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ABSTRACT 

 

In fuzzy linear algebra, the concept of eigenvalues and eigenvectors (E. Values and E. Vectors) plays 

a vital role. In order to build up the linear space we set up in this paper, the similarity relations, E. 

Values and E. Vectors of m-polar fuzzy matrices (mPFMs). Here, we discussed idempotent, row and 

column diagonally dominant and spectral radius of mPFMs. In addition, a few properties and results 

of E. Values and E. Vectors of mPFMs are proved. 
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1. Introduction  

 

Fuzzy sets were developed using continuous parameters to solve problems related to vague and 

uncertain real life situations were demonstrated by Zadeh [9] in 1965. Problems related to networks 

that demand intuitive data analysis technique were solved by interval valued fuzzy sets introduced 

by Zadeh [10]. The limitations of traditional model were overcome by the introduction of bipolar 

fuzzy concept in 1994 by Zhang [11, 12]. This was further improved by Chen et al. [2] to m-polar 

fuzzy set (mPFS).  

Related to fuzzy matrices, a lot of works are accessible for E. Values and E. Vectors [1, 3, 

4]. Although, their procedures were not appropriate for all types of matrices and these are extremely 

difficult methods. Really, it is hard job to compute E. Values and E. Vectors for a fuzzy matrix. A 

few researchers tried to compute out the E. Values and E. Vectors to script matrices as per rules of 

introducing α-cut method [7, 8]. Using max-min and min-max operations Mondal and Pal [6] found 

the E. Values and E. Vectors to the bipolar fuzzy matrices. But, in fuzzy concept m-values are 

suitable. In viewing this state in mind we are flexible to compute out that E. Values and E. Vectors 

those m-values and lies in [0, 1].  

In this paper, we have used the max-min operation in the equation QX X or XQ X

to compute   and X  . This is reasonable and usual in fuzzy situation. This is the first endeavor to 

compute and X  by means of max-min operation to mPFMs. 

 

2. Preliminaries 

 

An m-polar fuzzy set (mPFS) is most familiar and extension of fuzzy set with more than two 

membership values. In this section, a few fundamental notions of mPFS are introduced. Also some 

necessary binary operations like , ,    
on mPFSs are specified. 
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Definition 1.  An m-polar fuzzy set [mPFS] FM in X  is an object of the form 

       1 2s, , , ,F mM s s s    where  1 2, , , : 0,1m X      are m  functions. 

Definition 2. Let , FM   , where 1 2, , , m     and 1 2, , , m     then the 

equality of  and   can be defined as 1 1 2 2, , , m m         and it is denoted by   . 

Definition 3. Let , FM  
 
where  1 2, , , m    , 1 2, , , m     and 1 2, , , m    

and  1 2, , , 0, 1m     then  

       The disjunction of   and   is denoted by    and is given by 

       1 2 1 2, , , , , ,m m           

     1 1 2 2max , ,max , , ,max ,m m      1 1 2 2, , , .m m          

        The parallel conjunction of   and   is denoted by .   and is given by 

       1 2 1 2. , , , . , , ,m m         

     1 1 2 2min , ,min , , ,min ,m m      1 1 2 2, , , .m m          

  Definition 4. Let 1U  and 2U  be two universe of discourses and  1 2 1, , , ,mX U      

 1 2 2, , , mY U       be two mPFSs.  

The Cartesian product of X  and Y  is given by   1 2, andX Y U U       . 

Definition 5. An m-polar fuzzy relation (mPFR) between two mPFSs X and Y is defined as a mPFS 

in X Y . If R is a relation between X andY , X  and Y  , and if 

     1 2, , , , , ,m          are the m membership values to which  is in relation R  with ,  

then 1 2, , , m R     . 

Definition  6. Let , FM  
 
where 1 2, , , m    , 1 2, , , m     then    iff 

1 1 2 2, , , .m m         i.e.,    iff     . 

Definition 7. Let FM  be an mPFS on X  and let , FM   ,  where 1 2, , , m    , 

1 2, , , m    , then    iff   and  .  

        Definition 8. An m-polar fuzzy matrix 1 2, , ,
lk lk lkmX x x x 

 
 is a matrix on fuzzy algebra. 

The zero matrix rO  is a square matrix of order r  in which each elements are 0, 0, , 0mO   

and rI is an  identity matrix  of order r  whose elements of the diagonal are 1.0, 1.0, , 1.0mi   

and the non-diagonal elements are 0, 0, , 0mO  . 

  The set rkM is the set of r k rectangular mPFMs and ,rM the set of r r  matrices.  

