the proposed classifier, False Positive (FP) means the number of non-distracted 

(normal) instances which are incorrectly detected as distracted, True Negative (TN) is the number of 

normal samples correctly classified, and False Negative (FN) is the number of distracted samples which 

are imperfectly identified as normal. 
 

Accuracy 

 
It is the percentage of correctly classified records and expressed as (TP + TN)/N. That is, the accuracy 

is the proportion of true results (both true positives and true negatives) in the population. To make the 

context clear by the semantics, it is often referred to as the "Rand Accuracy". Figure presents the 
classification results based on accuracy, comparatively the CG-SVM outperforms the other 

classification algorithms with the maximum accuracy of 0.9129, and the same has been represented in 

Figure 10.  

 

 
Figure 10. Classifiers Performance with Accuracy Measures 

 

The proposed Driver’s Distraction Detection performance is further analyzed with more parameters as 
given below. 

 

Classification Success Index (CSI) 

 
The individual class-specific classification performance can be measured by using Individual 

Classification Success Index (ICSI) based on Positive Predicted Value (or Precision) and True Positive 

Rate (TPR) (or Sensitivity) defined as: 

 𝐼𝐶𝑆𝐼𝑖 = 1 − 𝑃𝑃𝑉𝑖 + 1 − 𝑇𝑃𝑅𝑖 = 𝑃𝑃𝑉𝑖 + 𝑇𝑃𝑅𝑖 − 1 (23) 
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Where, the terms 1 − 𝑃𝑃𝑉𝑖 and 1 − 𝑇𝑃𝑅𝑖 represents the type I and II errors for the corresponding class, 
respectively. Hence, the range for ICSI is from -1 (maximum error) to +1 (minimum error), but the 

result 0 doesn’t have any specific meaning. This measure is symmetric, and linearly connects to the 

average of TPR and PPV, which is itself known as Kulczynski’s metric. The Classification Success 

Index (CSI) is the overall mean value of ICSI over all classes. Figure 11 presents the classification 
results based on CSI, the proposed CG-SVM significantly improves CSI to 0.9378, which is greater 

than the other classification algorithms.  

 
Figure 11. Classifiers Performance with CSI Measures 

 

Geometric-Mean (GM) 

 
This measurement is used to maximiz the True Positive (TP) rate and True Negative (TN) rate, and 

simultaneously keeping both rates relatively balanced. It is defined as 

 𝐺𝑀 = √𝑡𝑝 ∗ 𝑡𝑛 (25) 

Figure 12 presents the classification results based on GM, the proposed CG-SVM significantly 

improves the performance by achieving higher GM of 0.9528. 

  
Figure 12. Classifiers Performance with GM Measures 
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6. SUMMARY 
 

Driver distraction detection system helps to avoid motor vehicle road accidents. There are various 

classifiers are developed to support the drivers while using in-vehicle systems. Most of these classifiers 

makes use of the features like physiological, environmental and vehicular data independently. However, 
it is suggested to detect the driver’s distraction with hybrid features. In this paper, a Convex-hull and 

Geometry based Support Vector Machine (CG-SVM) classifier is proposed for driver inattention 

detection with all three set of features. The distraction detection performance is compared with five 
other classifiers and demonstrated that the proposed CG-SVM is able to detect the driver’s distraction 

better than any other classification methods.  
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