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Abstract 

 

The contribution of Intelligent Transportation Systems (ITS) has gained a significant importance in real-

world by granting road-side communication and safety services. Road side event detection and vehicle 

tracking are facilitated with the information gained from the vehicles. Other than reliable transmission, 

efficient processing and analysis of the vehicle related information helps to improve the rate of accuracy 

in detecting events. This article introduces selective vehicle tracking and localization scheme (STLS) for 

processing transmitted information efficiently. This scheme is focused to reduce the errors in processing 

to classify events in road segments, irrespective of the density and physical attributes of the vehicles. The 

scheme exploits constraint based fuzzy normalization for preparing decisions and arriving at optimal 

solutions. The classification of events based on the physical attributes and constraints helps to reduce 

processing errors, improving the accuracy of event detection and vehicle tracking. 
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I. INTRODUCTION 

 

Intelligent transportation system (ITS) forms the fundamental element of road-side communication in 

real-world. The need for intelligent transport systems is mandatory to meet the user requirements in 

communication and information sharing. The autonomous vehicular communication is self-disciplined 

through the integration of on-board units (OBUs), road-side units (RSUs) and centralized network. OBUs 

are responsible for sensing and actuating messages from the vehicles to the neighbors or fixed 

infrastructures [1]. RSUs are fixed infrastructures that are capable of providing universal communication 

access and information privileges to the end-users with the help of wireless technologies and 

communication standards such as wireless access vehicular environment (WAVE), dedicated short range 

communication (DSRC), etc. The environment exhibits two types of communication namely: vehicle to 

vehicle (V2V) and vehicle to infrastructure (V2I) [2]. The need for communication, information sharing 

apart from road-safety, traffic assistance, is used for vehicle monitoring and density observation in the 

recent years. The intelligence and cloud access features of the vehicles facilitate critical information 

sharing and environment monitoring. Information fetched from the vehicles is useful in determining the 

characteristics of the road segment and traffic in densely populated cities [3].  

 Road accidents, congestion, etc. are common due to the increasing population and un-realistic 

road conditions. ITS vehicles are interconnected to form a network that is capable of scaling long 

geographical distance. This helps to share information in a swift manner to the traffic processing centers 

[3]. Accident prevention, congestion de-touring, uncontrolled driving, emergency vehicle navigation, etc. 

are some of the advanced facilities that can be achieved by assimilating vehicles, communication 

technologies, and efficient analyzing techniques [4]. Observing and deriving such cases in a road-side 

communication helps to classify the events in city environment and traffic analysis. Classifying the events 
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as normal or abnormal relies on the physical and extended attributes of the vehicles. The velocity, 

position, direction, etc. are the physical attributes and the derived characteristics such as density, handoff, 

are some of the extended attributes in vehicular communication. The attributes are processed using 

efficient algorithms and techniques for improving the accuracy in event detection and classification. More 

specifically, tracking and localization are prominent in estimating the road-side analysis with controlled 

error and better precision [5].  

II. Related Works  

By Bayesian Framework a new co-operative localization method (CLM) is proposed by Song et al. [6] 

used to measure the reliable and appropriate localization of vehicle in transportation intelligent 

application system. By using fusion method the angle is estimated for filtered global locating system data, 

the attitude angle and distance of inter-vehicle. The experimental output shows that efficiently enhanced 

the accurate localization of vehicle with the deliberation of attitude angle are linked with the distance of 

inter-vehicle and the GPS fusion. 

A model based Linear Quadratic Gaussian (LQG) method with flexible Q matrix is presented in [7] to 

improve the efficient and methodically structure tracking director the way for target of the given vehicle 

successfully control the error detection and noise arise in the path planning algorithms and localization. 

The automatically structured regulator is used for tuning different speeds without more efforts. The 

simulation results shows that the proposed method is most efficient than the other conservative tracking 

methods.  

Based on the particle filter an information fusion algorithm is proposed by Rabiee et al. [8] to obtain 

the lane level accuracy tracking by a GNSS denied surroundings. The fine scale and coarse scale signal 

capacity is used for angle positioning. From the recognized transmitters or RSUs the time of arrival is 

measured by the radio frequency signal and from an IMU gyroscope and acceleration is measured to form 

evaluation of a coarse position of the vehicle by the Kalman filter.  

