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ABSTRACT: 

As we are towards the start of the multiprocessing period were there are lot of advances in the 

field of technology, PCs will have progressively numerous centers and computing capacity however there 

is still horrible programming structure for these designs, and therefore no straightforward and brought 

together path for AI to exploit the possibly accelerate. In this paper, we build up a method that is 

comprehensively applicable equal programming technique, one that is effortlessly applied to a wide 

range of learning calculations in the field of machine learning. Our work is in unmistakable 

differentiation to the convention in AI of structuring approaches to accelerate a solitary calculation at 

once. In particular, we show that calculations that fit the Statistical Query model can be written in a 

specific "summation structure," which permits them to be effectively standard allelized on multicore PCs.  

We propose the methods for parallel programming that direct relapse k-implies, strategic 

regressioninnocent Bayes, Gaussian discriminant examination and back propagation. 

Keywords:Parallel programming method 
 

INTRODUCTION:  

Recurrence scaling on silicon—the capacity to drive chips at ever higher clock rates—is starting 

to hit a force limit as gadget geometries contract because of spillage, and just in light of the fact 

that CMOS devours power each time it changes state. However Moore's law, the thickness of 

circuits multiplying each age, is anticipated to last somewhere in the range of 10 and 20 

additional years for silicon based circuits . By keeping clock recurrence fixed, however 

multiplying the quantity of preparing centers on a chip, one can keep up lower power while 

multiplying the speed of numerous applications. This has constrained an industry-wide move to 

multicore.  

We consequently approach a time of expanding quantities of centers per chip, however there is 

up 'til now no decent edge work for AI to exploit huge quantities of centers. There are many 

equal programming dialects, for example, Orca, Occam ABCL, SNOW, MPI and PARLOG, yet 

none of these methodologies make it evident how to parallelize a specific calculation. There is a 

tremendous writing on appropriated learning and information mining , yet almost no of this 

writing centers around our objective: A gen-eral methods for programming AI on multicore. 

Quite a bit of this writing contains a long also, recognized convention of growing (regularly 

quick) approaches to accelerate or parallelize individ-ual learning calculations, for example fell 

SVMs . In any case, these yield no broad parallelization strategy for AI and, all the more 
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practically, specific executions of famous calculations infrequently lead to across the board use. 

A few instances of progressively broad papers are: Caregeaet. al.  give some broad information 

appropriation conditions for parallelizing AI, however confine the concentration to choice trees; 

Jin and Agrawal give a general AI programming ap-proach, yet just for shared memory 

machines. This doesn't fit the engineering of cell or lattice type multiprocessors where centers 

have neighborhood reserve, regardless of whether it tends to be progressively reallocated. 

LITERATURE SURVEY: 

Many programming frameworks are possible for the summation form, but inspired by Google’s 

success in adapting a functional programming construct, map-reduce [7], for wide spread parallel 

programming use inside their company, we adapted this same construct for multicore use. 

Google’s map-reduce is specialized for use over clusters that have unreliable communication and 

where indi- vidual computers may go down. These are issues that multicores do not have; thus, 

we were able to developed a much lighter weight architecture for multicores. 

A high level view of our architecture and how it processes the data. The map-reduce engine is 

responsible for splitting the data by training examples (rows). The engine then caches the split 

data for the subsequent map-reduce invocations. Every algorithm has its own engine instance, 

and every map-reduce task will be delegated to its engine Similar to the original map-reduce 

architecture, the engine will run a master which coordinates the mappers and the reducers. The 

master is responsible for assigning the split data to different mappers, and then collects the 

processed intermediate data from the mappers After the intermediate data is collected, the master 

will in turn invoke the reducer to process it and return final results Note that some mapper and 

reducer operations require additional scalar information from the algorithms. In order to support 

these operations, the mapper/reducer can obtain this information through the query info interface, 

which can be customized for each different algorithm. 
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PARALLEL  PROGRAMMING METHOD: 

 

Fig:1- Parallel Programming Model 

We will briefly discuss the algorithms we have implemented based on our framework. These 

algorithms were chosen partly by their popularity of use in NIPS papers, and our goal will be to 

illustrate how each algorithm can be expressed in summation form. We will defer the discussion 

of the theoretical improvement that can be achieved by this parallelization to Section 4.1. In the 

following, x or xi denotes a training vector and y or yi denotes a training label.the solution of the 

normal equations Aθ= b, where A =Σmmi=1wi(xixT ) and b =set to compute subgroup 

wi(xiyi). Two reducers respectively sum up the partial values 

for A and b, and the algorithm finally computes the solution θ = A−1b. Note that if wi = 1, the 

algorithm reduces to the case of ordinary least squares (linear regression). 

Naive Bayes (NB) In NB [17, 21], we have to estimate P (xj = k y = 1), P (xj = k y = 0), and P 

(y) from the training data. In order to do so, we need to sum over xj = k forsubgroup 1 y = 1 and 

subgroup 1  y = 0  .  The reducer then sums up intermediate  results to get the final result for the 

parameters. 