        From the definition, we have if  lk rkr k
Q q M


  , then 

1 2, , ,
lk lk lklk m Fq q q q M  , where 

 
1 2
, , , 0, 1

mlk lk lkq q q   are the m -membership values of the element lkq  respectively. 

 

            The operations on mPFMs are as follows: 

 

Definition 9. Let    ,lk lk thU u V v M   be two mPFMs. Therefore, ,lk lk Fu v M , then 

       1 1 2 2max , , max , , ,max ,
lk lk lk lk lk lklk lk m mt h

t h

U V u v u v u v u v




    
 

and
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       1 1 2 2min , , min , , ,min ,
lk lk lk lk lk lklk lk m mt h

t h

U V u v u v u v u v




    
 

. 

Definition 10. Let    ,lk th lk hgU u M V v M    be two mPFMs. Therefore, ,lk lk Fu v M , then 

 
1

h

lq qk

q t g

u v
 

 
  
 
  

        1 1 2 2
1 1 1

max min , , max min , , ,max min , .
lq qk lq qk lq qk

h h h

m m
q q q

t g

u v u v u v
  



 
  
 

 

 
1

h

lq qk

q t g

U V u v
 

 
   

 


 

     1 1 2 2
1 1 1

min max , ,min max , , ,min max , .
lq qk lq qk lq qk

h h h

m m
q q q

t g

u v u v u v
  



              
 

 

 

 

 

3. m-Polar fuzzy vector space 

  

The theory of fuzzy vector space was first proposed by Katsaras and Liu [5]. Some elementary 

concepts of m-polar fuzzy vector space (mPFVS) in terms of mPFA were given below. 

 

Definition 11. An m-Polar fuzzy vector (mPFV) is an m-tuple  1 2, , , mv v v where each element 

i Fv M , 0 i m  . 

Definition 12. An m-Polar fuzzy vector space (mPFVS)  is an ordered  pair   ,F M v , where F  

is a vector space in crisp sense over the real field R and   : 0, 1
m

M F   is the m-polar fuzzy 

membership mapping with the property that  for all ,p q R and ,l k F , we have 

                 1 1 1 2 2 2, , , .m m mM pl qk M l M k M pl qk M l M k M pl qk M l M k        

 Example 13. Let mS denote the set of all m-tuples  1 2, , , ma a a over FM . An element of mS is 

called a mPFV of dimension m . For  1 2, , , ma a a a  and  1 2, , , mb b b b in mS , the 

following operations addition   and multiplication     are defined as 

 1 1 2 2, , , m m ma b a b a b a b S       and for any Fl M ,  1 2, , , m mla la la la S  . 

The set mS together with these operations of component wise addition and scalar multiplication is an 

mPFVS over FM , as the scalars are restricted in FM . 

Definition 14. Let  m t

mS u u S   where 
tu the transpose of the vector u . For , ma b S  and 

Fl M  we define    ,
t t

t t tlb lb a b a b    . Then 
mS is an mPFVS. If the order of mS  is  

1 m  , it is a row vector and the element of 
mS  is called column vectors. Further, m

mS S . 

 

4. Similarity relation on m-polar fuzzy sets 

 

The reflexive, symmetric, transitive relations on mPFMS were established and proved below.  

Let  ,R X X  be an mPFR on a set X . Let  1 2, , , : 0, 1m X X      
 
be the 
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membership functions and RM  be an mPFM with respect to R . 

 

Definition 15. If all the diagonal elements of the matrix RM  are 1.0, 1.0, ,1.0mi  ,  

i.e.,      1 2, , , 1.0ml l l l l l       for all l X then  ,R X X is reflexive. 

Definition 16. If the transpose of RM  is itself i.e.,        1 1 2 2, , , , , , ,l k k l l k k l    

   , , ,m ml k k l  for all ,l k X then  ,R X X is symmetric. 

Definition 17. If 
2

RRM M , i.e.,        1 1 1, max min , , ,p Xl k l p p k   ,

       2 2 2, max min , , , ,p Xl k l p p k    ,

       , max min , , , ,m p X m ml k l p p k   for all  ,l k X X  then  ,R X X is transitive. 

Definition 18. The relation  ,R X X is similarity relation iff  ,R X X is reflexive, symmetric 

and transitive. 

Proposition 19. For an mPFM mQ M , Q  is reflexive if mQ I . 

Proof.  Since mQ I , we have all the elements of diagonal of matrix Q are 1.0, 1.0, ,1.0mi 

. Therefore the matrix  Q  is reflexive. 