The appropriate angle of vehicle is identified using local inertial sensors and distance sensors. The 

integrate measurements of inertial sensor, neighboring vehicle information and distance sensors are 

estimated by a proposed new scheme [9]. By using RANSAC concept the graph matching model is 

introduced to match the near angle by LIDAr distance sensor using clustered objects. 

The motion control of traced vehicles and dynamic modeling is proposed byZou et al. [10] is used to 

skid steering on hard terrain, under non-holonomic, horizontal controls.  The non-holonomic mechanical 

systems obtain by the skew symmetry property, by the back stepping method the control methodology is 

estimated using modified proportional integral Derivation (PID) computed torque control. 

Yin et al. [11] proposed a slope detection method by exploiting the longitudinal velocity and 

acceleration of the vehicle. The observed acceleration and velocity of the vehicle is used to verify the 

conditional analysis of the slope for feasibility. This method achieves better accuracy in detecting the 

road-side slope. 

The authors in [12] induced support vector machines (SVM) for leveraging the accuracy of vehicle 

location estimation. With the help of global positioning system, navigation system and SVM with 

extended Kalman filtering (EKF) the accuracy of vehicle position and localization is achieved. This 

method achieves less cost through interracial sensors and less outage.  

Collaborative tracking protocol (CTP)is designed by Derder et al. [13]that employs virtual RSUs for 

vehicle tracking and localization. A transferrable belief model is designed to reduce the network load and 

to improve the precision of localization. This protocol relies on the time updates and notifications in 

identifying the target.  

III. Proposed Methodology 

3.1 Selective Vehicle Tracking and Localization Scheme 

STLS is designed with the communication considerations of vehicles communicated to internet.  The 

intelligence of the vehicle communication systems is exploited for tracking and localization.  In contrast 

to the conventional localization, this scheme ensures segment localization and path synchronization to 
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identify physical changes in vehicle movement.  A conventional vehicle movement is designed on the 

basis of Manhatan mobility model (MMM).  The Following section provides a brief introduction to the 

proposed scheme with the network architecture.  

The on-board unit (OBU) is configured with necessary sensors such as proximity and global 

positioning system (GPS). Proximity sensor is equipped in the license plate of the vehicle to identify 

collision/colliding circumstances.  The GPS is used to share the position and location of the vehicle at any 

time instance.  The functions of the sensors are administered by the OBU for transmitting location 

information.  Similarly, the values of the proximity sensor are transmitted by the OBU while detecting 

multiple vehicles within the range.  In Figure 1, the architecture of the ITS scenario with location and 

road segment consideration is illustrated. 

 
 

Fig. 1. ITS Architecture 

The communication between the vehicles and infrastructure Units (RSUs) helps to transmit observed 

information to the traffic monitoring center (TMC).  For localization and distributed information sharing 

and access, the vehicles are interconnected through internet/cloud.  The vehicles moving under MMM 

have two probabilities in changing their direction of movement (i.e.) ½ in a straight/intersection-less lane 

and ¼ in an intersecting lane.  The vehicle moves around a fixed road segment of with  ′𝑤′ and length  ′𝑙′ 

such that the dimension of the vehicles is<
1

2
𝑤 × 𝑙.  The placement of vehicle within half of the road 

width indicates that the vehicle in not exceeding its boundary.  Let  (𝑥𝑎 , 𝑦𝑎) and (𝑥𝑏 , 𝑦𝑏) represent the 

location co-ordinates of two vehicles “a” and “b”.  The distance  𝐷 between the vehicles is estimated as  

𝐷 = √(𝑥𝑏 − 𝑥𝑎)
2 𝑐𝑜𝑠𝜃 + (𝑦𝑏 − 𝑦𝑎)

2𝑠𝑖𝑛𝜃 (1) 

The distance follows geometric representation between the two vehicles, deviated by an angle 𝜃. If 

