

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3395

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

A Scalable File Shared Desk Architecture for Large Cluster Computing

Dr. R. Suneetha Rani1, G Venkata Sai Sankar2
1 Associate Professor, Department of Computer Science and Engineering, QIS College of Engineering

& Technology, Ongole, Andhra Pradesh
2 M.Tech Scholar, Department of Computer Science and Engineering, QIS College of Engineering &

Technology, Ongole, Andhra Pradesh

Abstract

Today’s data centers may contain tens of thousands of computers with significant aggregate bandwidth

requirements. The network architecture typically consists of a tree of routing and switching elements with

progressively more specialized and expensive equipment moving up the network hierarchy. Unfortunately, even

when deploying the highest-end IP switches/routers, resulting topologies may only support 50% of the aggregate

bandwidth available at the edge of the network, while still incurring tremendous cost. Non- uniform bandwidth

among data center nodes complicates application design and limits overall system performance. In this paper,

we show how to leverage largely commodity Ethernet switches to support the full aggregate bandwidth of

clusters consisting of tens of thousands of elements. Similar to how clusters of commodity computers have

largely replaced more specialized SMPs and MPPs, we argue that appropriately architected and inter- connected

commodity switches may deliver more performance at less cost than available from today’s higher-end

solutions. Our approach requires no modifications to the end host network interface, operating system, or

applications; critically, it is fully backward compatible with Ethernet, IP, and TCP.

Keywords: Data center topology, equal-cost routing

INTRODUCTION

Growing expertise with clusters of commodity PCs have enabled a number of institutions to harness

petaflops of computation power and petabytes of storage in a cost-efficient manner. Clusters consisting

of tens of thousands of PCs are not unheard of in the largest institutions and thousand-node clusters are

increasingly common in universities, research labs, and companies. Important applications classes

include scientific computing, financial analysis, data analysis and warehousing, and large-scale

network services.

Today, the principle bottleneck in large-scale clusters is often inter-node communication bandwidth.

Many applications must ex- change information with remote nodes to proceed with their local

computation. For example, Map Reduce [12] must perform significant data shuffling to transport the

output of its map phase before proceeding with its reduce phase. Applications running on cluster-

based file systems [13, 16] often require remote-node access before proceeding with their I/O

operations. A query to a web search engine often requires parallel communication with every node in

the cluster hosting the inverted index to return the most relevant results [7]. Even between logically

distinct clusters, there are often significant communication requirements, e.g., when up- dating the

inverted index for individual clusters performing search from the site responsible for building the

index. Internet services increasingly employ service oriented architectures [13], where the retrieval of a

single web page can require coordination and communication with literally hundreds of individual sub-

services running on remote nodes. Finally, the significant communication requirements of parallel

scientific applications are well known [7, 8].

There are two high-level choices for building the communication fabric for large-scale clusters. One

option leverages specialized hardware and communication protocols, such as InfiniBand [2] or Myrinet

[6]. While these solutions can scale to clusters of thou- sands of nodes with high bandwidth, they do

not leverage commodity parts (and are hence more expensive) and are not natively compatible with

TCP/IP applications. The second choice lever- ages commodity Ethernet switches and routers to

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3396

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

interconnect cluster machines. This approach supports a familiar management infrastructure along with

unmodified applications, operating systems, and hardware. Unfortunately, aggregate cluster bandwidth

scales poorly with cluster size, and achieving the highest levels of band- width incurs non-linear cost

increases with cluster size. For compatibility and cost reasons, most cluster communication systems

follow the second approach.

However, communication bandwidth in large clusters may become oversubscribed by a significant

factor depending on the communication patterns. That is, two nodes connected to the same physical

switch may be able to communicate at full bandwidth (e.g., 1Gbps) but moving between switches,

potentially across multiple levels in a hierarchy, may limit available bandwidth severely. Addressing

these bottlenecks requires non-commodity solutions, e.g., large 10Gbps switches and routers. Further,

typical single path routing along trees of interconnected switches means that overall cluster bandwidth

is limited by the bandwidth available at the root of the communication hierarchy. Even as we are at a

transition point where 10Gbps technology is becoming cost-competitive, the largest 10Gbps switches

still incur significant cost and still limit overall available bandwidth for the largest clusters. In this

context, the goal of this paper is to design a data center communication architecture that meets the

following goals:

Scalable interconnection bandwidth: it should be possible for an arbitrary host in the data center to

communicate with any other host in the network at the full bandwidth of its local network interface.

Economies of scale: just as commodity personal computers became the basis for large-scale

computing environments, we hope to leverage the same economies of scale to make cheap off-the-shelf

Ethernet switches the basis for large- scale data center networks.

Backward compatibility: the entire system should be back- ward compatible with hosts running

Ethernet and IP. That is, existing data centers, which almost universally leverage com- modify Ethernet

and run IP, should be able to take advantage of the new interconnect architecture with no

modifications.

We show that by interconnecting commodity switches in a fat- tree architecture, we can achieve the

full bisection bandwidth of clusters consisting of tens of thousands of nodes. Specifically, one instance

of our architecture employs 48-port Ethernet switches capable of providing full bandwidth to up

27,648 hosts. By leveraging strictly commodity switches, we achieve lower cost than existing solutions

while simultaneously delivering more bandwidth. Our solution requires no changes to end hosts, is

fully TCP/IP compatible, and imposes only moderate modifications to the forwarding functions of the

switches themselves. We also expect that our approach will be the only way to deliver full bandwidth

for large clusters once 10 Gage switches become commodity at the edge, given the current lack of any

higher-speed Ethernet alternatives (at any cost). Even when higher-speed Ethernet solutions become

available, they will initially have small port densities at significant cost.