 

 

 

Definition 20. Let   1 2, , ,
lk lk lklk m mQ q q q q M   

 
 be an mPFM. Then we discuss the 

following mPFSs: 

Nature of Q  Condition 

Reflexive 
mQ I . 

Weakly reflexive 
ll lkq q for all 0 ,l k m  . 

Symmetric TQ Q . 

Idempotent 2Q Q . 

Transitive 2Q Q . 

Proposition 21. Let mQ M  be a reflexive mPFM. Then  

i. 
TQ  is reflexive mPFM, 

ii. 
nQ  is reflexive mPFM for some n N , 

iii. QR R  for mR M , 

iv. RQ R  for mR M , 

v. QR  and RQ  are reflexive mPFMs if R  is reflexive, 

vi. 
TQQ and 

TQ Q  are reflexive mPFMs 

Proof. i) Since Q  is reflexive and all of its diagonal elements are 1.0, 1.0, ,1.0mi  , we have 

the diagonal entries of 
TQ  are also 1.0, 1.0, ,1.0mi  . Hence 

TQ  is reflexive. 

ii) Since Q  is reflexive, mQ I , we have 2

mQ Q I  . Continuing in the same way, we have 

1 2n n

mQ Q Q Q I      for any n N . So 
nQ  is reflexive. 

iii) If mQ I then mQR I R   QR R . 

iv) Also mRQ I R
 
or RQ R . 
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 v) As Q  is reflexive, mQ I , we have mQR R I  and mRQ R I  . So QR  and RQ  are also 

reflexive. 

vi) Clearly from i) and v), we have  
TQQ  and 

TQ Q  are reflexive. 

Proposition 22. A matrix mQ M  is idempotent if it is both transitive and reflexive.   

Proof. As Q is reflexive mQ I , we have 2

mQ Q I  .                        (1) 

And Q  is transitive implies 
2Q Q .                                                          (2) 

From (1) and (2),  
2Q Q . 

Hence Q  is idempotent. 

The converse of the above proposition is not true as shown in the below example. 

Example 23.  Let 
0.3, 0.5,0.2 0.3, 0.5,0.2

0.3, 0.5,0.2 0.3, 0.5,0.2
Q

 
  
   

not greater than or equals to 2I . 

Hence Q  is not reflexive. But  

2Q
0.3, 0.5,0.2 0.3, 0.5,0.2

0.3, 0.5,0.2 0.3, 0.5,0.2

 
  
 

 
0.3, 0.5,0.2 0.3, 0.5,0.2

0.3, 0.5,0.2 0.3, 0.5,0.2

 
 
 

 

0.3, 0.5,0.2 0.3, 0.5,0.2

0.3, 0.5,0.2 0.3, 0.5,0.2
Q

 
  
 

. i.e., Q  is idempotent.

 
Proposition 24. If  W  and Y  are two symmetric mPFMs in mM such that ,WY YW  then WY is 

symmetric. 

Proof.  It is obvious from the above definitions. 

Proposition 25. If  W  and Y   are two transitive mPFMs in mM such that ,WY YW then WY is 

transitive. 

Proof.  Since W  and Y are transitive, 
2W W and 

2Y Y .  

Now            
2 2 2WY WY WY W YW Y W WY Y WW YY W Y     , 

i.e.,    
2

WY WY . Hence  WY is transitive. 

Remark 26. If  W  is a transitive mPFM in mM , then 
kW  is transitive  for any k N . 

Proposition 27. If   1 2, , ,
lk lk lklk m mQ q q q q M   

 
is symmetric and transitive, then 

lk llq q
 
for  0 ,l k m  . 

Proof. Since Q
 
 is symmetric    lk klq q for all 0 ,l k m  . Also since Q  is transitive 

2Q Q

,  

i.e., 
2Q Q .Thus for  1, 2, , ,j m   max min ,lk lj jk

j
q q q for all ,l k , 

i.e.,   max min ,ll lj jl
j

q q q  for l k for each j  

             
 min ,lk klq q for j k

 
for each l . 

This implies that ll lkq q  [Since lk klq q ]. 

 

5. Eigenvalues and Eigenvectors of m-polar fuzzy matrices 

 

In many areas, E. Value problems play a major role. These concepts are very helpful in mathematical 

modeling of real situations. For instance, the natural frequencies and normal mode shapes in free 

vibration of a two mass systems related problems, the axes of principal in elasticity and dynamics, 

the Markov chain rule in the modeling of stochastic and in queuing theory, and in the process of 
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analytical hierarchy for decision making, etc. all give up using E. Value problems. 

In this section, E. Values and E. Vectors of an mPFM using max-min operation is defined 

and some of its properties are studied. 

