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Abstract

In this paper, we study the controllability of certain evolution differential systems, sufficient conditions
ensuring the controllability of semilinear neutral evolution integro differential systems with nonlocal
initial conditions in a separable Banach space. The results are obtained by using Hausdorff measure of
noncompactness and a new calculation methods are employed for achieving the required results.
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1 INTRODUCTION

In science and engineering, many problems that are related to linear viscoelasticity, nonlinear elasticity
and Newtonian or non-Newtonian fluid mechanics have mathematical models. Popular models
essentially fall into two categories: the differential models and the integrodifferential models. A large
class of scientific and engineering problems is modelled by partial differential equations, integral
equations or coupled ordinary and partial differential equations which can be described as differential
equations in infinite dimensional spaces using semigroups. In general functional differential equations
or evolution equations serve as an abstract formulation of many partial integrodifferential equations
which arise in problems connected with heat-flow in materials with memory and many other physical
phenomena.

Controllability of linear and nonlinear systems represented by ordinary differential equations in
finite-dimensional spaces has been extensively investigated. The problem of controllability of linear
systems represented by differential equations in Banach spaces has been extensively studied by several
authors [10]. Several papers have appeared on finite dimensional controllability of linear systems [13]
and infinite dimensional systems in abstract spaces [9]. Of late the controllability of nonlinear systems
in finite-dimensional spaces is studeid by means of fixed point principles [1]. Several authors have
extended the concept of controllability to infinite-dimensional spaces by applying semigroup theory [8,
18, 23, 24]. Controllability of nonlinear systems with different types of nonlinearity has been studied by
many authors with the help of fixed point principles [2]. Naito [17] discussed the controllability of
nonlinear Volterra integrodifferential systems and in [15, 16] he studied the controllability of semilinear
systems whereas Yamamoto and Park [22] investigated the same problem for a parabolic equation with
a uniformly bounded nonlinear term.

2 PRELIMINARIES

Consider the class of sobolev-type semilinear neutral functional integrodifferential system with
nonlocal conditions of the form

% [Ex(t) — g(t, x(t))] = A(t)x(t) + Bu(t) + (2.1)
f(t,x(t),fot k(t,s,x(s))ds, foa h(t, s,x(s))ds),t € [0, b],
x(t)+qx)=¢) te[-r0] (2.2)

where the state variable x(-) takes values in a separable Banach space X with norm ||-|| and the
control function u(-) is givenin £2(I, U), a Banach space of admissible control functions with U asa
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Banach space the interval [ = [0,b]. E and B is a bounded linear operator from U into X and
A(t): D, € X — X generates an evolution system {U(t, s)}o<s<t<p ON the separable Banach space X.
The functions g:IXC—->X , fiIXCXXXX->X, kiIXIXC->X hIXIXC-X,
g:C(I,X) = X are given functions. Here C = C([—r,0],X) is the Banach space of all continuous
functions ¢: [—r,0] — X endowed with the norm || ¢ ll= sup{|¢(6)|: —r < 6 < 0}. Also for x €
C([-r,b],X) we have x, € C for t € [0,b],x,(0) = x(t + 8) for 8 € [—r,0]. The norm of the X
is denoted by |Iil.

Throughout this paper, {A(t):t € R} is a family of closed linear operators defined on a common
domain D which is dense in X and we assume that the linear non-autonomous system
u'(t) = A)u(t), s<t<hb,
u(s) =x€X, (2.3)
has associated evolution family of operators {U(t,s): 0 < s < t < b}. In the next definition, £L(X) is
a space of bounded linear operators from X into X endowed with the uniform convergence topology.

A family of operators {U(t,s):0 <s <t < b} c L(X) is called a evolution family of operators for
(2.3) if the following properties hold:
1. U(t,s)U(s,7) =U(t,t) and U(t,t)x = x,forevery s <7 <t andall x € X;
2. Foreach x € X, the function for (t,s) - U(t,s)x iscontinuous and U(t,s) € L(X)
forevery t > s and
3. For 0 <s <t <b, the function t = U(t,s), for (s,t] € L(X), is differentiable with
2U(t,s) = A(DU(L,s).
[19, 20] System (2.1) — (2.2) issaid to be controllable on the interval J, if for every initial functions
xo € X and x; € X, there exists a control u € L?(J,U) such that the solution x(-) of (2.1) — (2.2)
satisfies x(0) = x, and x(b) = x;.