BACKGROUND

Current Data Center Network Topologies

We conducted a study to determine the current best practices for data center communication networks.

We focus here on commodity designs leveraging Ethernet and IP; we discuss the relationship of our

work to alternative technologies in Section 7.

Topology

Typical architectures today consist of either two- or three-level trees of switches or routers. A three-

tiered design (see Figure 1) has a core tier in the root of the tree, an aggregation tier in the middle and

an edge tier at the leaves of the tree. A two-tiered design has only the core and the edge tiers.

Typically, a two-tiered design can support between 5K to 8K hosts. Since we target approximately

25,000 hosts, we restrict our attention to the three-tier design.

•

•

•

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3397

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Switches1 at the leaves of the tree have some number of Gage ports (48–288) as well as some number

of 10 Gage uplinks to one or more layers of network elements that aggregate and transfer packets

between the leaf switches. In the higher levels of the hierarchy there are switches with 10 Gage ports

(typically 32–128) and significant switching capacity to aggregate traffic between the edges. We

assume the use of two types of switches, which represent the current high-end in both port density and

bandwidth. The first, used at the edge of the tree, is a 48-port Gage switch, with four 10 Gage uplinks.

For higher levels of a communication hierarchy, we consider 128-port 10 Gage switches. Both types of

switches allow all directly connected hosts to communicate with one another at the full speed of their

network interface.

Oversubscription

Many data center designs introduce oversubscription as a means to lower the total cost of the design.

We define the term over- subscription to be the ratio of the worst-case achievable aggregate bandwidth

among the end hosts to the total bisection bandwidth of a particular communication topology. An

oversubscription of 1:1 indicates that all hosts may potentially communicate with arbitrary other hosts

at the full bandwidth of their network interface (e.g., 1 Gb/s for commodity Ethernet designs). An

oversubscription value of 5:1 means that only 20% of available host bandwidth is avail- able for some

communication patterns. Typical designs are over- subscribed by a factor of 2.5:1 (400 Mbps) to 8:1

(125 Mbps) [1]. Although data centers with oversubscription of 1:1 are possible for 1 Gb/s Ethernet, as

we discuss in Section 2.1.4, the cost for such designs is typically prohibitive, even for modest-size data

centers. Achieving full bisection bandwidth for 10 Gb/s Ethernet is not currently possible when

moving beyond a single switch.

Multi-path Routing

Delivering full bandwidth between arbitrary hosts in larger clusters requires a “multi-rooted” tree with

multiple core switches (see Figure 1). This in turn requires a multi-path routing technique, such as

ECMP [11]. Currently, most enterprise core switches sup- port ECMP. Without the use of ECMP, the

largest cluster that can be supported with a singly rooted core with 1:1 oversubscription would be

limited to 1,280 nodes (corresponding to the bandwidth available from a single 128-port 10 Gage

switch).

To take advantage of multiple paths, ECMP performs static load splitting among flows. This does not

account for flow bandwidth in making allocation decisions, which can lead to oversubscription even

for simple communication patterns. Further, current ECMP implementations limit the multiplicity of

paths to 8–16, which is often less diversity than required to deliver high bisection band- width for

larger data centers. In addition, the number of routing table entries grows multiplicatively with the

number of paths considered, which increases cost and can also increase lookup latency.

Cost

The cost for building a network interconnect for a large cluster greatly affects design decisions. As we

discussed above, oversubscription is typically introduced to lower the total cost. Here we give the

rough cost of various configurations for different number of hosts and oversubscription using current

best practices. We assume a cost of $7,000 for each 48-port Gage switch at the edge and $700,000 for

128-port 10 Gage switches in the aggregation and core layers. We do not consider cabling costs in

these calculations. Figure 2 plots the cost in millions of US dollars as a function of the total number of

end hosts on the x axis. Each curve rep- resents a target oversubscription ratio. For instance, the

switching hardware to interconnect 20,000 hosts with full bandwidth among all hosts comes to

approximately $37M. The curve corresponding to an oversubscription of 3:1 plots the cost to

interconnect end hosts where the maximum available bandwidth for arbitrary end host communication

would be limited to approximately 330 Mbps.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3398

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Figure 1: Common data center interconnect topology. Host to switch links are Gageand links between

switches are 10 GigE.

Table 1: The maximum possible cluster size with an oversubscription ratio of 1:1 for different years.

Figure 2: Current cost estimate vs. maximum possible number of hosts for different oversubscription

ratios.

We also include the cost to deliver an oversubscription of 1:1 using our proposed fat-tree architecture

for comparison. Overall, we find that existing techniques for delivering high levels of bandwidth in

large clusters incur significant cost and that fat-tree based cluster interconnects hold significant

promise for de- levering scalable bandwidth at moderate cost. However, in some sense, Figure 2

understates the difficulty and expense of employing the highest-end components in building data center

architectures. In 2008, 10 Gage switches are on the verge of becoming commodity parts; there is

roughly a factor of 5 differential in price per port per bit/sec when comparing Gage to 10 Gage

switches, and this differential continues to shrink. To explore the historical trend, we show in Table 1

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3399

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

∗

the cost of the largest cluster configuration that could be supported using the highest-end switches

available in a particular year. We based these values on a historical study of product announcements

from various vendors of high-end 10 Gage switches in 2002, 2004, 2006, and 2008.