 

Definition 28. Let mQ M  and a scalar 1 2, , , m FM      is an E. Value of Q  and a 

vector 0X   is a row (column) E. Vector of Q
 
if ( ),XQ X QX X    X  is called an E. 

Vector with respect to the E. Value  . 

Theorem 29. If   1 2, , ,
lk lk lklk mQ q q q q  

 
 is  a square  mPFM of order m , such that 

1 , 2 1, 1,l l l l l l ml mq q q q q o         (say)  where 0 l m  . Then llq is an E. Value 

with respect to  the column E. Vector  , , , ,
T m

m m m mo o i o S , where 

1.0, 1.0, ,1.0mi   be the l th entry. 

Proof. Here    1, , , ,
T m

m m m m lX o o i o y S   (say). Then 

1 1

1

2 1

1

1

1

m

j j m m
j

m mm

j j

j ll

ll m

m

mj j m m
j

q y o o

o o

q y
QX q

q i

q y o o







 
    
    
    
    

      
    
    
    
       

 







 

[Since l th entry 

1 1 2

1

m

lj j l m l m ll m lm m ll m ll m ll m ll m

j

q y q o q o q i q o q o q o q i q o


                    .] 

Therefore, llQX q X . 

Hence llq  is an E. Value with respect to the column E. Vector  , , , , .
T m

m m m mo o i o S  

Example 30. Let 

0.3, 0.4, 0.8 0.0, 0.0,0.0 0.8, 0.1,0.7

0.5, 0.4,0.6 0.5, 0.6,0.8 0.6, 0.4,0.1

0.3, 0.4,0.2 0.0, 0.0,0.0 0.8, 0.7,0.1

Q

 
 

  
 
 

and 

0.0, 0.0,0.0

1.0, 1.0,1.0

0.0, 0.0,0.0

X

 
 

  
 
 

.  

Then

0.3, 0.4, 0.8 0.0, 0.0,0.0 0.8, 0.1,0.7

0.5, 0.4,0.6 0.5, 0.6,0.8 0.6, 0.4,0.1

0.3, 0.4,0.2 0.0, 0.0,0.0 0.8, 0.7,0.1

QX

 
 

  
 
 

 

0.0, 0.0,0.0

1.0, 1.0,1.0

0.0, 0.0,0.0

 
 
 
 
 

 

0.0, 0.0,0.0 0.0, 0.0,0.0

0.5, 0.6,0.8 0.5, 0.6,0.8 1.0, 1.0,1.0 0.5, 0.6,0.8

0.0, 0.0,0.0 0.0, 0.0,0.0

X

   
   

     
   
   

. 

Thus, 0.5, 0.6,0.8  is the E. Value of Q  with respect to the column E. Vector X . 

From Theorem 29. and Example 30. , we have the following 
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Note 31. Let 
1 2, , ,

ll ll llll mq q q q , 1 2, , , m FM      and if llq  , i.e.,  if 1 1ll
q 

,
 2 2ll
q   and 

llm mq  then    , , , , , , , ,
T T m

m m m m m m m mo o i o o o i o S   are also 

E. Vectors with respect to the same E. Value llq , for any scalar FM . So it is observed that E. 

Vectors with respect to the same E. Value are not unique.  

Theorem  32. If   1 2, , ,
lk lk lklk mQ q q q q  

 
 is  a square  mPFM of order m  such that 

1, 2 , 1 , 1l l l l l l lm mq q q q q o         (say) where 0 l m  . Then llq is an E. Value 

with respect to the row E. Vector  , , , ,m m m m mo o i o S , where 1.0, 1.0, ,1.0mi   be 

the l th entry. In addition, llq   for some FM , then  , , , ,m m m m mo o i o S   are also 

E. Vectors with respect to the same E. Value llq . 

Proof. Here    1, , , ,m m m m l mX o o i o y S   (say). Then 

1 1 1 2 1

1 1 1

m m m

j j j j j jm

j j j

XQ y q y q y q
  

 
  
 
  

 

   , , , , , , , ,m m m m ll m m m mo o i o q o o i o   

[Since l th entry 

1 1 1 2

1

m

j j l m l m ll m ml m ll m ll m ll m ll m

j

y q q o q o q i q o q o q o q i q o


                    .] 

Therefore, llXQ q X . 

Hence llq  is an E. Value with respect to the row E. Vector  , , , , .m m m m mo o i o S  

Example 33. Let

0.2, 0.1,0.8 0.4, 0.6,0.7 0.8, 0.9,0.9

0.0, 0.0,0.0 0.4, 0.3,0.8 0.0, 0.0,0.0

0.5, 0.2,0.4 0.8, 0.9,0.8 0.2, 0.2,0.2

Q

 
 

  
 
 

and

0.0, 0.0,0.0 , 1.0, 1.0,1.0 , 0.0, 0.0,0.0X     .  