 𝐷 < 𝑅𝑎𝑛𝑔𝑒 (𝑎) or 𝑅𝑎𝑛𝑔𝑒 (𝑏), then proximity sensor measures the distance between the vehicle.  If the 

safe distance limit (as per the traffic regulations of a country) between the vehicles is exceeded, then the 

chance of collisions is high.  This results in an abnormal traffic event that can be detected at an earlier 

stage by monitoring the physical attributes of the vehicles.  The physical attributes of the vehicles include 

its change in velocity (∆𝑣),  𝐷 and angle of deviation 𝜃. The change in velocity and angle of deviation are 

estimated with certain reference points.  Change in velocity is referred with respect to the current 

velocities if two or more vehicles; giving its displacement.  In this localization and tracking scheme, the 

angle of deviation between two positions of a vehicle is computed with  (𝑤 × 𝑙) as the reference point.  

Eq. (2) is used to estimate  ∆𝑣 and  𝜃 of a vehicle. 
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∆𝑣 = √𝑣𝑎
2 − 𝑣𝑏

2 − 2𝑣𝑎𝑣𝑏𝑐𝑜𝑠𝜃

𝑎𝑛𝑑

𝜃 = 𝑎𝑟𝑐 cos [
∆𝑥𝑎+∆𝑥𝑏+∆𝑦𝑎+∆𝑦𝑏

√∆𝑥𝑎
2+∆𝑦𝑎

2+√∆𝑥𝑎
2+∆𝑦𝑎

2
]

}
  
 

  
 

  (2) 

𝑤ℎ𝑒𝑟𝑒,
∆𝑥𝑎 = |𝑥𝑎

∗ − 𝑥𝑎|

∆𝑥𝑏 = |𝑥𝑏
∗ − 𝑥𝑏|

∆𝑦𝑎 = |𝑦𝑎
∗ − 𝑦𝑎|

∆𝑦𝑏 = |𝑦𝑏
∗ − 𝑦𝑏|}

 
 

 
 

   (3) 

Here, (𝑥𝑎
∗ , 𝑦𝑎

∗)𝑎𝑛𝑑 (𝑥𝑏
∗ , 𝑦𝑏

∗) represents the new position vectors of the vehicles   𝑎 and  𝑏 respectively.  

This angle of deviation measurement is correlated with the  𝜔 in perpendicular and  𝑙 in parallel angles 

respectively.  The change of  (𝑥𝑎 , 𝑦𝑎) to  (𝑥𝑎
∗ , 𝑦𝑎

∗) and (𝑥𝑏 , 𝑦𝑏) to (𝑥𝑏
∗ , 𝑦𝑏

∗) is represented and observed at a 

time  𝑡 that is estimated as the sum of update intervals (𝑡𝑢). The update is performed for any change in 

physical attributes of the vehicle.  The maximum update time before a new neighbor 

communication/handoff is computed as 

𝑡𝑢 =
𝑛×𝑅𝑎𝑛𝑔𝑒 (𝑎)

∆𝑣×(𝑛+1)
    (4) 

Where,  𝑛 is the density of vehicles within the range of the tracking vehicle. 

Let  𝑚 represent the count of update message from a vehicle, then the 𝑡𝑢 is segregated unevenly (based 

on ∆𝑣and 𝜃) for the tracking vehicle.  The observed features are processed using fuzzy decision-making 

in the TMC.  In this decision-making, the inputs and possible constraints are distinguished from the first 

level to the 𝑥𝑡ℎ level of the process.  The resultant output is notified to the user as a warning/alert 

message. If an abnormal event probability is observed, through sophisticated controllers, the operations of 

the vehicles can be paused.  The fuzzy decision making functions is progressed as a linear normalization 

addressing multiple constraints. Withrespect to ∆𝑣, the normalization of distance (ℵ𝐷) 

ℵ𝐷 = 1 −
𝑅𝑎𝑛𝑔𝑒 (𝑎)

𝐷

𝑓𝑜𝑟 𝑎𝑙𝑙

𝑓(𝑡𝑢) = ∫ ∆𝑣. (∆𝑣. 𝑡𝑢, 𝑣𝑎)𝑑𝑣
𝑣𝑎𝑜𝑟 𝑣𝑏
0

∫ [|𝑡𝑢|.
2

√4×𝑣𝑎
2−∆𝑣

 .
1

𝜋
]
𝑑(∆𝑣)