We use our findings to build the largest cluster configuration that technology in that year could support

while maintaining an over- subscription of 1:1. Table 1 shows the largest 10 Gage switch avail- able in

a particular year; we employ these switches in the core and aggregation layers for the hierarchical

design. Tables 1 also shows the largest commodity Gage switch available in that year; we employ these

switches at all layers of the fat-tree and at the edge layer for the hierarchical design.

ARCHITECTURE

In this section, we describe an architecture to interconnect commodity switches in a fat-tree topology.

We first motivate the need for a slight modification in the routing table structure. We then describe

how we assign IP addresses to hosts in the cluster. Next, 2Note that switch homogeneity is not

required, as bigger switches could be used at the core (e.g. for multiplexing). While these likely have a

longer mean time to failure (MTTF), this defeats the cost benefits, and maintains the same cabling

overhead.

we introduce the concept of two-level route lookups to assist with multi-path routing across the fat-

tree. We then present the algorithms we employ to populate the forwarding table in each switch. We

also describe flow classification and flow scheduling techniques as alternate multi-path routing

methods. And finally, we present a simple fault-tolerance scheme, as well as describe the heat and

power characteristics of our approach.

Motivation

Achieving maximum bisection bandwidth in this network requires spreading outgoing traffic from any

given pod as evenly as possible among the core switches. Routing protocols such as OSPF2 [4]

usually take the hop-count as their metric of “shortest- path,” and in the k-ary fat-tree topology (see

Section 2.2), there are (k/2)2 such shortest-paths between any two hosts on different pods, but only

one is chosen. Switches, therefore, concentrate traffic going to a given subnet to a single port even

though other choices exist that give the same cost. Furthermore, depending on the interleaving of the

arrival times of OSPF messages, it is possible for a small subset of core switches, perhaps only one, to

be chosen as the intermediate links between pods. This will cause severe congestion at those points and

does not take advantage of path redundancy in the fat-tree.

Extensions such as OSPF-ECMP [10], in addition to being un- available in the class of switches under

consideration, cause an explosion in the number of required prefixes. A lower-level pod switch would

need (k/2) prefixes for every other subnet; a total of k (k/2)2 prefixes.

We therefore need a simple, fine-grained method of traffic dif- fusion between pods that takes

advantage of the structure of the topology. The switches must be able to recognize, and give special

treatment to, the class of traffic that needs to be evenly spread. To achieve this, we propose using two-

level routing tables that spread outgoing traffic based on the low-order bits of the destination IP

address .

Two-Level Routing Table

To provide the even-distribution mechanism motivated in Section 3.1, we modify routing tables to

allow two-level prefix lookup. Each entry in the main routing table will potentially have an additional

pointer to a small secondary table of (suffix, port) entries. A first-level prefix is terminating if it does

not contain any second- level suffixes, and a secondary table may be pointed to by more

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3400

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Core

Aggregation

Edge

 Figure 3: Simple fat-tree topology. Using the two-level routing tables described , packets from

source 10.0.1.2 to destination 10.2.0.3 would take the dashed path.

Figure 4: Two-level table example. This is the table at switch 10.2.2.1. An incoming packet with

destination IP address 10.2.1.2 is forwarded on port 1, whereas a packet with destination IP address

10.3.0.3 is forwarded on port 3.

Two-Level Lookup Implementation

We now describe how the two-level lookup can be implemented in hardware using Content-

Addressable Memory (CAM) [9]. CAMs are used in search-intensive applications and are faster than

algorithmic approaches [15] for finding a match against a bit pattern. A CAM can perform parallel

searches among all its entries in a single clock cycle. Lookup engines use a special kind of CAM,

called Ternary CAM (TCAM). A TCAM can store don’t care bits in addition to matching 0’s and 1’s

in particular positions, making it suitable for storing variable length prefixes, such as the ones found in

routing tables. On the downside, CAMs have rather low storage density, they are very power hungry,

and

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can be implemented in a TCAM of a

relatively modest size (k entries each 32 bits wide). Figure 5 shows our proposed implementation of

the two-level lookup engine. A TCAM stores address prefixes and suffixes, which in turn indexes a

RAM that stores the IP address of the next hop and the output port. We store left-handed (prefix)

entries in numerically smaller addresses and right-handed (suffix) entries in larger addresses. We

encode the output of the CAM so that the entry with the numerically smallest matching address is

output. This satisfies the semantics of our specific application of two-level lookup: when the

destination IP address of a packet matches both a left-handed and a right-handed entry, then the left-

handed entry is chosen. For example, using the routing table in Figure 5, a packet with destination IP

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2

10.0.2.1 10.2.2.1

10.2.0.1
10.0.1.1

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3401

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

address 10.2.0.3 matches the left-handed entry 10.2.0.X and the right-handed entry X.X.X.3. The

packet is correctly forwarded on port 0. However, a packet with destination IP address 10.3.1.2

matches only the right-handed entry X.X.X.2 and is forwarded on port 2.

Routing Algorithm

The first two levels of switches in a fat-tree act as filtering traffic diffusers; the lower- and upper-layer

switches in any given pod have terminating prefixes to the subnets in that pod. Hence, if a host sends a

packet to another host in the same pod but on a different subnet, then all upper-level switches in that

pod will have a terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have a default /0 prefix with a secondary

table matching host IDs (the least-significant byte of the destination IP address). We employ the host

IDs as a source of deterministic entropy; they will cause traffic to be evenly spread upward among the

outgoing links to the core switches3. This will also cause subsequent packets to the same host to follow

the same path, and therefore avoid packet reordering.