Then 0.0, 0.0,0.0 1.0, 01.0,1.0 0.0, 0.0,0.0XQ       

0.2, 0.1,0.8 0.4, 0.6,0.7 0.8, 0.9,0.9

0.0, 0.0,0.0 0.4, 0.3,0.8 0.0, 0.0,0.0

0.5, 0.2,0.4 0.8, 0.9,0.8 0.2, 0.2,0.2

 
 
 
 
   

0.4, 0.3,0.8 X . 

Thus, 0.4, 0.3,0.8  is the E. Value of Q  with respect to the row E. Vector X . 

Theorem 34. If   1 2, , ,
lk lk lklk mQ q q q q  

 
 is a square mPFM of order m such that 

1 , 2l l ml lkq q q q       for all 0 ,l k m  . Then  is an E. Value with respect to the 

column  

E. Vector  , , , ,
T m

m m m mi i i i S . In addition,    for some FM , then 

 , , , ,
T m

m m m mi i i i S   are also E. Vectors with respect to the same E. Value  . 

Proof. Since 1 2l l ml lkq q q q      for all 0 ,l k m  , we have 
1

m

lk

k

q 


 . Also 

 , , , ,
T m

m m m mi i i i S . Then  
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1 1

1 1

2 2

1 1

1 1

m m

k m k

k k

mm m

k m k m

k k

mm m

mk m mk

k k

q i q

i

q i q i
QX X

i

q i q




 



 

 

 

   
   
      
      
          
      
      
       
   
      

 

 

 

 

This proves that,  is an E. Value with respect to the column E. Vector X . 

Example 35. Let

0.6, 0.7,0.9 0.3, 0.5,0.2 0.5, 0.2,0.1

0.6, 0.7,0.9 0.1, 0.6,0.4 0.3, 0.4,0.5

0.6, 0.7,0.9 0.3, 0.4,0.5 0.3, 0.5,0.2

Q

 
 

  
 
 

and

1.0, 1.0,1.0

1.0, 1.0,1.0

1.0, 1.0,1.0

X

 
 

  
 
 

.  

Then

0.6, 0.7,0.9 0.3, 0.5,0.2 0.5, 0.2,0.1

0.6, 0.7,0.9 0.1, 0.6,0.4 0.3, 0.4,0.5

0.6, 0.7,0.9 0.3, 0.4,0.5 0.3, 0.5,0.2

QX

 
 

  
 
 

1.0, 1.0,1.0

1.0, 1.0,1.0

1.0, 1.0,1.0

 
 
 
 
   

0.6, 0.7,0.9 1.0, 1.0,1.0

0.6, 0.7,0.9 0.6, 0.7,0.9 1.0, 1.0,1.0 0.6, 0.7,0.9

0.6, 0.7,0.9 1.0, 1.0,1.0

X

   
   

     
   
   

. 

Thus, 0.6, 0.7,0.9  is the column E. Value of Q  with respect to the E. Vector .X  

Theorem 36. If   1 2, , ,
lk lk lklk mQ q q q q  

 
 is a square mPFM of order m such that 

1, 2l l lm lkq q q q      for all 0 ,l k m  . Then  is an E. Value of Q with respect to 

the row  

E. Vector  , , , ,m m m m mi i i i S . In addition,    for some FM , then 

 , , , ,m m m m mi i i i S   are also E. Vectors with respect to the same E. Value  . 

Proof. Since 
1, 2l l lm lkq q q q      for all 0 ,l k m  , we have 

1

m

kl

k

q 


 . Also 

 , , , ,m m m m mi i i i S . Then  

 1 2 1 2

1 1 1 1 1 1

m m m m m m

k m k m km m k k km

k k k k k k

XQ q i q i q i q q q   
     

   
     
   
     

 , , , , .m m m mi i i i X  

 

This shows that,  is an E. Value with respect to the row E. Vector X . 

Example 37. Let 

0.7,0.9,0.6 0.7,0.9,0.6 0.7,0.9,0.6

0.6,0.8,0.5 0.1,0.2, 0.3 0.2,0.1,0.5

0.5,0.8,0.3 0.5,0.5,0.3 0.1,0.5,0.3

Q

 
 

  
 
 

and

1.0, 1.0,1.0 1.0, 1.0,1.0 1.0, 1.0,1.0X     .  