𝑑𝑡𝑢

𝑣𝑎𝑜𝑟 𝑣𝑏
0

}
 
 
 

 
 
 

(5) 

Eq. (5) determines the normalization from of the distance metric for all the velocities of a vehicle.  The 

initial members of a fuzzy set  𝑆 = (ℵ𝐷 , 𝜃, ∆𝑣) for which the above equation holds.  The optimal values of 

the above set are determined in any normal event as updated in𝑡𝑢. Let 𝑟𝜃 represent the relaxation values 

for the observation with respect to distance.  The maximum variation in the distance irrespective of safe 

distance is considered as error.  The error (𝑒) is estimated as  

𝑒 = 1 − (
𝐷−𝑟𝜃

𝐷
)    (6) 

This error indicates that an abnormal event has occurred irrespective of the relaxation distance, post the 

error estimation process the fuzzy constraints are analyzed for validating the optimal event detection.  

Therefore, the significance of the physical attribute  (𝜏) is estimated for the vehicles as 

𝜏 = ∑ (
𝑡𝑢
𝑖=1 ℵ𝐷 × 𝑒)𝑖∀ ℵ𝐷 > 𝑒  (7) 

The significance factor (𝜏) is used to form the initial solution set of the fuzzy processing.  The 

significance factor is estimated during the varying 𝑡𝑢 in the communication period.  The member of  𝑆 

during the  𝑡𝑢 are validated for their errors based on the maximum deviation of either of the independent 

values.  Such that optimal output= {𝜏|𝑚𝑎𝑥ℵ𝐷 ∩min 𝑒}, ∀ 𝑣𝑎 𝑎𝑛𝑑 𝜃.  This optimal output is verified 
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using the constraints illustrated in Figure 2(a) to 2(d).  Therefore, to retain a normalized fuzzy output, a 

normalization matrix for  ℵ𝐷 and 𝑒 constricted using weight as 

[ℵ𝐷]. 𝜏 =
1

𝑒
𝜔

𝑤ℎ𝑒𝑟𝑒 𝜔 = (
𝐷−𝑟𝜃

𝐷
)
𝑖
∀ 𝑖 = 1 𝑡𝑜 𝑡𝑢

} (8) 

 

 
Fig. 2.  Constraints in Vehicle Attribute Deviation 

The constraints in Figure 2(a) to 2 (d) are discussed as follows.  The process of achieving optimal 

solution for the constraints through fuzzy normalization is discussed independently. 

Constraint 1: The trajectory of the vehicle displaces and does not regain the original position 

(despite𝑟𝜃) [Refer Figure 2(a)]. 

Analysis 1: The position of the vehicle is different with respect to  𝜃 provided  ∆𝑣 need not be the 

same. In the last 𝑡𝑢, ℵ𝐷 < 𝑒 and hence, 
𝑑(∆𝑣)

𝑑𝑡𝑢
 tends to 0 such that 𝑣𝑎or𝑣𝑏 = 0.  The variation of  𝜃 with 

respect to  (𝑤 × 𝑙) generates two results such that  𝐷 >
1

2
 𝑤 which means the vehicle moves in the 

opposite direction.  Instead if 𝐷 ≤
1

2
𝑤, then  ∆𝑣 = 𝑣𝑎 or 𝑣𝑏 in the previous𝑡𝑢. The relaxation value and  𝐷 

becomes equal for a maximum error case.  This condition is verified using Eq. (8) as a linear fuzzy 

derivative such that 

[

ℵ𝐷(1,1) … ℵ𝐷(1,𝑡𝑢)
⋮

ℵ𝐷(𝑟𝜃,1) ℵ𝐷(𝑟𝜃,𝑡𝑢)
] . 𝜏 = 1 × 𝜔  (9) 

If 𝐷 = 𝑟𝜃then the above matrix consist of at least one zero row/column, such that 𝜔 = 0.  This 

validation indicates that there is a change is  𝑆 where  𝑆 represents (0, 𝜃, ∆𝑣). 
Constraint 2: In this constraints an immediate change in  𝜃 results in two 𝑡𝑢 updates. 