In the core switches, we assign terminating first-level prefixes for all network IDs, each pointing to the

appropriate pod containing that network. Once a packet reaches a core switch, there is exactly one link

to its destination pod, and that switch will include a terminating /16 prefix for the pod of that packet

(10.pod.0.0/16, port). Once a packet reaches its destination pod, the receiving upper-level pod switch

will also include a (10.pod.switch.0/24, port) prefix to direct that packet to its destination subnet

switch, where it is finally switched to its destination host. Hence, traffic diffusion occurs only in the

first half of a packet’s journey.

It is possible to design distributed protocols to build the necessary forwarding state incrementally in

each switch. For simplicity however, we assume a central entity with full knowledge of cluster

interconnect topology. This central route control is responsible for statically generating all routing

tables and loading the tables into the switches at the network setup phase. Dynamic routing proto- cols

would also be responsible for detecting failures of individual switches and performing path failover

(see Section 3.8). Below, we summarize the steps for generating forwarding tables at both the pods and

core switches.

Pod Switches

In each pod switch, we assign terminating prefixes for subnets contained in the same pod. For inter-pod

traffic, we add a /0 pre- fix with a secondary table matching host IDs. Algorithm 1 shows the pseudo-

code for generating the routing tables for the upper pod switches. The reason for the modulo shift in

the outgoing port is to avoid traffic from different lower-layer switches addressed to a host with the

same host ID going to the same upper-layer switch. For the lower pod switches, we simply omit the /24

subnet pre- fix step, in line 3, since that subnet’s own traffic is switched, and intra- and inter-pod traffic

should be evenly split among the upper switches.

Core Switches

Since each core switch is connected to every pod (port i is connected to pod i), the core switches

contains only terminating /16 prefixes pointing to their destination pods, as shown in Algorithm 2. This

algorithm generates tables whose size is linear in k. No switch in the network contains a table with

more than k first-level prefixes or k/2 second-level suffixes.

Routing Example

To illustrate network operation using the two-level tables, we give an example for the routing decisions

taken for a packet from source 10.0.1.2 to destination 10.2.0.3, as shown in Figure 3. First, the gateway

switch of the source host (10.0.1.1) will only match the packet with the /0 first-level prefix, and

therefore will forward the packet based on the host ID byte according to the secondary table for that

prefix. In that table, the packet matches the 0.0.0.3/8 suffix, which points to port 2 and switch 10.0.2.1.

Switch 10.0.2.1 also follows the same steps and forwards on port 3, connected to core switch 10.4.1.1.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3402

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

1 foreach j in [1, (k/2)] do

2 foreach i in [1, (k/2)] do

3

4

5

foreach destination pod x in [0, (k/2) − 1] do

addPrefix(10.k.j.i,10.x.0.0/16, x);

end

6 end

7 end

The core switch matches the packet to a terminating 10.2.0.0/16 prefix, which points to the destination

pod 2

Algorithm 1: Generating aggregation switch routing tables. Assume Function signatures add

Prefix(switch, prefix, port), add Suffix(switch, suffix, port) and add Suffix adds a second-level suffix

to the last-added first-level prefix.

Algorithm 2: Generating core switch routing tables.

on port 2, and switch 10.2.2.1. This switch belongs to the same pod as the destination subnet, and

therefore has a terminating pre- fix, 10.2.0.0/24, which points to the switch responsible for that subnet,

10.2.0.1 on port 0. From there, standard switching techniques deliver the packet to the destination host

10.2.0.3. Note that for simultaneous communication from 10.0.1.3 to another host 10.2.0.2, traditional

single-path IP routing would follow the same path as the flow above because both destinations are on

the same subnet. Unfortunately, this would eliminate all of the fan-out benefits of the fat-tree

topology. Instead, our two-level table lookup allows switch 10.0.1.1 to forward the second flow to

10.0.3.1 based on right-handed matching in the two-level table.

Flow Classification

In addition to the two-level routing technique described above, we also consider two optional dynamic

routing techniques, as they are currently available in several commercial routers [10, 3]. Our goal is to

quantify the potential benefits of these techniques but acknowledge that they will incur additional per-

packet overhead. Importantly, any maintained state in these schemes is soft and individual switches can

fall back to two-level routing in case the state is lost.

As an alternate method of traffic diffusion to the core switches, we perform flow classification with

dynamic port-reassignment in pod switches to overcome cases of avoidable local congestion (e.g. when

two flows compete for the same output port, even though another port that has the same cost to the

destination is underused). We define a flow as a sequence of packets with the same entries for a subset

of fields of the packet headers (typically source and destination IP addresses, destination transport

port). In particular, pod switches:

Recognize subsequent packets of the same flow, and forward them on the same outgoing port.

1 foreach pod x in [0,k − 1] do

3

4

5

6

7

8

2 foreach switch z in [(k/2),k − 1] do

foreach subnet i in [0, (k/2) − 1] do
addPrefix(10.x.z.1, 10.x.i.0/24, i);

end
addPrefix(10.x.z.1, 0.0.0.0/0, 0);

foreach host ID i in [2, (k/2) + 1] do

addSuffix(10.x.z.1, 0.0.0.i/8,

9 end
(i − 2+ z)mod(k/2) + (k/2));

10 end

11 end

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3403

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Periodically reassign a minimal number of flow output ports to minimize any disparity between the

aggregate flow capacity of different ports.