Then 1.0, 1.0,1.0 1.0, 1.0,1.0 1.0, 1.0,1.0XQ    
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0.7,0.9,0.6 0.7,0.9,0.6 0.7,0.9,0.6

0.6,0.8,0.5 0.1,0.2, 0.3 0.2,0.1,0.5

0.5,0.8,0.3 0.5,0.5,0.3 0.1,0.5,0.3

 
 
 
 
   

0.7,0.9,0.6 0.7,0.9,0.6 0.7,0.9,0.6   

0.7,0.9,0.6 1.0, 1.0,1.0 1.0, 1.0,1.0 1.0, 1.0,1.0 0.7,0.9,0.6 X      

Thus, 0.7,0.9,0.6  is the E. Value of Q  with respect to the row E. Vector X . 

Definition 38. (Diagonally dominant) Let   1 2, , ,
lk lk lklk mQ q q q q  

 
be a square mPFM of 

order .m  Then Q is called row diagonally dominant if 
, 1

m

ll lk

k l k

q q
 

  .  Q is called column 

diagonally dominant if 
, 1

m

ll lk

l k l

q q
 

  .  Q is called diagonally dominant if it is both row and column 

diagonally dominant. 

Theorem  39. Let   1 2, , ,
lk lk lklk m mQ q q q q M   

 
 be an mPFM such that 

11 22 mmq q q t     (say) and if Q  is called diagonally dominant, then t  is an E. Value 

with respect to the row (column) E. Vectors  , , , ,m m m m mi i i i S 

  , , , ,
T m

m m m mi i i i S   for some FM with t  . 

Proof. Since an mPFM  lkQ q  is diagonally dominant, we have 
1

m

lk ll

k

q q t


  and

1

m

lk kk

l

q q t


  . Also  , , , ,
T m

m m m mi i i i S  . Then  

1 1

1 1

2 2

1 1

1 1

m m

k m k

k k

mm m

k m k m
k k

mm m

mk m mk

k k

q i q

it

q i q it
QX t tX

t i

q i q

 



  




 

 

 

 

   
   
      
      
                
      
       
   
   
   

 

 

 

. 

Thus, t  is an E. Value of an mPFM Q  with respect to the column vectors X . 

Similarly, we can prove the theorem for row E. Vectors. 

1 2

1 1 1

m m m

k m k m km m

k k k

XQ q i q i q i  
  

 
  
 
  

 

1 2

1 1 1

m m m

k k km

k k k

q q q  
  

 
  
 
    

   , , , .m m mt t t t i i i tX       
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Example  40. Let

0.8,0.5, 0.6 0.3,0.4, 0.5 0.7,0.2, 0.5

0.6,0.3, 0.4 0.8,0.5, 0.6 0.6,0.4, 0.3

0.1,0.4, 0.5 0.6,0.1, 0.1 0.8,0.5, 0.6

Q

 
 

  
 
 

and

0.9,0.8,0.7 0.9,0.8,0.7 0.9,0.8,0.7X     .  

Then 0.9,0.8,0.7 0.9,0.8,0.7 0.9,0.8,0.7XQ    

0.8,0.5, 0.6 0.3,0.4, 0.5 0.7,0.2, 0.5

0.6,0.3, 0.4 0.8,0.5, 0.6 0.6,0.4, 0.3

0.1,0.4, 0.5 0.6,0.1, 0.1 0.8,0.5, 0.6

 
 
 
 
 

 

0.8,0.5, 0.6 0.8,0.5, 0.6 0.8,0.5, 0.6   

0.8,0.5, 0.6 0.9,0.8,0.7 0.9,0.8,0.7 0.9,0.8,0.7    0.8,0.5, 0.6 X
 

Thus, 0.8,0.5, 0.6  is the E. Value of Q  with respect to the row E. Vector X . 

Example 41. let 

0.8,0.5, 0.6 0.3,0.4, 0.5 0.7,0.2, 0.5

0.6,0.3, 0.4 0.8,0.5, 0.6 0.6,0.4, 0.3

0.1,0.4, 0.5 0.6,0.1, 0.1 0.8,0.5, 0.6

Q

 
 

  
 
 

and

0.9,0.8,0.7

0.9,0.8,0.7

0.9,0.8,0.7

X

 
 

  
 
 

.  