A solution x(-) € C([0,b],X) is said to be a mild solution of (2.1) — (2.2), then the following
integral equation is satisfied.

x(t) = ET'U(t, 0)[Ep(0) — Eq(x) — g(0,%0)] + E~*g(t, )

+ [ ETIU(t s)Cu(s)ds + [, ET1U(t, $)A(s)g(s, x5)ds

+ fO‘ ETYU(E, $)f (s, %6, [y k(s,7,x)dr, [ h(s,T,x)dr)ds, tEl

x(t) +q(x) =¢(t) te[-r0]
We need the following fixed point theorem due to Schaefer [19]

Theorem 1. Let E be a normed linear space. Let F: E — E be a completely continuous operator, that
is, it is continuous and the image of any bounded set is contained in a compact setand let {(F) = {x €
E:x =AFx for some 0 < A< 1}. Theneither {(F) is unbounded or F has a fixed point.

To study the controllability problem, we assume the following hypotheses:

(H1). A(t) generates a strongly continuous semigroup of a family of evolution operators U(t, s)

and there exist constants M; > 0 such that
11Ut s) II< My, for 0<s<t<h,

(H2). There exists a positive constant 0 < by < b and, for each 0 < t < b, there is a compact
set V, © X such that U(t,$)f (s, x5, [, k(s,7,2)dx, [} h(s,T,x.)dr), U(t, )A(s)g(s, xs),
U(t,s)Bu(s) eV, andall 0 <t <s < b,.

(H3). The linear operator W: L?(I,U) - X defined by Wu = fob U(b,s)Cu(s)ds has an inverse
operator W =1 which takes values in L2(I,U)/kerW and there exists a positive constant M,
suchthat | CW™1 I< M,.

(H4). (a) The function g:1 x X — X is continuous for a.e. t € I and there exists a positive

constant My > 0,Ly, > 0 such that
Il g(t xe) I< Mg Il x¢ I, and 1l g(0,x0) II< Ly
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(b) Also there exists a constant M, > 0 such that, | A(t)g(t, x;) I< My |l x; |l, holds for t €
1
(H5). (a) For each t € I, the function k(t,s,.): C = X is continuous and, for each x € C, the
function k(.,.,x): 1 = X is strongly measurable.
(b) There exists an integrable function m,:I — [0, o) such that,
Il k(t,s,x) IS mp(®)Q(Il x II), holds for tel,xeC, where Q;:[0,0)—>
[0, ©0). is a continuous nondecreasing function.
(H6). (a) For each t € I, the function h(t,s,.): C — X is continuous and, for each x € C, the
function h(.,.,x):1 = X is strongly measurable.
(b) There exists an integrable function my:1 — [0, o) such that,
Il h(t, S, X) < mh(t)Qz(” X ");
holds for t €l,x € C, where Q,:[0,0) — [0,00). iS a continuous nondecreasing
function.
(H7). The function f:1 X C X X X X — X satisfies the Caratheddory conditions:
(@) For each t €I, the function f(t,.,.,.):C XX XX — X is continuous and, for each
(x,vy,z) € C x X x X, the function f(.,x,y,z):1 — X is strongly measurable.
(b) There exists an integrable function mg:I — [0, %) such that,
I f(tx,y,2) IS me@Qslx I+l y I 1 2 1D),
holds for tel,x € C, and y,z € X, where Q3:[0,00) — [0,00). IS a continuous
nondecreasing function.
(H8). The function g: C(I,X) — X is continuous and there exists a constant M, = 0 such that ||
q(x) I< Mg, for x € X
(H9). The following inequality holds: The function
ML) = max(1, My | E™1 I mp(£), mye(£), my(2), f, =my(t)ds, [y =-my(t)ds}
. g b 00 ds
satisfies [ m(s)ds < [, IO
where d=IE~1 Il My[ll EG(0) Il +Il EMg Il +Lg]
and
dy =M, WE™ I {llxy I+ E72 N [My + MyLg] + My | E71 Il MybK

+My 1 E7V I f) me()Qs[K + [ my (D)QEK)dT + [ my, (D)2 (K)dr])

3 CONTROLLABILITY RESULT

Theorem 3.1 If the hypotheses [H1] — [H9] are satisfied, then the system (2.1) —(2.2) is
controllable on 1.
Proof. Using the hypothese [H3] for an arbitrary function x(.), define the control

ut) =wx; —EU(b, 0)[E¢(0) — Eq(x) — g(0,x0)] — E~'g(b, xp)
— [ ET1U(b, )A(s)g (s, x5)ds
- fob E7YU(, $)f (s, %s, [y k(s,T,x:)dT, [y h(s,T,%.)d7)ds,](t) (3.1)
For ¢ € C, define ¢ € C,, C, = C([-7,b],X) by
B(t) = {qb(t) —qx), -—r<t<y,
E~1U(t,0)[E¢(0) — Eq(x)] 0 <t <b.
If x(t) = y(t) + P(t), t € [-r,b], itis easy to see that y satisfied
Yo=10
t

y() =E~g(t,y: + ) — EU(t,0)9(0, do) + fo ETMU(t, $)A()g(s, ys + Ps)ds

t
+f0 E7TU(t,m)CW " [x, — E7TU(b, 0)[Eh(0) — Eq(x) — g(0, $o)]
—E~'g(b,yp + bp) — fob E7'U(b, $)A(S)g (s, ys + $s)ds 3.2)
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b _ ~ ~
—J, ETYUMB, ) (5,5 + Ps, [ k(5,770 + d)dr, [, h(s, T,y +
I t _ ~ ~
¢ )dryds, 1(mdn + [ ETXUE, (5,55 + bs, f; k(s, 7.3 + d)dr, [ h(s, T,y +

