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Abstract:    

The seminal work of Clunie and Sheil-Small [4] on harmonic mappings gave rise to 

studies on subclasses of complex valued harmonic univalent functions. In this paper we 

introduced new family of analytical function      ,h z zf z g   which is harmonic meromorphic 

functions of complex order in the open disk   : 1U z z  defined by using modified  Salagean 

operator. It is shown that the functions in this class are sense preserving and univalent outside the 

unit disk. Sufficient conditions are obtained for functions in this class which are also shown to be 

necessary when the co-analytic part  g z  has negative coefficients. We also obtain properties 

such as distortion bounds, extreme points, convolution and convex combination for this class. 

Keywords:  Harmonic Functions, Meromorphic Functions, Univalent Functions, Starlike 

Functions, Modified Multiplier Transformation. 
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__________________________________________________________________________ 

I. Introduction 

Harmonic univalent mappings are known to play an important role in the study of 

minimal surfaces and have found applications in different fields such as Engineering, 
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Operation research and applied mathematics [2]. Harmonic mappings in the domain D C

are univalent complex valued harmonic functions f u iv   where both u and v real 

harmonic in D. Harmonic univalent mappings have drawn tremendous attention of complex 

analysis only after the important work of Clunie and Sheil-Small [4] in 1984. Hengartner and 

Schober [7] and [8] in 1986 worked towards finding an appropriate form of the Riemann 

mapping theorem for harmonic mappings. The works of these function theorists and several 

other researchers (see for example [9],[18],[19]) gave rise to several problems, conjectures 

and many intriguing questions. Several classes of complex valued harmonic univalent 

functions have been introduced and investigated following the basic work of Clunie and 

Sheil-Small [4]. There are several survey articles and books ([2],[5]) on harmonic mappings 

and related areas as ([13],[17]). Hengartner and Schober [9], among other things, investigated 

the family M of functions      f z h z g z   which are harmonic, Meromorphic, orientation 

preserving and univalent in  : 1U z z   where  

1 1

h( ) ; ( ) , (1)k k

k k

k k

z z a z g z b z z U
 

 

 

    
 

Jahangiri [10] and Jahangiri and Silverman [12] have also investigated harmonic, 

Meromorphic functions which are starlike inU . 

For this class the function (z)f may be expressed as  

2

f( ) . (2)k

k

k

z z a z




   

Cho and Srivastava [3], introduced the operator :nI A A   defined as 

2

f(z) ,
1

n

n k

k

k

k
I z a z









 
   

 
  

Where A  denote the class of functions of the form (2) which are analytic in the open unit 

disc U . 

For  1  , the operator n nI I   was studied by Uralegaddi and Somanatha [20] and 

for 0   the operator nI  reduce to well-known Salagean operator introduced by Salagean 

[16]. 
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Definition 1.1 Let,      f z h z g z   be a function, where h and g  are of the form (1), the 

modified multiplier transformation for f  defined in [11] as: 

 0f(z) h(z) ( 1) g(z), 0 (3)n n n nI I I n N N         

Where, 

 
2 1

( ) , ( ) .
1 1

n k n k

k k

k k

k k
I h z z a z I g z b z 

 

 

 

 

    
     

    
   

  When we put 0  , we get modified Salagean operator introduced in [11]. 

Definition 1.2  In this paper, motivated by study in [14], Here we define a class

 , n, , t, ,HS b     of harmonic, meromorphic functions f h g   such that:  

   

 

111
Re 1 1 (4)

i n

i

n

t

e I f z
e

b I f z



 





    
      
      

 

      where 1- , 0 t 1, 0 γ<1,0 β<1, α realand b is

a complex number such that b 1.

tf z t z tf z     


 

Remark 1.1: The class includes a variety of well-known subclasses for specific values of

, , , and .b n t   

 

 

*

1. 1, 0, 0, 1, (1,0,0,1, , ) M [15]

2. 1, 0, 0, (1,0,0, t, , ) , , [1]

1
3. 1,n 0, 0, 1, 0, (1,0,0,1,0, ) [10]

2

4. 0, 0, (b,0,0, t, , ) (b, , , t) [6]

5.

