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Abstract: 

 

This paper deals with the design of feedback control system for the unstable nonlinear system of the 

reversed pendulum using the polynomial approach. The resultant controllers enable stabilization of 

the pendulum rod in the unstable top position. Spectral factorization techniques together with the 

pole-placement method are utilized for the controller design and robust vs. non-robust setting of the 

tuning poles is presented and discussed. 
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Introduction 

 

There are a great deal of processes in the business that have unstable conduct such as different kinds 

of reactors, ignition systems, refining segments etc.[1],[2]. Continuous examinations with these systems 

without legitimate control can be a genuine danger (Stein, 2003). In such cases, process demonstrating 

and simulation are frequently the main safe apparatus to examine the properties of such systems. 

Nowadays, the job of demonstrating and simulation has risen essentially because of the expanding 

execution of PC innovation. There are a lot of sources gave to these science regions.[3], [4], [5].  

The objective of the present work is to give one potential way to deal with the control of unstable 

nonlinear systems dependent on the linearization of the initially nonlinear process and resulting 

controller configuration dependent on the mathematical hypothesis [6], [7], [8]. The resultant controllers 

are determined utilizing the post position strategy with the assistance of the ghostly factorization 

procedure [9]. One free boundary would then be able to be utilized for tuning of the designed circle 

and the contrast between the vigorous and non-strong setting of this steady is demonstrated 

tentatively.  

The paper is organized as follows: after this basic area, a depiction of the system follows along with a 

proposed numerical model and its boundaries. Next, linearization in a picked working point is 

introduced and the resultant exchange work is broke down. Further, controllers are designed for the 

unstable top situation of the turned around pendulum by the polynomial methodology and they are 

thought about by a few standards. Resultant execution and strength of the designed circle are 

examined and the commitment finishes up with a short rundown and some last comments. 

 

Reversed Pendulum 

 

The system comprises of a cart which can be moved along a metal conduct bar. An aluminum rod 

with a tube shaped weight is fixed to the cart by a pivot. This system is unstable and non-straight with 

one input and two outputs. The input signal is the control voltage of a DC motor which can change the 
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position of the cart. The outputs are cart position and point of the pendulum rod. The two outputs are 

estimated by gradual encoders. Design of the system is introduced in Figure 1. 

 
Figure 1: Design of Reversed pendulum 

 

Where: 1 – servo amplifier, 2 – motor, 3 – drive wheel, 4 – transmission belt, 5 – metal conduct bar, 6 

– cart, 7 – pendulum mass, 8 – steer roll, 9 – pendulum rod 

The system can be explained by the subsequent nonlinear differential equations (Amira, 2000): 

  FllF pp    sincos
2

   (1) 

0cossin   llC pp    (2) 

Where F denotes to the input signal, which is the force generated by the DC motor. Output signals are 

  cart position (   indicates cart velocity) and   pendulum angle (

signifies pendulum angular 

velocity). Representation


 is the gravity acceleration constant and F
denotes to constant of a speed 

corresponding fraction of the cart. All constants and denotations are apparently characterized in Table 

1. Following substitutes were utilized in the conditions (1) and (2): 
2lp 

       (3) 

pc  
        (4) 

Where c is the cart mass p  is the pendulum mass l is the distance among centre of gravity of the 

pendulum with the centre of rotation of the pendulum moreover 
 stand for the inertia moment of 

the pendulum rod through respect to the centre of gravity. Constant   in the table indicates the gain 

of the servo amplifier; as shown in Figure 1. 

All the employed constants were whichever taken from the manufacturer [10] or recognized by tests 

[11], [12] Their symbols and values are apparently characterized in the accompanying Table 1. 

 

Parameter Symbol Value & Unit 

cart mass 
c  

4.00 kg 

pendulum mass 
p  

0.37 kg 

total mass 
 

4.37 kg 

pendulum length l
 

0.425 m 

inertia moment 
 

0.08435 kg.m2 

cart grating 
F

 
6.55 kg/s 

pendulum grating C
 

0.00654 kg.m2/s 

velocity constant 
  

7.55N/V 
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Linearization 

 

For the function of successive controller replica, nonlinear differential equations (1) - (2) were 

linearized in the functioning point 
0

 (apex unstable point of the pendulum rod). Transfer 

function of the pendulum angle for this functioning point then: 

95.2764.18673.1

4386.0
)(

2

3 




ss

s

s
s

s
    (5) 

Characteristic of the transfer function: 

Derivative system (zero at 01  ) 

Unstable system (poles at 46.4,49.1,26.4 321  ppp ) 

Therefore, excluding the derivative actions, the system is unstable. 

Control system configuration 

The conventional feedback control designexhibited in figure. 2 was used for the control system 

design, 

 
Figure 2. Control system design 

 

where the employed variables match up to the following signals: — reference signal;   - control 

error;   —  control input;  , — disturbances; y  controlled output and )(ss , )(ss represent 

transfer functions of a controller and controlled system respectively; they are defined employed 

polynomials in the complex Laplace variable “ s ” as: 

s

s
s

s

s
s s

p

q
s




  )(,)(

      (6) 

Control system requirements were created as stability, asymptotic tracking of the reference signal, 

disturbance reduction, and Internal appropriateness of all the utilized parts of the control system. For 

the reference and disturbance signal from the group of step functions and presuming the subordinate 

exchange capacity of the controlled system as (5), these conditions will be satisfied if the 

accompanying equations hold: 

Stability of the control system is given by arespond of the Diophantine polynomial condition: 

)()()()()( ssqssps         (7) 

with )(s a stable attribute polynomial, 

Asymptotic tracking of the reference signal as well as disturbance reduction will be guaranteed if the 

controller denominator comprises twice integrator: 