¢,)dr)ds, tEl.
if and only if x satisfies
x(t) = ET'U(t,0)[Ep(0) — Eq(x)] + E~'g(t, x,) — ETU(t,0)g(0, %)

+ [ ETIU(t, $)A(s)g (s, x5)ds

+ Jy ETLU(EmCW ™ [x; — ETU(b, 0)[E$(0) — Eq(x) — g(0,%0)]
~E"g(b,x) = Jy EMU(b,9)A()g (s, x)ds

— fob E7XU(b, $)f (5, %s, [y k(s,T,x0)dr, [} h(s, T, x)dT)ds, | (n)dn
+ [ ETNU S)f (s, x5, ) k(s,T,x)de, [y h(s,T,x,)dT)ds, tEL

and x(t) = ¢(t) —q(x), te][-r0].
Define C{ = {y € C,:y, = 0} and we now show that when using the control, the operator

F:C - ¢p, defined by
(Fy)(t) =0, t €[-r0]
t

(Fy)(t) = E7'g(t,y: + ) — ET*U(t,0)9(0, do) + fo E~U(t, )A(S)g(s, s + bs)ds

+ [ EWUmCW " [x, — ET'U(b, 0)[E$(0) — Eq(x) — g(0, $o)]
~E7g(b,yp + $p) — [y ET U, $)AS)g(s,ys + bs)ds
= Jy ETUG,)f (5,95 + b fy k(s 1.y + $Odr, [} hs e +
d)dr)ds, 1mdn + [; ETUS)F(S, Y5 + s [y k(s,T,30 +
$odr, [y h(s,t,y: + d)dr)ds, tel

has a fixed point. This fixed point point is then a solution of equation (3.2).

Clearly x(b) = x; which means that the control u steers the system (2.1) — (2.2) from the intial
function ¢ to x, intime b, provided we can obtain a fixed point of the nonlinear operator F.

In order to study the controllability problem of (2.1) — (2.2), we introduce a parameter A € (0,1) and
consider the following system

L IEx(t) - g(t,x(®))] = AA(D)x(E) + ABu(t) + (3.3)
Af(t,x(t),fot k(t,s,x(s))ds, foa h(t,s,x(s))ds) t€[0,b],
x(t)+q(x) =A¢p(t) te][-10] (3.9

First we obtain a priori boounds for the mild solution of the equation (3.3) — (3.4). Then from
x(t) = AET1U(t,0)[Ed(0) — Eq(x)] + AE"1g(t,x;) — AE~1U(t,0)g(0, xo)
+1 fot E~YU(t,s)A(s)g(s, xs)ds
+2 [y ETHUEm)CW T [xy — ETIU (B, 0)[E$(0) — Eq(x) — g(0,%,)]
—E"1g(b,x}) — fob E71U(b,s)A(s)g(s, xs)ds
—fob E7YU(b,s)f (s, xs, fos k(s,t,x.)dr, foa h(s,T,x;)dt)ds,](n)dn
+2 fot E7YU(t, $)f (5, %, [y k(s,T,x.)dx, f; h(s,7,x)dr)ds, te€l

we have
Il x(t) I<I ETLU(t, 0)[E¢(0) — Eq()] | +1 E7Yg(t, x:) | +1 ET1U(t,0)g(0,x) |l

+Jy WETHU(t, $)A(s)g(s,%s) Il ds
+ [ 1 ETTU(E )W x, — ETLU(h, 0)[E(0) — Eq(x) — g(0,%0)]
~E~Yg(b,xp) — [ ETU(b,5)A(s)g(s, x5)ds
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_fob E7IU(b, s)f (s, xs, f; k(s,t,x;)dr, foa h(s, 7, x,)dz)ds, |(n) || dn
+ [N ETIUC )f (5, [ (s, T, x0)dr, [ h(s,T,2,)d7) Il ds

I x(6) < E™2 1l My[ll $(0) Il +My + M|+l E™1 1 MK + My 1 E71 Il [ My 1l xg Il ds +
M;bdy + My WE™ I [T My(5)Qs[ll x + [ My () (Il x ) +
3 Mp (@0 (1l x dr]ds