Gaussian Discriminative Analysis (GDA) The classic GDA algorithm [13] needs to learn the 

following four statistics P (y), µ0, µ1 and Σ. For all the summation forms involved in these 

computations, we may leverage the map-reduce framework to parallelize the process. Each 

mapper will handle the summation (i.e.   Σ 1  yi  =  1  , Σ 1  yi  =  0  , Σ 1  yi  =   0 xi, etc) for a 

subgroup of the training samples. Finally, the reducer will aggregate the intermediate sums and 

calculate the final result for the parameters. 
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k-means In k-means [12], it is clear that the operation of computing the Euclidean distance 

between the sample vectors and the centroids can be parallelized by splitting the data into 

individual subgroups and clustering samples in each subgroup separately (by the mapper). In 

recalculating new centroid vectors, we divide the sample vectors into subgroups, com- pute the 

sum of vectors in each subgroup in parallel, and finally the reducer will add up the partial sums 

and compute the new centroids. 

Logistic Regression (LR) For logistic regression [23], we choose the form of hypothesis as hθ(x) 

= g(θT x) = 1/(1 + exp( θT x)) Learning is done by fitting θ  to the training data where the 

likelihood function can be optimized by using Newton-Raphson to  updateθ  :=  θ − H−1∇θA(θ).   

∇θA(θ)  is  the  gradient,  which  can  be  computed  in  parallel  mappers summing up 

Σsubgroup(y(i) − hθ(x(i)))x each NR step i.  The computation(i)of the hessian matrix can be 

also written in a summation form of H(j, k) := H(j, k) +hθ(x(i))(hθ(x(i)) − 1)x(i)x(i) for the 

mappers. The reducer will then sum up the valuesfor gradient and hessian to perform the update 

for θ.Neural Network (NN) We focus on backpropagation [6] By defining a network struc- ture 

(we use a three layer network with two output neurons classifying the data into two categories), 

each mapper propagates its set of data through the network. For each train- ing example, the 

error is back propagated to calculate the partial gradient for each of the weights in the network. 

The reducer then sums the partial gradient from each mapper and does a batch gradient descent 

to update the weights of the network. 

IMPLEMENTATION: 

We led a broad arrangement of examinations to look at the accelerate on informational indexes 

of different sizes (table 2), on eight regularly utilized AI informational collections from the UCI 

Machine Learning store and two different ones from a [anonymous] research gathering 

(Helicopter Control and sensor information). Note that not all the examinations bode well from a 

yield see – relapse on unmitigated information – however our motivation was to test speedup so 

we ran each calculation over all the information. 
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Table:1-Time complexity survey 

 

Table:2-Dataset size and details 

The speedup on dual processors over all the algorithms on all the data sets. As can be seen from 

the table, most of the algorithms achieve more than 1.9x times performance improvement. For 

some of the experiments, e.g. gda/covertype, ica/ipums, nn/colorhistogram, etc., we obtain a 

greater than 2x speedup. This is because the original algorithms do not utilize all the cpu cycles 

efficiently, but do better when we distribute the tasks to separate threads/processes. 

Figure 2 shows the speedup of the algorithms over all the data sets for 2,4,8 and 16 processing 

cores. In the figure, the thick lines shows the average speedup, the error bars show the maximum 

and minimum speedups and the dashed lines show the variance. 
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At last, the above are runs on multiprocessor machines. We wrap up by revealing some affirming 

outcomes and better on a restrictive multicore test system over the sensor dataset.2 NN speedup 

was [16 centers, 15.5x], [32 centers, 29x], [64 centers, 54x]. LR speedup was [16 centers, 15x], 

[32 centers, 29.5x], [64 centers, 53x]. Multicore machines are commonly quicker than 

multiprocessor machines since correspondence inside to the chip is substantially less exorbitant. 

 

 

 

 

 

 

Fig:2-Show the speedup from 1 to 8 processors of all the algorithms over all the data sets. 

 

 

 

 

 

 

 

Fig:3-Show the speedup from 8 to 16 processors of all the algorithms over all the data sets. 

CONCLUSION:  

For AI to keep harvesting the abundance of Moore's law and apply to ever bigger datasets 

and issues, it is essential to embrace a programming design which exploits multicore. In this 

paper, by exploiting the summation structure in a guide diminish system, we could parallelize a 

wide scope of AI calculations and accomplish a 1.9 occasions speedup on a double processor on 

up to multiple times speedup on 64 centers. These outcomes are in accordance with the 

multifaceted nature investigation in Table 1. We note that the speedups accomplished here 

included no unique improvements of the calculations themselves. Hence the proposed methods 

for parallel programming that direct relapse k-implies, strategic regression innocent Bayes, 

Gaussian discriminant examination and back propagationhas been described. 
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