Then

0.8,0.5, 0.6 0.3,0.4, 0.5 0.7,0.2, 0.5

0.6,0.3, 0.4 0.8,0.5, 0.6 0.6,0.4, 0.3

0.1,0.4, 0.5 0.6,0.1, 0.1 0.8,0.5, 0.6

QX

 
 

  
 
 

0.9,0.8,0.7

0.9,0.8,0.7

0.9,0.8,0.7

 
 
 
 
   

0.8,0.5, 0.6

0.8,0.5, 0.6

0.8,0.5, 0.6

 
 

  
 
 

0.9,0.8,0.7

0.8,0.5, 0.6 0.9,0.8,0.7

0.9,0.8,0.7

 
 

  
 
 

 

Thus, 0.8,0.5, 0.6  is the E. Value of Q  with respect to the column E. Vector X . 

Theorem 42.  Let   1 2, , ,
lk lk lklk m mQ q q q q M   

 
 be an  mPFM then 

 1 2, , , m FM      be an E. Value with respect to the column E. Vectors

  , , , ,
T m

m m m mi i i i S   if  
1 21 1 1 1max , , ,

s s sm
q q q   ,  

1 22 2 2 2max , , ,
s s sm

q q q 

and  
1 2

max , , ,
s s smm m m mq q q   for every  1, 2, ,s m and for some FM with 

  . 

Proof. Since  
1 21 1 1 1max , , ,

s s sm
q q q   ,  

1 22 2 2 2max , , ,
s s sm

q q q  and 

 
1 2

max , , ,
s s smm m m mq q q   for every  1, 2, , ,s m  we have 

  1 2 1 2

1 1 1 1

, , , , , ,
sk sk sk

m m m m

sk m m

k k k k

q q q q    
   

 
   
 

     for every  1, 2, ,s m . 
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Also,   , , , ,
T m

m m m mi i i i S  . Then 

1 1

1 1

2 2

1 1

1 1

m m

k m k

k k

mm m

k m k m
k k

mm m

mk m mk

k k

q i q

i

q i q i
QX X

i

q i q

 



  
 



 

 

 

 

   
   
      
      
                
      
       
   
   
   

 

 

 

 

 

Thus,   is an E. Value of an mPFM Q with respect to the column Vectors X . 

Example 43. Let 

0.7,0.1,0.4 0.5,0.9,0.3 0.6,0.5,0.4

0.6,0.2,0.3 0.4,0.9,0.2 0.7,0.3,0.4

0.5,0.3,0.4 0.7,0.2,0.1 0.1,0.9,0.1

Q

 
 

  
 
   

and 

1.0, 1.0,1.0

1.0, 1.0,1.0

1.0, 1.0,1.0

X

 
 

  
 
 

.  

Then

0.7,0.1,0.4 0.5,0.9,0.3 0.6,0.5,0.4

0.6,0.2,0.3 0.4,0.9,0.2 0.7,0.3,0.4

0.5,0.3,0.4 0.7,0.2,0.1 0.1,0.9,0.1

QX

 
 

  
 
 

1.0, 1.0,1.0

1.0, 1.0,1.0

1.0, 1.0,1.0

 
 
 
 
 

 

0.7, 0.9,0.4 1.0, 1.0,1.0

0.7, 0.9,0.4 0.7, 0.9,0.4 1.0, 1.0,1.0 0.7, 0.9,0.4

0.7, 0.9,0.4 1.0, 1.0,1.0

X

   
   

     
   
   

. 

Thus, 0.7, 0.9,0.4  is the column E. Value of Q  with respect to the E. Vector X . 

Theorem 44. Let   1 2, , ,
lk lk lklk m mQ q q q q M   

 
 be an mPFM then 

 1 2, , , m FM      be an E. Value with respect to the row E. Vectors 

  , , , ,m m m m mi i i i S   if  
1 21 1 1 1max , , ,

s s ms
q q q   ,  

1 22 2 2 2max , , ,
s s ms

q q q 

and  
1 2

max , , ,
s s msm m m mq q q   for every  1, 2, ,s m and for some FM with 

  . 

Proof. Since  
1 21 1 1 1max , , ,

s s ms
q q q  ,  

1 22 2 2 2max , , ,
s s ms

q q q  and 

 
1 2

max , , ,
s s msm m m mq q q   for every  1, 2, , ,s m  we have 

  1 2 1 2

1 1 1 1

, , , , , ,
ks ks ks

m m m m

ks m m

k k k k

q q q q    
   

 
   
 

     for every  1, 2, ,s m . 

Also,   , , , ,m m m m mi i i i S  . Then 

 1 2

1 1 1

m m m

k m k m km m

k k k

XQ q i q i q i     
  

 
  
 
  

 

 , , , , .m m m mi i i i X    

Thus,   is an E. Value of an mPFM Q  with respect to the row Vectors X . 
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Example 45. Let 

0.7,0.1,0.4 0.5,0.2,0.3 0.6,0.5,0.3

0.6,0.2,0.3 0.4,0.9,0.2 0.7,0.3,0.2

0.5,0.4,0.1 0.7,0.2,0.1 0.1,0.2,0.4

Q

 
 

  
 
   

and

1.0, 1.0,1.0 1.0, 1.0,1.0 1.0, 1.0,1.0X     .  