Let us take the right hand side of the above inequality as w(t). Then we have x(0) = u(0) = d, and
Il xt) I< u(t), with

p(e) =M I E7XMy Il I4My | E72 1 Mp(s) Qa1 x 1l + fot M (s)Q. (Il x INds +
Jy Mn()2 (1l x 1)ds]
< dyu(6) + My | E™1 N Mp(S)Qs[(t) + [ Mic(5)Qy (u(s))dls

+Jy Mp()Q (u())ds]
where d; = My || E™1 || My. Since p is obviously increasing, let

w(t) = u(t) + fy Mi()Q (u())ds + f; My(s)Q,(u(s))ds
Then w(0) = u(0) = ¢ and u(t) < w(t)

to
W(£) = 1/ (£) + M(DQ (D) + My (D2 (u(D)) + fo = My ()% (u(s))ds
+ 5 2 My ()0 (u(s))ds
S w(e) + My | ET I Mp(©)Qs WD) + i = Mi(5) (u(s))ds

+ [y 2 My ()9 (u(s))ds
< A{w(E) + Qz(w(D)) + 203 W(D)) + 20, (W (1))}
This implies

w(t) ds b 0 ds
j < j m(s)ds < f :
weoy S +Q3(s) +2Q,(s) +2Q,(s) = Jo a S+ Q3(s) +2Q,(s) + 20,(s)

This inequality that there is a priori bound K > 0 such that w(t) < K and hence u(t) <K, te€
[0, b]. Since [l x(t) IS K, t €I, we have

lxlli=sup{llx(@®) l:=r<t<bl<K
where K depending only on b and the functions M¢(.), My (.), Mp(.), Q1 (.), Q2(.), Q3(.)

Next we must prove that the operator F is a completely continuous operator. Let B, = {y € Cp: |l
y I1< K} forsome K > 1.

We first show that the set {Fy:y € B;} isequicontinuous. Let y € B, and t;,t, € [0,b]. Thenif 0 <
t1 <t <b,

I Fy)(t) = (Fy)(E) I R R
SIETY M g(ts, ye, + be,) — gt ye, + de,) | H1E71 NN U(ty, 0) = U(t2,0) Nl g(0, o) |

1 fyt ETH Ut 5) = Utz $)AS)G(S,Ys + s | +1 ;2 ET1U(t,, 5)A(S)g (5,55 +
$s)ds |l
HI f3 ETMU(ts,m) — Ut mICW ™ [x, — 71U (b, 0)[Eh(0) — Eq(x) — g(0, $o)]
~E (b, vy, + $p) — [} ET1U(D,)A(S)g(s,ys + Bs)ds
— [ ETUDb,)f (5,5 + B, [3 k(ST Y0 + G, 3} h(s,7,y; + bo)dr)ds, (e |
1 J,2 E7U(t, m)CW ™ [y — E7MU(b, 0)[E$(0) — Eq(x) — g(0, bo)]
~E (b, vy + $p) — [ ET1U(D,)A(S)g(s,ys + Ps)ds
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=[] ETNUGB, (5,5 + b [y k(ST + Bz, [ h(s,T,5; + $r)dr)ds, | (n)dn |
I fy" EHUCE,8) = Ut f (5,5 + b fy k(5,1 + Godr, [ h(s, e +
$.)dr)ds ||
2 ET U, 9)f (5,55 + B, Jy k(5,130 + $dr, [ (s, 7,y + $dn)ds |
<IETH I gty ye, + bey) — 92 ye, + be,) I+ ETH NI U(ty, 0) — U(t, 0) NIl g(0, o) |
+ Iyt WETH I [U(t,€) = Ultz, OIU(E,)A)g (s, 35 + B) Il ds + (02 = )My |
E~1 || MK’
+ fo“ Il EZY I [U(ty, €) — U(ty, €)]U(e,n)CW " [x; — E7U(b, 0)[E¢(0) — Eq(x) —
g(0, 950)]
—E2g(b,yy + Bp) — Jy ETUb, $)A()g (s, ys + bo)ds
— [L ETNUD, ) (5, ys + B, [3 k(5,7 v, + B)dT, [ h(s, Ty, + $r)do)ds, 1(n) I d
+(ty — t1) 1 E71 I MyMy[xy Il E71 Il MyMy+1 E1 | MgK' + Myb | E™1 || MK’
+Myb | E71 I Mp(£)(K' + bMyK' + bMyK'), |
HI fy* ETHU(ts, 5) = Ut OIF (s, s + b, Jy k(5,7 y: + o)dr, [y h(s, Ty, +
$o)dr)ds |l
+(ty — ty) | E72 Il MyMp(6)(K' + bMK' + bM,K")
where K’ = K+ ¢ |I. The right hand side is independent of y € B, and tends to zeroas t, — t; — 0,
since by the assumption (H2) implies the continuity in the uniform operator topology.

Thus the set {Fy;y € Bk} is equicontinuous.