Step 1 is a measure against packet reordering, while step 2 aims to ensure fair distribution on flows on

upward-pointing ports in the face of dynamically changing flow sizes. Section 4.2 describes our

implementation and flow distribution heuristic of the flow classifier in more detail.

Flow Scheduling

Several studies have indicated that the distribution of transfer times and burst lengths of Internet traffic

is long-tailed [14], and characterized by few large long-lived flows (responsible for most of the

bandwidth) and many small short-lived ones [16]. We argue that routing large flows plays the most

important role in determining the achievable bisection bandwidth of a network and therefore merits

special handling. In this alternative approach to flow management, we schedule large flows to

minimize overlap with one another. A central scheduler makes this choice, with global knowledge of

all active large flows in the network. In this initial design, we only consider the case of a single large

flow originating from each host at a time.

Edge Switches

As before, edge switches locally assign a new flow to the least- loaded port initially. However, edge

switches additionally detect any outgoing flow whose size grows above a predefined threshold, and

periodically send notifications to a central scheduler specifying the source and destination for all active

large flows. This represents a request by the edge switch for placement of that flow in an un-

contended path.

Note that unlike Section 3.6, this scheme does not allow edge switches to independently reassign a

flow’s port, regardless of size. The central scheduler is the only entity with the authority to order a re-

assignment.

Central Scheduler

A central scheduler, possibly replicated, tracks all active large flows and tries to assign them non-

conflicting paths if possible. The scheduler maintains Boolean state for all links in the network

signifying their availability to carry large flows. For inter-pod traffic, recall that there are (k/2)2

possible paths between any given pair of hosts in the network, and each of these paths corresponds to a

core switch. When the scheduler receives a notification of a new flow, it linearly searches through the

core switches to find one whose corresponding path components do not include a reserved link.4 Upon

finding such a path, the scheduler marks those links as reserved, and notifies the relevant lower- and

upper-layer switches in the source pod with the correct outgoing port that corresponds to that flow’s

chosen path. A similar search is performed for intra-pod large flows; this time for an uncondensed path

through an upper-layer pod switch. The scheduler garbage collects flows whose last update is older

than a given time, clearing their reservations. Note that the edge switches do not block and wait for the

scheduler to perform this computation, but initially treat a large flow like any other. Fault-Tolerance

The redundancy of available paths between any pair of hosts makes the fat-tree topology attractive for

fault-tolerance. We pro- pose a simple failure broadcast protocol that allows switches to route around

link- or switch-failures one or two hops downstream. In this scheme, each switch in the network

maintains a Bidirectional Forwarding Detection session (BFD [10]) with each of its neighbors to

determine when a link or neighboring switch fails. From a fault-tolerance perspective, two classes of

failure can be weathered: (a) between lower- and upper-layer switches inside a pod, and (b) between

core and a upper-level switches. Clearly, the failure of a lower-level switch will cause disconnection

for the directly connected hosts; redundant switch elements at the leaves are the only way to tolerate

such failures. We describe link failures here because switch failures trigger the same BFD alerts and

elicit the same responses.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3404

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Lower- to Upper-layer Switches

A link failure between lower- and upper-level switches affects three classes of traffic: Outgoing inter-

and intra-pod traffic originating from the lower-layer switch. In this case the local flow classifier sets

the ‘cost’ of that link to infinity and does not assign it any new flows, and chooses another available

upper-layer switch.

Intra-pod traffic using the upper-layer switch as an intermediary. In response, this switch broadcasts a

tag notifying all other lower-layer switches in the same pod of the link failure. These switches would

check when assigning new flows whether the intended output port corresponds to one of those tags and

avoid it if possible.5

Inter-pod traffic coming into the upper-layer switch. The core switch connected to the upper-layer

switch has it as its only access to that pod, therefore the upper-layer switch broadcasts this tag to all

its core switches signifying its in- ability to carry traffic to the lower-layer switch’s subnet. These core

switches in turn mirror this tag to all upper-layer switches they are connected to in other pods. Finally,

the upper-layer switches avoid the single affected core switch when assigning new flows to that subnet.

Upper-layer to Core Switches

A failure of a link from an upper-layer switch to a core affects two classes of traffic:

Outgoing inter-pod traffic, in which case the local routing table marks the affected link as unavailable

and locally chooses another core switch.

Incoming inter-pod traffic. In this case the core switch broad- casts a tag to all other upper-layer

switches it is directly connected to signifying its inability to carry traffic to that entire pod. As before,

these upper-layer switches would avoid that core switch when assigning flows destined to that pod.

Naturally, when failed links and switches come back up and reestablish their BFD sessions, the

previous steps are reversed to cancel their effect. In addition, adapting the scheme of Section 3.7 to

accommodate link- and switch-failures is relatively simple. The scheduler marks any link reported to

be down as busy or unavailable, thereby disqualifying any path that includes it from consideration, in

effect routing large flows around the fault.

Power and Heat Issues

Besides performance and cost, another major issue that arises in data center design is power

consumption. The switches that make up the higher tiers of the interconnect in data centers typically

consume thousands of Watts, and in a large-scale data center the power requirements of the

interconnect can be hundreds of kilowatts. Almost equally important is the issue of heat dissipation

from the switches. Enterprise-grade switches generate considerable amounts of heat and thus require

dedicated cooling systems.