Analysis 2: The first 𝑡𝑢 is received during the change and the second 𝑡𝑢 is received if  (𝑙 −
𝐷)or(𝑙 − 𝜔) = 0. This means the mobility of the vehicle is retarded [Refer Figure 2(b)]. In this case, 

ℵ𝐷 < 𝑒 and  𝜃 in the last 𝑡𝑢 is a constant.  Therefore, 𝜔 = 𝑒 ,ℵ𝐷 = 𝜏 in all 𝑖 = 1 𝑡𝑜 𝑡𝑢. In particular, 𝜔 =
𝑒 in  𝑖 = 𝑡𝑢−2 𝑡𝑜 𝑡𝑢.  Therefore, the vehicle is observed in an abnormal event and from equation (8), 

 ℵ𝐷(𝑟𝜃,𝑡𝑢) =
1

𝜏
 such that  𝜔 = 𝑒 in the last two  𝑡𝑢  of the vehicle.  

The above two solutions for the constraints represent the abnormal event correlating the physical 

features of the vehicle.  The further two considerations represent the varying  𝑆 in a normal event of 

vehicle mobility. 

Constraint 3: The angle of deviation is different at various 𝑡𝑢 but the position of the vehicle  (𝑥𝑎
∗ , 𝑦𝑎

∗) is 

similar to its old position (𝑥𝑎 , 𝑦𝑎).  
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Analysis 3: This means the vehicle has temporarily changed its position without a halted 𝑡𝑢.  In this 

constraint, the (𝑥𝑎 , 𝑦𝑎) or (𝑥𝑎
∗ , 𝑦𝑎

∗)lies within
1

2
𝑤.  Also, the similar position is deviated/ separated by a 

distance 𝐷.  The normalization in this case follows non-zero rows and columns of the fuzzy matrix 

represented in Eq. (9).  Here,  𝑒 is too small (i.e.) 𝑒 ≪ ℵ𝐷  ∀  all  𝐷 and therefore, 

𝜔 = ℵ𝐷 . 𝜏 =
𝐷−𝑟𝜃

𝐷
   (10) 

is the optimal solution represented and here, 𝜏 = ℵ𝐷 for atmost  𝑡𝑢 update other than  𝜃 variation and 

therefore, ℵ𝐷
2 =

𝐷−𝑟𝜃

𝐷
 is the better observation for the weight.  This indicates that  𝑤 relies on ℵ𝐷

2  for the 

change in position temporarily of the vehicle. In this constraint, the angle of deviation forms the decision 

factor other than  ∆𝑣 and  ℵ𝐷of 𝑆. 

Constraint 4: The angle of deviation changes between  90° and 180°. 
Analysis 4: The complete change of angle of deviation indicates that the vehicle direction is changed.  

The vehicle parallel to  𝑙 or  𝑤 is shifted to the same condition with different 𝜃. The chances of  𝜃 

deviation occurs in one condition (i.e.) intersection. The possible of  𝜃 shift in an intersection region is ½ 

and therefore,  𝜃 is the deciding factor of 𝑆.  Here, 𝑟𝜃 need not be considered and therefore, 𝜔 = 1. The 

error is then estimated as 

 𝑒 = √
1

[ℵ𝐷].𝜏
, ℵ𝐷 > 𝑒

𝑒𝑙𝑠𝑒 𝑒 =
1

ℵ𝐷
, 𝑖𝑓 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  (7)𝑎𝑛𝑑 (8)∀ ℵ𝐷 < 𝑒

}     (11) 

Hence the first case (i.e.) ℵ𝐷 > 𝑒 generates optimal results and the second case (i.e.) 𝑒 =
1

ℵ𝐷
 results in 

abnormal event. 

The above constraints are estimated on the basis of D and ∆𝑣 validation emphasizing the individual 

members of S for identifying the change in vehicle attributes. The validation is continuous for all𝑡𝑢 

update in tracking the positions and location of the vehicle with respect to the varying distance and 

velocity of the vehicles. The processing of these observations is done in the traffic monitoring center to 

estimate the changes in moving vehicle. This classification helps to improve the accuracy of event 

through physical observations.  