Notice that we considered here only the case 0 < t; < t,, since the other cases t; <t, <0 or t; <
0 < t, are very simple.

It is easy to see that the family FBy is uniformly bounded. Next we show that F By is compact. Since
we have shown that FBy is an equicontinuous collection, it suffices, by the Arzela-Ascoli theorem, to
show that F maps By into a precompact set in X.

Let 0 <t < b be fixed and € a real number satisfying 0 < € < t. For y € By, we define
te

(Fy)(©) = Eg(t, . + Be) — EU(,0)g (0, o) + fo E-MU(t, $)A(s)g(5, ys + $s)ds
+ 1€ B0, mCW ™ [xy — ETLU (b, 0)[Ep(0) — Eq(x) — g(0, Bo)]
~E~g(b,yp + $p) = [y ETU(b,$)A()g(s, Y5 + bs)ds

— [ ETUb, $)f (5,95 + Bs, [ ks, T,y + o)d, [ h(s, Ty, +
$)d)ds, 1(dn + [, ETIU $)f (5,95 + bs, [ k(5,70 + do)dr,
Iy h(s, T,y + $o)dr)ds,

Now, by the assumption (H2), theset Y.(t) = {(F.y)(t):y € By} isprecom pactin X forevery e,
0 < € < t. Moreover for every y € By we have

I (Fy) () = (Fy)(®) |
< [ WET'U(E A g, vs + ) Il ds
+ [ WETTUEmCW ™ [x, — ETTU(b, 0)[E¢p(0) — Eq(x) — g(0, $o)]
—E7g(b,yy + $p) = [, ET'U(b,S)A(S)g(s, Y5 + bs)ds
— [ ETNUGb, )f (5,95 + B, [ k(5,70 + $)dr, [ h(s, Ty, +
$o)dr)ds, 1) I dn + [ N ET U $)f(s,vs + bs, [y k(5,750 + do)dz,

a
f h(s,T,y, + ¢.)dr) Il ds
0
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Therefore,
I (Fy)(®) — (Fey)(®) 1= 0
as € = 0, and there are precompact sets arbitrarily colse to the set {(Fy)(t):y € Bg}. Hence the set
{(Fy)(t):y € By} is precompact in X.
It remains to be shown that F: ¢ — C? is continuous. Let {y, IIF< ¢2 with y, -y in CP.
Then there is an integer K such that || y,,(¢t) IS K forall n and t € I, so y,, € B and y € Bk. By

(H4), (H7), g(t,y,(t) + ¢,) = g(t,y(t) + ¢,) for each t €1 and since |l g(t,y,(t) + ¢¢) —
gty (@) + ¢ IS 2MyK', A()g(t, y(t) + dr) » A(D)g(t, y(t) + ¢,) for each t € I and since |

ALY () + G0 — A G YE) + G) IS 2MK',  and  f(t,yn(6) + by, [ k(t,5, Yn(s) +
Bs)ds, i h(t,5,ya(s) + 5)ds) = f(t,y(t) + e, [, k(t,5,¥(5) + ds)ds, [ h(t,s,y(s) + $5)ds)
for each t €1 and since Il f(¢t,y,(t) + P, fot k(t,s, y,(s) + ¢s)ds, foa h(t,s, y,(s) + ps)ds) —

FEY(®) + e, [ k(t,5,9(5) + do)ds, [} h(t,s,y(s) + )ds) IS 2 (), K' =K+I d 1, we
have, by dominated convergence theorem,
I Fy)(®) = EV)(@) I X X
= supees | E7Hg(t, yn () + $0) — g (6, y(O) + $¢)]
+ fot E7MU(t $)[A(S)9(,yn(s) + ds) — A(S)g (s, ¥(5) + 5)]ds
+ fot ETUMCW T =E~ g (b, yu(b) + ¢p) — g(b, y(b) + bp)]

- fob E7TU(b, $)[A(S)g(s, yn(s) + bs) — A($)g(5,¥(5) + $s)]ds

—Jy EUB,F (S yn(8) + B, fy k(5,7,30(0) + Bo)dz, i1 h(s, 7,9 (2) + r)dr)

~f(s,(5) + bs, [y k(s,7,y(@) + $)d, [ h(s,7,y(x) + $)dD)]ds,](m)dn

+ 5 ETIU( ) (5,90 (8) + bs [ k(5,7 9(T) + $)d, [ h(s, T, ¥ (D) + br)dr)

—f(s,3(5) + b5, Jy k(s,7,y(0) + $)dr, [ h(s, 7, y(x) + $r)dr)]ds I
<IE™* I [g(t, yu(®) + &) — g(t,y(8) + ] |

+My [ 1 E71 I [A(S)g (s, yn(s) + s) — A($)g (s, ¥ () + bs)]ds

MMy [y WETS 1[I E™ I [g (B, ¥ (B) + ) — g (b, y(B) + $p)] |
+M; [ N E I TAGS)G (S yn(s) + Bs) — A(S)g (s, ¥(s) + $o)] Il ds