H H

H H

H H

H H

whenb n t S

whenb n S G t

whenb t S

when n S S

when

   

    


  

    



    

   

 
       

 

  





0, (b,n,0, t, , ) (b, , , t, n) [14]H HS S   

 

Also let  , n, , t, ,
H

S b    be the subclass of  , n, , , ,HS b t   consisting of functions

f h g  in which h and g are of the form  

1 1

( ) ; ( ) , 0, 0 (5)k k

k k k k

k k

h z z a z g z b z a b
 

 

 

        

                We obtain sufficient coefficient conditions for harmonic meromorphic functions 

f h g   to be in the class  , n, , , ,HS b t   . We also show that this coefficient condition is 
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also necessary for  ,n, , t, ,
H

f S b    .We also obtain distortion bounds, extreme points, 

convolution condition and convex combination for functions in  , n, , t, ,
H

S b    . 

II. Coefficient Conditions 

First, we prove a sufficient condition for harmonic functions in  , n, , , ,HS b t   . 

Theorem 2.1: Let f h g   be so that h and g are of the form (1). If  

  

  

 
1

1

2 2 1
1 1

1 (6)
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1 1
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when 0 1, 0 1,α realand ba non-zerocomplex number such that 1, then f is

univalent,sensepreserving,harmonicmappingin : 1 and ,n, , , , .H

t b

U z z f S b t



  

    

  
 

Proof: Consider the function f h g  , where h and g are given by (1). In [12] it has been 

proved that if    

1

1 1

1, 1k k

k k

k a k b b
 

 

     

then f is harmonic, orientation preserving and univalent in U. For 0 1,   

we note that 

  

 

  

 

2 2 1
1 1

1

2 2 1
1 1
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k k
t b

k
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k k
t b

k
b

 


 



 


 



      
           



      
           



 

 Therefore, f  is harmonic, orientation preserving and univalent in U  due to (6). To show 

that  ,n, , , ,Hf S b t   we notice according to (4), we must have 
 
(z)

Re
A

B z


 
 

 
where,  
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Re iff 1 1 for 0 1 itUsing the fact isenough to

show that

1 1 0 (
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   Putting equations (1), (3), (4) and (5) in equation (7) we obtain 
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Now by (6), this last expression is never negative and so  , n, , , ,Hf S b t   . We now 

give an example of a function in the class  , n, , , ,HS b t   . 

  Next, we show that the coefficient condition (8) is also necessary for functions in

 , n, , , ,
H

S b t   . 



                           International Journal of Future Generation Communication and Networking 
Vol. 13, No. 4, (2020), pp. 01 –15 

   

7 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

 

Theorem 2.2: Let f h g  be so that h and g are of the form (5). A necessary and 

sufficient condition for f to be in  ,n, , , ,
H

f S b t    is that  
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Proof: In view if above theorem 2.1, we need only show that  ,n, , , ,
H

f S b t   if the 

coefficient inequality (8) does not hold. We note that if  , , , ,
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Thiscontradicts that 0andso the proof is complete.
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III. Distortion Theorem 

 The distortion bounds for functions in  , n, , , ,
H

S b t   are given by Theorem 3.1 

Theorem 3.1: If  ,n, , , ,
H

f S b t   then    

     1 11 1 , 1.r b r f z r b r z r           

Proof: We prove the right-hand inequality. The argument for the left-hand inequality is 

similar and hence it omitted. Let  ,n, , , ,
H

f S b t   . Taking the absolute value of f we 

obtain  
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IV. Extreme Points 
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We use the coefficient bounds obtained in section 2 to determine the extreme 

points for functions in  , n, , , ,
H

S b t   . 

Theorem 4.1: If  ,n, , , ,
H

f S b t    if and only if f can be expressed as      
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Proof: Note that for f we may write, 
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Now byTheorem 2.2
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V. Convolution and Convex Combination 

In this section we show that the class  , n, , , ,
H

S b t    is invariant under 

convolution and convex combinations of its numbers. 

For harmonic functions 

       
1 1 1
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We define theconvolution of f and Fas  
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H H
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Then f F S b t S b t

       

     

    

  

Theorem 1
 

Proof: Suppose f  and F are so that *f F is given by the above convolution. 

 Since    ,n, , , , ,n, , , ,
H H

f S b t and F S b t       , the coefficients of f and 

F  must satisfy conditions given by Theorem 2.2. So, for the coefficients of *f F we can 

write. 
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The right hand side of the above inequality is bounded by b 1 because
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Theorem 5.2: The family  , n, , , ,
H

S b t   is closed under convex combination. 

Proof: Suppose 
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VI. Conclusion 

In this paper an attempt has been made to introduce and investigate some properties for a 

new subclass of harmonic meromorphic functions of complex order. Based on this work, 

further useful study on different subclasses of harmonic univalent functions can be 

established by using different operators. 
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