)()( 2 spssp


         (8) 
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Internal appropriateness will be satisfied if all parts of the control circle are legitimate. Utilizing this 

condition and considering feasibility of (7) the accompanying method for the degrees of polynomials 

q  , p


and   must be satisfied: deg  

1)α( deg2)δ( deg 2-)α( deg)( deg ),α( deg)( deg  sssspssq


 (9) 

Afterward, the consequential controller takes the common form: 

 01

2

01

2

2

3

3)(
psps

qsqsqsq
ss 






     
(10) 

So as to calculate coefficients of this controller from (equation 7), the steady polynomial must be 

resolved. Here it is proposed to have it in this structure: 
2))(()(   Sss        (11) 

where 0  is a correction constant  and  )(s  is  a steady polynomial calculate from the 

polynomial of the controlled system )(s employing the spectral factorization technique (Grimble, 

1994): 

)()()()( ssss 


        (12) 

(The superscripted left-right arrow signifies multifaceted conjugate polynomial )()( sxsx 


and the 

effect of the factorization is a polynomial by way of the analogouscharacteristics as the original but 

steady) 

This decision of the properties of polynomial won't just assurance stability of the consequential 

control system yet additionally association with the initially method demeanor and it will leave space 

enough for additional conceivable correction too. 

 

Experiments 

 

Different experiments on the reversed pendulum were executed consecutively to verify the 

hypothetical ideas above. After the factorization (12) the steady properties polynomial (11) obtained 

this form: 
223 ))(9726321910()(   Sssss    (12) 

Then the consequential controllers are completelyresolute by the correction constant  which was 

selected to be 0.5; 2.5, 6.5 and 15 sequentially to contrast performance and sturdiness of the intended 

controllers. They are exhibitedasfollowing: 

At )5.0( 
)6.9(

8.152.6888.6085.103
)(

2

23






Ss

sss
sQ  

At )5.2( 
)6.13(

8.3972.16888.12085.183
)(

2
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
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

Ss
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At )5.6( 
)145(

7125103354132634
)(

2

23


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At )15( 
)390(

143402068091621179
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


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Ss
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Control results are introduced in the accompanying figure (Fig. 3) where both controlled yield and 

control input effects are demonstrated as well as, moreover in the Table 3 where examination by a few 

control value system is specified. During the control procedure, step disturbance of the amplitude - 
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0.08 [rad] impacted the controlled yield in the time )5.15,15(t  (15; 15.5) [s] so as to test sensitivity 

of the intendedloop to disturbances. 

 

 

 
Figure 3. Control retort 

The control quality was assessed with the help of following criteria: 

Integral Squared Error (ISE) 


tc

e dttJ
0

2 )(  

Integral Squared Control Input (ISCI) 


tc

u dttJ
0

2 )(  

Where i.e. is the overall time of control; 

][max N — Maximum control input for the disturbance reduction; 

  [rad] —maximum exceed of the controlled variable when satisfying the disturbance; 

][sts —Settling time (time when the controlled output enters the area   around the reference signal 

and stays within; 5.0  ). 

 

  eJ  uJ  ][max N    [rad] ][sts  

0.5 0.064 1935 21.8 0.24 3.0 

2.5 0.017 280 19.5 0.18 1.4 

6.5 0.008 420 15.2 0.09 0.9 

15 0.005 842 12.8 0.04 0.5 
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From the graphs unambiguously the control system is stable, the controlled variable tracks 

tangentially the reference signal, and the disturbance is reduced. It is furthermore evident that the 

control loop execution relies upon the correction boundary . The table uncovers that the higher 

estimation of this constant the quicker the control effect (analyze settling times st ) and better control 

feature communicated by the ISE measure (observe eJ in the table). Disturbance reduction is likewise 

influenced by the decision of this constant (observe  , max ). So as to concentrate in detail the 

impact of the correction boundary an  on the power of the intended loop the affectability work is 

utilized, characterized as: 

)(

)()(

s

sps



 
        (13) 

The climax achieve of its frequency retortspecified by the infinity norm H , is a superiordeterminant 

of the loop sturdiness, e.g. (Skogestad& Postlethwaite, 1996). Reliance of the H standard of the 

sensitivity function (13) upon the limitation  is represented in the following graph, Figure 4. 

 

Fig. 4. H Standard of the sensitivity function with   

The figure demonstrates that the initial setting of the controller  5.0  is non-robust with elevated 

sensitivity to disturbances, which is as well evident from the figure 3. Third situation, with  5.6

also shown significant robust then the earlier one, where the disturbance is reducedrapidly but with 

better control effort. Last situation, with  15 finally shown most significant robust then the third 

one, where the disturbance is reduced extremely speedily with excellent control effort as perceived in 

the Table by the index uJ . As a result it is all the timesensible to seek a practicaltransaction between 

strength of the intended loop and realisticconstraint on the control input and its alteration, particularly 

when cope withunstable methods. 

 

Conclusion 

 

In this experiment, control of the unstable nonlinear system of the reversed pendulum was introduced. 

The polynomial methodology was utilized with the controllers intended utilizing the pole-placement 

technique and the spectral factorization procedure. A few situation of the correction constant were 

introduced and consider regarding utilizing various standards incorporating likewise robustness 

perspectives with the assistance of the sensitivity function. The proposed arrangement demonstrates to 

an uncomplicated mechanism for a moderately privileged method of controlling unstable processes 

throughadequate space left for conceivable correction of the intended loop as for its execution and 
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robustness. Hence it tends to be used for stabilization and control of other unstable processes in a 

sturdy and safe manner. This will be the objective of our prospective assessment where moreover the 

confinement on the control data will be directed. 
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