My ) WETH I IF (S Yn(S) + s, fi k(ST 9 (D) + $o)dT, [y h(s, T,y (D) + Br)d)

~f(5,5() + s, fy k(s,7,y(@) + $)dz, [ h(s,7,y(2) + $:)d)] Il ds](m)dn

+My [y WE I IF (S, 9 (5) + s, fiy k(5. T,90(0) + BT, [ h(s,T,30(2) + $)dT)

~f(5,¥(5) + s, fy k(5,7 y(0) + $)dz, [ h(s, 7, y(@) + )do)] Il ds
-0 as n-oo
Thus F is continuous. This completes the proof that F is completely continuous.

Finally the set {(F) = {y € C2:y = AFy, A € (0,1)} is bounded, since for every solution y
in ¢(F), the function x = y + ¢ is a mild solution of (3.3) — (3.4) for which we have proved that ||
x l;< K and hence

Iy <K+l @Il
Consequently, by Schaefer’s theorem, the operator F has a fixed point in CP. This means that any
fixed point of F is a mild solution of (2.1) — (2.2) on I satisfying (Fx)(t) = x(t). Thus the system
(2.1) — (2.2) is controllable on 1.
Consider the Banach space Z = C(J, X) with norm
Il x II= sup{|x(t)|:t € J}.
We shall show that when using the control u(t), the operator W: Z — Z defined by
(Wx)(t) = U(t,0)g(x) + fot U(t,s)f (s, x(s))ds
+ fot U(t,s)BW ™ [x; — U(b,0)g(x) — fob U(b,s)f (s, x(1))dt](s)ds
has a fixed point x(-). This fixed point is a mild solution of the system (2.1) — (2.2) and this implies
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that the system is controllable on J.
Next consider the operators vy, vy, v3:C(J,X) = C(J,X) defined by

(v12)(®) = U, 0)g (),
@2)(®) = fy V() (s, %())ds,
@s)(®) = fy U(E$)BW g = U(h, 0)g () = [y U(h, D)f (7, 2()dr](5)ds.

Lemma 3.1 Assume that (H1) and (H3) are satisfied and aset Y c C(J, X) is bounded. Then
wb(v,Y) < 2bN,B(f([0,b] X Y)), for t€].
Proof: Fix t € ] and denote
Q = f([0,t] xY),

qt(e) = sup{ll (U(ty,s) —U(t,s))q:0<s<t;<t, <t t,—t; <€ q€Q}
At the beginning, we show that
Jlim g*(€) < 2N B(Q). (3.5)
Suppose contrary. Then there exists a number d such that
El_i)r51+qt(e) >d > 2N, B(Q). (3.6)
Fix 6§ > 0 such that
El_i)r51+qt(e) >d+6>d>2N;(BQ) + 9). (3.7)
Condition (3.8) yields that there exist sequences {t,,},{t1,},{sn} €/ and {g,} c Q such that
ton >t tyn—>t, s, — s and
Il (U(t2Sn) — U(t1,n Sn))qn 11> d. (3.8)
Let the points zy,2,...,2; € X besuchthat Q ¢ U, B(z;, B(Q) + &). Then there exists a point z;
and a subsequence {q,} such that {g,,} € B(z;, 5(Q) + ) thatis,
Il zi —qn IS B(Q) +6, for n=12,..
Further we obtain
" U(tz,n' Sn)CIn - U(tl,n' Sn)CIn "
S" U(tz,n' Sn)CIn - U(tl,n' Sn)Zj ” +" U(tz,n' Sn)Zj - U(tl,nl Sn)Zj ”
SNyl gn—2z I +N1 1z — g || I U(tyn Sn)Zj —U(tyn Sn)zj I
< 2N (B(Q) + &)+ U(tzn Sn)zj — U(tyn, Sn)z .
Letting n — oo and using the properties of the evolution system {U(t,s)} we get
limsupn—mo Il U(tz,n: Sn)CIn - U(tl,n' Sn)Qn I< 2Nl (.B(Q) + 6)-
This contradicts (3.7) and (3.8).
Now fix € > 0 and t;, t, € [0,t] suchthat 0 <t, —t; < €. Applying (H3), we get
Il (v2x)(t2) — (thzX)tl I

< J 1 I (U(ty,s) —U(ty,8))f(s,x(s)) Il ds +f 2 Il Uty s)f(s,x(s)) Il ds
0 21

+ fot Il (U(ty,s) —U(ty,9))f(s,x(s)) Il ds + eNysup{ll f(s,x(s)) l:x € Y}.
Hence we derive the following inequality
wt(vY,e) < sup{ fot Il (U(ty,s) —U(ty,8))f(s,x(s)) llds:ty,t, €[0,t], 0<t, —t; <,
x €Y} + eNysup{ll f(s,x(s)) l:x € Y}.
Letting € — 0 +, we get the result.

t

Lemma 3.2 Assume that the assumptions (H1), (H4) are satisfied andaset Y c C(J, X) is bounded.
Then

w5 (1Y) < 2No(D)B(g(Y)), for te].
The simple proof is omitted.