IV. Results and Discussion 

The performance of the proposed STLS is assessed using simulation with a maximum vehicle density of 

100. The 100 vehicles are placed in a region of 2500𝑚 ∗ 1000𝑚 consisting of intersecting and non-

intersecting road segments. In Table 1, a detailed experimental parameter and its values are presented.  

 

Table 1  

Experimental Parameters and Values 

Parameters Values 

Traffic Region 2500𝑚 ∗ 1000𝑚 
Vehicles 20-100 

Maximum Communication Time 40min 

𝑡𝑢 0.25s 

Transport Protocol UDP 

For a better analysis, the proposed STLS is compared with the existing CTP [13] and CLM [6] using 

the metrics processing time, average accuracy, distance error and error factor.  

 

 

 

4.1 Processing Time Analysis 
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Fig. 3. Processing Time Analysis 

In Figure 3, the processing time of the existing methods and the proposed scheme is compared. With 

respect to the localization error, the processing time varies. The variations inℵ𝐷 due to 𝜔 = 0 and 𝜔 =
𝑒increases the errors in detecting the location of the vehicle. The location of the vehicle varies by an 

error 𝑒 at the time of estimation. This is due to the limited and paused update in𝑡𝑢 due to which the 

processing time in evading the error varies. In the proposed STLS, the variations are pre-estimated with 

the probable constraints in determining the location errors, reducing the processing time.  

 

4.2 Accuracy Analysis 

 
Fig. 4. Accuracy Analysis 

As the error in localization and vehicle position determination in the proposed STLS is less due to 

various constraint analyses, the accuracy of the scheme is retained at a high level. With respect to the 

increase in communication interval, the update is prolonged due to which the precise estimation of values 

is lessened. However, this validation is processed along the[ℵ𝐷]. 𝜏 or
𝐷−𝑟𝜃

𝐷
 representation, that helps to 

suppress or approximate errors. This factor helps to retain the accuracy of the proposed scheme (Figure 

4).  

 

 

 

 

4.3 Distance Error Analysis 
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Fig. 5.  Distance Error Analysis 

With respect to the update interval, distance error is compared between the existing methods and the 

proposed STLS in Figure 5. As the update interval varies, the reception of positions and sequence of the 

vehicle is not continuous. Therefore, a constant accuracy of the vehicles and position determination 

cannot be maintained. This factor increases the error is distance estimation. In STLS, the possible 

constraints are separately analyzed using the independent metrics associated with the road and vehicle. 

The normalization of the distance at any update interval of𝑡𝑢 produces an optimal result of accuracy that 

suppresses error. However, this error is augmented with the observed value due to which a non-precise 

distance is discovered. The constraint based validations reduces the errors in the proposed scheme.  

 

4.3 Localization Error Analysis 

 
Fig. 6. Localization Error Analysis 

The cumulative error in estimating the vehicle position is presented in Figure 6. This error is 

augmented as the localization and distance errors in the proposed scheme. Distance normalization; update 

time based constraint classification using fuzzy decision making helps to elevate the error concerned 

issues in the proposed scheme. The constraints are scrutinized using the members of 𝑆, emphasizing the 

individual features at any𝑡𝑢. This helps to organize fuzzy functions that results in identifying less error 

bound localization and positioning.  

The comparative analysis results are tabulated in Table 2. 

Table 2  

Comparative Analysis Results 

Metrics CTP CLM STLS 

Processing Time (s) 0.076 0.03 0.019 

Avg. Accuracy  0.663 0.722 0.76 

Distance Error (m) 10.15 6.02 4.96 

Localization Error 0.23 0.21 0.196 
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Conclusion 

This article discusses selective vehicle tracking and localization scheme for monitoring vehicle features 

and identifying abnormal events in road side. The analysis of the observed features is performed in the 

traffic monitoring center at each update interval to track the vehicle physical position and location. The 

processing is preceded using fuzzy decision making where the constraints are classified based on the 

independent attributes of the vehicle. This decision making and constraint classification helps to improve 

accuracy and reduce errors in tracking and localization.The event detecting level is improved with better 

location accuracy through precise distance and localization error estimations. This helps toimprove the 

choice of STLS in real-time ITS. 
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