Figure 6: Comparison of power and heat dissipation.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3405

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

In this section we analyze the power requirements and heat dissipation in our architecture and compare

it with other typical approaches. We base our analysis on numbers reported in the switch data sheets,

though we acknowledge that these reported values are measured in different ways by different vendors

and hence may not always reflect system characteristics in deployment.

Procure 2900 edge switches and 54 Big Iron RX-32 switches (36 in the aggregation and 18 in the core

layer). The fat-tree architecture employs 2,880 Net gear GSM 7252S switches. We are able to use the

cheaper Net Gear switch because we do not require 10 Gage uplinks (present in the Procure) in the fat-

tree interconnect.

IMPLEMENTATION

To validate the communication architecture described in this pa- per, we built a simple prototype of the

forwarding algorithms de- scribed in the previous section. We have completed a prototype using

NetFPGAs [14]. The NetFPGA contains an IPv4 router implementation that leverages TCAMs. We

appropriately modified the routing table lookup routine.. Our modifications totaled less than 100 lines

of additional code and introduced no measureable additional lookup latency, supporting our belief that

our proposed modifications can be incorporated into existing switches.

To carry out larger-scale evaluations, we also built a prototype using Click, the focus of our evaluation

in this paper. Click [15] is a modular software router architecture that supports implementation of

experimental router designs. A Click router is a graph of packet processing modules called elements

that perform tasks such as routing table lookup or decrementing a packet’s TTL. When chained

together, Click elements can carry out complex router functionality and protocols in software.

Two Level Table

We build a new Click element, Two Level Table, which implements the idea of a two-level routing

table described in Section 3.3. This element has one input, and two or more outputs. The routing

table’s contents are initialized using an input file that gives all the prefixes and suffixes. For every

packet, the Two Level Table element looks up the longest-matching first-level prefix. If that prefix is

terminating, it will immediately forward the packet on that prefix’s port. Otherwise, it will perform a

right-handed longest-matching suffix search on the secondary table and forward on the corresponding

port.

This element can replace the central routing table element of the standards-compliant IP router

configuration example provided in [12]. We generate an analogous 4-port version of the IP router with

the added modification of bandwidth-limiting elements on all ports to emulate link saturation capacity.

Figure 7: Comparison of total power consumption and heat dissipation.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3406

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

// Call on every incoming packet

1 IncomingPacket(packet)
2 begin

3 Hash source and destination IP fields of packet;

// Have we seen this flow before?

4 if seen(hash) then

5

6

7 else

8

9

10

11 end

12 end

Lookup previously assigned port x; Send packet on port x;

Record the new flow f ;
Assign f to the least-loaded upward port x; Send the packet
on port x;

// Call every t seconds
13 RearrangeFlows()

14 begin
15 for i=0 to 2 do

16 Find upward ports pmax and pmin with the largest and smallest aggregate outgoing traffic,
respectively;

17 Calculate D, the difference between pmax and pmin;

18 Find the largest flow f assigned to port pmax whose size is smaller than D;
19 if such a flow exists then

20 Switch the output port of flow f to pmin;
21 end

22 end

23 end

To compare the power requirement for each class of switch, we normalize the total power consumption

and heat dissipation by the switch over the total aggregate bandwidth that a switch can support in

Gbps. Figure 6 plots the average over three different switch models. As we can see, 10 Gage switches

(the last three on the x-axis) consume roughly double the Watts per Gbps and dissipate roughly three

times the heat of commodity Gage switches when normalized for bandwidth. Finally, we also

calculated the estimated total power consumption and heat dissipation for an interconnect that can

support roughly 27k hosts. For the hierarchical design, we employ 576 Flow Classifier To provide the

flow classification functionality described in Section 3.6, we describe our implementation of the Click

element Flow Classifier that has one input and two or more outputs. It performs simple flow

classification based on the source and destination IP addresses of the incoming packets, such that

subsequent packets with the same source and destination exit the same port (to avoid packet

reordering). The element has the added goal of minimizing the difference between the aggregate flow

capacity of its highest- and lowest-loaded output ports.

Even if the individual flow sizes are known in advance, this problem is a variant of the NP-hard Bin

Packing optimization problem [17]. However, the flow sizes are in fact not known a priori, making the

problem more difficult. We follow the greedy heuristic outlined in Algorithm 3. Every few seconds,

the heuristic at- tempts to switch, if needed, the output port of at most three flows to minimize the

difference between the aggregate flow capacity of its output ports.

Algorithm 3: The flow classifier heuristic. For the experiments in Section 5, t is 1 second.

Recall that the Flow Classifier element is an alternative to the two-level table for traffic diffusion.

Networks using these elements would employ ordinary routing tables. For example, the routing table of

an upper pod switch contains all the subnet prefixes assigned to that pod like before. However, in

addition, we add a /0 prefix to match all remaining inter-pod traffic that needs to be evenly spread

upwards to the core layer. All packets that match only that prefix are directed to the input of the Flow

Classifier. The classifier tries to evenly distribute outgoing inter-pod flows among its outputs ac-

cording to the described heuristic, and its outputs are connected directly to the core switches. The core

switches do not need a classifier, and their routing tables are unchanged.

Note that this solution has soft state that is not needed for correctness, but only used as a performance

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3407

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

∗

∗ ∗

optimization. This classifier is occasionally disruptive, as a minimal number of flows may be re-

arranged periodically, potentially resulting in packet reordering. However, it is also adaptive to

dynamically changing flow sizes and ‘fair’ in the long-term.6

Flow Scheduler

we implemented the element Flow Reporter, which resides in all edge switches, and detects outgoing

flows whose size is larger than a given threshold. It sends regular notifications to the central scheduler

about these active large flows.