Then 1.0, 1.0,1.0 1.0, 1.0,1.0 1.0, 1.0,1.0XQ    

  0.6,0.1,0.4 0.5,0.8,0.3 0.6,0.5,0.3

0.5,0.8,0.3 0.6,0.7,0.2 0.2,0.3,0.9

0.5,0.4,0.9 0.4,0.2,0.9 0.1,0.8,0.4

 
 
 
 
 

 

0.6,0.8,0.9    0.6,0.8,0.9 1.0, 1.0,1.0 1.0, 1.0,1.0 1.0, 1.0,1.0   

0.6,0.8,0.9 X  

Thus, 0.6,0.8,0.9  is the E. Value of Q  with respect to the row E. Vector X . 

 

Corollary  46. Let   1 2, , ,
lk lk lklk m mQ q q q q M   

 
 be an mPFM.  

If 1 2

1 1 1

m m m

s s ms

s s s

q q q t
  

      (say). Then, t  is an E. Value of Q  with respect to the column 

E. Vectors    , , , ,
T m

m m m mi i i i S   for some FM with t  . 

Corollary 47. Let   1 2, , ,
lk lk lklk m mQ q q q q M   

 
 be an mPFM.  

If 1 2

1 1 1

m m m

s s sm

s s s

q q q t
  

      (say). Then, t  is an E. Value of Q  with respect to the row E. 

Vectors  , , , ,m m m m mi i i i S    for some FM with t  . 

Theorem  48.  Let mQ M , then Q
 
has a zero column if and only if  mo Q  (set of all E. Values 

of Q ).  

Proof. Condition is necessary: Let l th column of Q
 
is zero, we take , , , , ,

T m

m m m mo o i o S   

where mi is the l th entry, then X is a non-zero vector satisfying the equation mQX o X . Hence, X

is a column E. Vector with respect to the E. Value mo . 

Condition is sufficient: Let  1 2, , ,
T m

mX p p p S   be a column E. Vector with respect to the 

E. Value mo , then mQX o X . We assume that l mp o for  1, 2, ,l m . Then mQX o X  

implies that 
1

m

ks s m

s

q p o


  for each  1, 2, , .k m  This implies that ks mq p o  for each s and 

k . Since l mp o , lk mq o  for each k , then l th entry of  Q
 
is zero. 

Definition  49. Let   Q   be the set of all E. Values of Q . Then     supQ Q      is 

called the spectral radius of Q . 

Theorem  50. Let mQ M . Then  Q  is either mo or mi . 

Proof. If    mQ o  , then   mQ o  , otherwise, if there exist  Q   ( mo  ) then there 

is a non-zero E. vector 
mX S (set of column vectors of order m ) such that QX X . Also we 
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know that for any  with mi   ,      and     . Therefore,  

   X X X                Q X QX X X X X               . 

Hence,   Q  . Since   is arbitrary,  mi Q . Therefore   mQ i  . 

Theorem  51.  For any , mP Q M  if  P Q
 
then    P Q  .  

Proof. From Theorem 50,  P is either mo or mi . If   mP o  , then    P Q  holds 

trivially. If   mP i  , we have to prove that   mQ i  . Since   mP i  , then by definition 

 mi P  and mPX i X X 
 
for some non-zero column vector X .  

We consider  , , ,
T m

m m me i i i S  . Then X e .  

Also, 
1 1 2 2 2m m m m mP X P PX P X P PX P X P X PX X           ,  

i.e., 
m m mX P X P e Q e   .  [Since X e and P Q .] 

Since X  is non-zero  
mQ e  is non-zero. Now, if ,mR Q e then 

1m m

mQR Q e Q e R i R    . 

Hence  mi Q . Thus,   mQ i  . Therefore    P Q  . 

 

 

 

 

 

Conclusions 

 

Similarity relations between mPFMs and properties of E. Values and E. Vectors of mPFMs 

are studied. Many works are accessible to compute the E. Values and E. Vectors of a fuzzy matrix. 

Now, we investigated the properties of E. Values and E. Vectors of mPFMs first time in this paper, 

and explained with proper examples. It is observed that E. Vectors with respect to an E. Value are 

not unique for an mPFM. Though the proposed theorems are not established for general cases. 

Further, the work can be extended to study the nature of the quadratic forms of mPFMs. 
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