Lemma 3.3 Assume that the assumptions (H1) — (H4) are satisfied and a set Y c C(J,X) is
bounded. Then

wg(v3Y) < 2bN, Ky (Il %1 1| +NoB(g(YV)) + DN B(F(Q))),  for t€].
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Proof: As in the Lemmas 3.1 and 3.2, also fix € > 0 and t;, t, € [0,t], 0 < t, —t; < €. Applying
(H3) and (H4), we get
Il (vax)(tz) — (vax)(t1) |l
< fo“ Il (U(ty,s) — U(ty,s))BW 2 x, — U(b,0)g(x) — fo” U(b,7)f (t,x(v))dr] Il ds
+ftt12 | U(ty,s))BW™[x; — U(b,0)g(x) — fob U, t)f (t,x(1))dt] Il ds

ty

<Kyt Uk, 8) = Ut s) [Il i+ 1UB,0gE I+ [ 1
U(b,0)f (r,x(x))dr II] ds + €Ky Ny [Il x1 | +Nosup{ll g(x) ll: x € Y} + Nysup(ll
£(s,x(s)) ll:x € Y}].

Hence we derive the following inequality
ty

w§(vsY) < Sup{Klf 11Utz ) = U, s) N [Ix Il + 11U, 0)g(x) |
0

+f0b Il U, t)f(z,x(T))dt ll]ds: ty,t, €[0,b], 0<t, —t; <€,x €Y}
+ €K Ny[ll x1 I +Ngsup{ll g(x) ll: x € Y} + Nysup{ll f(s,x(s)) ll: x € Y}].
Letting € = 0 +, we get

w§(v3Y) < 2bN; K1 (Il X1 | +NoB(g(Y)) + bN;B(f(Q))).
Hence the proof.

Then we calculate our main result as follows:

Theorem 3.1 If the Banach space X is separable under the assumptions (H1) — (H4), then system
(2.1) — (2.2) is controllable on J
Proof. Consider the operator P defined by

t
Px)(t) =U(t,0)g(x) +f0 U(t,s)f(s,x(s))ds

+f0t U(t,s)BW ™ 1[x; — U(b,0)g(x) — fob U(b,s)f (s, x(1))dz](s)ds.
For an arbitrary x € ¢(J,X) and t € J, we get

t
I @)@ 1< Ny | gC0) Il +N, f I F(s,x(s)) Il ds
0

+N1 Ky fot [y I +Ng I g(x) II +N; fO” Il f(z,x(7)) Il dr]ds

< (1+bNyK)[No Il gGo) I +Ny [ 11 £ (5, x(2) | de] + bN; Ky 1l xq Il
From the above estimate and assumption (H5) we infer that there exists a constant » > 0 such that the
operator P transforms closed ball B into itself.

Now we prove that the operator % is continuous on B(6,r).

Let us fix x € B(0,r) and take an arbitrary sequence {x,} € B(0,r) such that x,, = x in C(J, X).
Next we have

t
Il Pxn —Pxll< No Il g(xp) —g(x) ll +N1f I f(s,xn(s)) = f(s,x(s)) Il ds
0

+ Ky Jy 1UCES) I [No I gCea) = g I
Ny [y I f (@ xa(D) = f(,x(D)) || drlds

b
< (L4 DN KD [No 1 gCxn) —g () I + Ny Jy 1 f (7, 20(D) = f (7, (D) Il dr].
Applying Lebesgue dominated convergence theorem, we derive that 2 is continuous on B(8, ).

Now we consider the sequence of sets {Q,} defined by induction as follows:
Qy, =B(0,1), Qi1 = Conv(PQy,), for n=12,....
This sequence is decreasing, that is, Q, 2 Q,,4, for n=1.2,...
Further let us put
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vn(t) = B(Qa ([0, 2])),
wy(t) = w(t)(n-n)-
Observe that each of the functions v, (t) and w,(t) is nondecreasing, while sequences {v, (t)} and
{wy,(t)} are non-increasing at any fixed t € J. Put

Voo (t) = lim v, (1),
We () = lim W:Eto)o, for te].
Using Lemmas 2.2, 3.2 and (H4), we obtain .
B 10, ([0,t]) < w5 (v1Q,) + SUpf (v10(5))

< 2No (OB (g () + supNo ($)B(9(2n))