The Flow Scheduler element receives notifications regarding active large flows from edge switches

and tries to find uncondensed paths for them. To this end, it keeps the binary status of all the links in

the network, as well as a list of previously placed flows. For any new large flow, the scheduler

performs a linear search among all equal-cost paths between the source and destination hosts to find

one whose path components are all unreserved. Upon finding such a path, the flow scheduler marks all

the component links as reserved and sends notifications regarding this flow’s path to the concerned pod

switches. We also modify the pod switches to process these port re-assignment messages from the

scheduler.

The scheduler maintains two main data structures: a binary array of all the links in the network (a total

of 4 k (k/2)2 links), and a hash table of previously placed flows and their assigned paths. The linear

search for new flow placement requires on average 2 (k/2)2 memory accesses, making the

computational complexity of the scheduler to be O(k3) for space and O(k2) for time. A typical value

for k (the number of ports per switch) is 48, making both these values manageable.

EVALUATION

To measure the total bisection bandwidth of our design, we generate a benchmark suite of

communication mappings to evaluate the performance of the 4-port fat-tree using the Two Level Table

switches, the Flow Classifier and the Flow Scheduler. We compare these methods to a standard

hierarchical tree with a 3.6:1 oversubscription ratio, similar to ones found in current data center

designs.

Experiment Description

In the 4-port fat-tree, there are 16 hosts, four pods (each with four switches), and four core switches.

Thus, there is a total of 20 switches and 16 end hosts (for larger clusters, the number of switches will

be smaller than the number of hosts). We multiplex these 36 elements onto ten physical machines,

interconnected by a 48-port Procure 2900 switch with 1 Gigabit Ethernet links. These machines have

dual-core Intel Xeon CPUs at 2.33GHz, with 4096KB cache and 4GB of RAM, running Debian

GNU/Linux 2.6.17.3.

Each pod of switches is hosted on one machine; each pod’s hosts are hosted on one machine; and the

two remaining machines run two core switches each. Both the switches and the hosts are Click

configurations, running in user level. All virtual links between the Click elements in the network are

bandwidth-limited to 96Mbit/s to ensure that the configuration is not CPU limited.

For the comparison case of the hierarchical tree network, we have four machines running four hosts

each, and four machines each running four pod switches with one additional uplink. The four pod

switches are connected to a 4-port core switch running on a dedicated machine. To enforce the 3.6:1

oversubscription on the uplinks from the pod switches to the core switch, these links are bandwidth-

limited to 106.67Mbit/s, and all other links are limited to 96Mbit/s. Each host generates a constant

96Mbit/s of outgoing traffic. We measure the rate of its incoming traffic. The minimum aggregate in-

coming traffic of all the hosts for all bijective communication map- pings is the effective bisection

bandwidth of the network.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3408

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

Test Tree Two-Level

Table

Flow

Classification

Flow

Scheduling

Random 53.4% 75.0% 76.3% 93.5%

Stride (1) 100.0

%

100.0% 100.0% 100.0%

Stride (2) 78.1% 100.0% 100.0% 99.5%

Stride (4) 27.9% 100.0% 100.0% 100.0%

Stride (8) 28.0% 100.0% 100.0% 99.9%

Staggered Prob

(1.0, 0.0)

100.0

%

100.0% 100.0% 100.0%

Staggered Prob

(0.5, 0.3)

83.6% 82.0% 86.2% 93.4%

Staggered Prob

(0.2, 0.3)

Worst cases:

64.9% 75.6% 80.2% 88.5%

Inter-pod

Incoming

28.0% 50.6% 75.1% 99.9%

Same-ID

Outgoing

27.8% 38.5% 75.4% 87.4%

Table 2: Aggregate Bandwidth of the network, as a percentage of ideal bisection bandwidth for the

Tree, Two-Level Table, Flow Classification, and Flow Scheduling methods. The ideal bisection

bandwidth for the fat-tree network is 1.536Gbps.

Staggered Prob (Subnet P, Pod P): Where a host will send to another host in its subnet with probability

Subnet P , and to its pod with probability Pod P , and to anyone else with probability 1 − SubnetP –

Pod P. Inter-pod Incoming: Multiple pods send to different hosts in the same pod, and all happen to

choose the same core switch. That core switch’s link to the destination pod will be oversubscribed. The

worst-case local oversubscription ratio for this case is (k − 1) : 1. Same-ID Outgoing: Hosts in the

same subnet send to different hosts elsewhere in the network such that the destination hosts have the

same host ID byte. Static routing techniques force them to take the same outgoing upward port. The

worst-case ratio for this case is (k/2) : 1. This is the case where the Flow Classifier is expected to

improve performance the most.

Results

Table 2 shows the results of the above described experiments. These results are averages across 5

runs/permutations of the bench- mark tests, over 1 minute each. As expected, for any all-inter-pod

communication pattern, the traditional tree saturates the links to the core switch, and thus achieves

around 28% of the ideal bandwidth for all hosts in that case. The tree performs significantly better the

closer the communicating pairs are to each other.

The two-level table switches achieve approximately 75% of the ideal bisection bandwidth for random

communication patterns. This can be explained by the static nature of the tables; two hosts on any

given subnet have a 50% chance of sending to hosts with the same host ID, in which case their

combined throughput is halved since they are forwarded on the same output port. This makes the

expectation of both to be 75%. We expect the performance for the two-level table to improve for

random communication with increasing k as there will be less likelihood of multiple flows colliding on

a single link with higher k.