< 3No (0B (g(2y))
< 3mgNo (t)B (2, ([0, D]))
= 3mgy Ny (t) v, (b),
that is,
B w10, ([0,t])) < 3myNo (t) vy (D). (3.9)
Moreover
B(20,([0,¢])) < w§(v2Qy) + i‘i?ﬂ(vzﬂn(s))

< 2bN; (OB (f([0, ] x Q) + Ssg?ﬁ(fos U(s, Df (z, Qn(r))dr)
< 2mgbN1 (OB (Qn ([0, £])) + SSEENl(t) Jy BU (0, Qn()))dz

< 2mpbNy (v (t) + meNy(8) [ va()dr
and
B(w30,([0,¢])) < w§(v3Qy,) + Ssliltoﬁ (v3Q2,(5))

< 2bN, (K, (I *1 Il +NoB(g(Qy)) + DN, S(f(Q))) ,
+ Sslil?ﬁ{fo U(t,s)BW =[xy = U(b,0)g(Q) — [; U, D)f (7, Qn(1))d7](s)ds}

< 2bNy (O (I x1 I +No (D) (9 () + bNL (OB ([0, 1] X 2)))}
+supbNy ($)K1{ll x1 | +Nof(g(Qn)) + N1 (1) fy B(f (z, 2 (7)))dT}

S<t

< 3bN1 ()K1 (Il x4 I +mgNo () vy (b)) + bmy Ny () K1 (2bNy () v (8) + Ny fot
v, (7)dT).
Linking this estimate with (3.9), we obtain
Vni1 () = B(Qn41([0,t]))
= B(PQ,([0,]))
< B ([0, t])) + B2, ([0, t]) + B (w3 ([0, ]))
< 3mgNo(t)vy (b) + 2meb Ny (D) v, (t) + mp Ny (t) fot v (7)dt
+ 3bN; (K1 (Il x4 II +mgNo (t) v (b))
+bme Ny (£)Ky (2N (v (8) + Ny [} va(2)d).
Letting n — oo, we get

t
Voo (£) < 3myNo(t) Vo (b) + 2meb Ny (t) Voo (t) + mle(t)f Voo (T)dT
0

+ bmy Ny (0)Ky (2N () Vo (8) + Ny [ Voo (2)dT)
+3bmg Ny (t)N; (t) K1 Ve (D).
Hence putting t = b, we get in view of (H6)
V(D) = 0. (3.10)
Furthermore, applying Lemmas 3.1, 3.2, 3.3, we have
Wy (t) = w(t)(ﬂn+1)
= w(t)(?ﬂn)
< (‘)6 (vlﬂn) + wg(vzﬂn) + wg(v3ﬂn)
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< 2mgNovn (b) + 2mebN vn (t) + 2bN1 Ky (Il x1 I +NoS(g(Y)) + bN1S(f(Q)))
< 2mgNovy(b) + 2mebN vy (t) + 2bN, Ky (Il x4 1| +mgNovy (b) + bmg Ny vy (t))
< (2 + bN;K;)[mgNovy, (b) + msbNy v, (1)].
Letting n — oo, we get
Weo (1) < (2 + bN;1 K1) [mgNoVeo (b) + mebN; v (1)].

Putting t = b and applying (3.10), we conclude that w,,(b) = 0. This fact together with (3.10)
implies that lim,,_,.x(Q,) = 0. Hence, in view of the Remark 2.1, we deduce that the set Q. =
Ny=o Q, is nonempty, compact and convex. Finally. linking the above obtained facts concerning the
set Q. and the operator P: Q. — Q. and using the classical Schauder fixed point theorem, we infer
that the operator P has at least one fixed point x in the set Q.. Obviously the function x = x(t) isa
mild solution of (2.1) — (2.2) satisfying x(b) = x;. Hence the given system is controllable on J.

Remark 3.1 Let us consider the case when the mapping g is given by g(x) = Y-, d;x(t;),
where 0 <t; <t, < <t,<b, dy,d,,..,d, are given constants. For a bounded set Y c C(J, X)
we get

Bg(V)) < Xizq 1diIB(Y (8) < Xizy |dilBYU)).
Bg(V)) < Xty 1diIBY (£) < Eiy |di|-5tlg’ﬂ(y(t))-

These inequalities imply that the constant m, from assumption (H4) satisfies the following estimate
mg < Xizq ldil.
Now let us consider the case, when the mapping g is given in the form g(x) = fob h(t, x(t) )dt,where

the mapping h:J X X — X satisfies the Carathéodory condition, and moreover S (h(t,W)) < m(t)f (W)
hold, fora.e. t € J and W c X, where the function m:J — R + is integrable.
Then, for a bounded set Y < C(J, X), we have

Bg()) < BU, h(t,Y(®)d) < [ mBBY ()dt < [] m(). supp(¥ (6))de
and therefore the constant m, from (H4) satisfies the estimate

my < fob m(t).

Similarly
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