The inter-pod incoming case for the two-level table gives a 50% bisection bandwidth; however, the

same-ID outgoing effect is compounded further by congestion in the core router.Because of its

dynamic flow assignment and re-allocation, the flow classifier out performs both the traditional tree

and the two level table in all cases, with a worst-case bisection bandwidth of approximately 75%.

However, it remains imperfect because the type of congestion it avoids is entirely local; it is possible to

• • •

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3409

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

cause congestion at a core switch because of routing decisions made one or two hops upstream. This

type of sub-optimal routing occurs because the switches only have local knowledge available.

The Flow Scheduler, on the other hand, acts on global knowledge and tries to assign large flows to

disjoint paths, thereby achieving 93% of the ideal bisection bandwidth for random communication

mappings, and outperforming all other methods in all the bench- mark tests. The use of a centralized

scheduler with knowledge of all active large flows and the status of all links may be infeasible for large

arbitrary networks, but the regularity of the fat-tree topology greatly simplifies the search for

uncontended paths.

In a separate test, Table 3 shows the time and space requirements for the central scheduler when run on

a modestly-provisioned 2.33GHz commodity PC. For varying k, we generated fake place- ment

requests (one per host) to measure the average time to process a placement request, and the total

memory required for the maintained link-state and flow-state data structures. For a network of 27k

hosts, the scheduler requires a modest 5.6MB of memory and could place a flow in under 0.8ms.

k Hosts Avg Time/

Req (µs)

Link-state

Memory

Flow-state

Memory

4 16 50.9 64 B 4 KB

16 1,024 55.3 4 KB 205 KB

24 3,456 116.8 14 KB 691 KB

32 8,192 237.6 33 KB 1.64 MB

48 27,648 754.43 111 KB 5.53 MB

Table 3: The flow scheduler’s time and memory requirements.

PACKAGING

One drawback of the fat-tree topology for cluster interconnects is the number of cables needed to

interconnect all the machines. One trivial benefit of performing aggregation with 10 Gage switches is

the factor of 10 reduction in the number of cables required to transfer the same amount of bandwidth

up the hierarchy. In our proposed fat-tree topology, we do not leverage 10 Gage links or switches both

because non-commodity pieces would inflate cost and, more importantly, because the fat-tree topology

critically depends upon a large fan-out to multiple switches at each layer in the hierarchy to achieve its

scaling properties.

Acknowledging that increased wiring overhead is inherent to the fat tree topology, in this section we

consider some packaging techniques to mitigate this overhead. In sum, our proposed packaging

technique eliminates most of the required external wiring and reduces the overall length of required

cabling, which in turn simplifies cluster management and reduces total cost. Moreover, this method

allows for incremental deployment of the network.

We also considered an alternate design that did not collect the switches into a central rack. In this

approach, two 48-port switches would be distributed to each rack. Hosts would interconnect to the

switches in sets of 24. This approach has the advantage of requiring much shorter cables to connect

hosts to their first hop switch and for eliminating these cables all together if the racks were

appropriately internally packaged. We discarded this approach because we would lose the opportunity

to eliminate the 576 cables within each pod that interconnect the edge and aggregation layers. These

cables would need to crisscross the 12 racks in each pod, adding significant complexity.

RELATED WORK

Our work in data center network architecture necessarily builds upon work in a number of related

areas. Perhaps most closely related to our efforts are various efforts in building scalable inter-

connects, largely coming out of the supercomputer and massively48 machines 48 machines 48

machines parallel processing (MPP) communities. Many MPP interconnects have been organized as

fat-trees, including systems from Thinking to accommodate all 48 pods. Once again, this grid layout

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3410

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

∗

will re- duce inter-pod cabling distance to appropriate core switches and will support some

standardization of cable lengths and packaging to support inter-pod connectivity.

Figure 8: Proposed packaging solution. The only external cables are between the pods and the core

nodes.

We present our approach in the context of a maximum-capacity 27,648-node cluster leveraging 48-port

Ethernet switches as the building block of the fat-tree. This design generalizes to clusters of different

sizes. We begin with the design of individual pods that make up the replication unit for the larger

cluster, see Figure 8. Each pod consists of 576 machines and 48 individual 48-port Gage switches. For

simplicity, we assume each end host takes up one rack unit (1RU) and that individual racks can

accommodate 48 ma- chins. Thus, each pod consists of 12 racks with 48 machines each. We place the

48 switches that make up the first two layers of the fat-tree in each pod in a centralized rack. However,

we assume the ability to package the 48 switches into a single monolithic unit with 1,152 user-facing

ports. We call this the pod switch. Of these ports, 576 connect directly to the machines in the pod,

corresponding to connectivity at the edge. Another 576 ports fan out to one port on each of the 576

switches that make up the core layer in the fat- tree. Note that the 48 switches packaged in this manner

actually have 2,304 total ports (48 48). The other 1,152 ports are wired internally in the pod switch

to account for the required interconnect between the edge and aggregation layers of the pod (see Figure

3). We further spread the 576 required core switches that form the top of the fat-tree across the

individual pods. Assuming a total of 48 pods, each will house 12 of the required core switches. Of the

576 cables fanning out from each pod switch to the core, 12 will connect directly to core switches

placed nearby in the same pod. The remaining cables would fan out, in sets of 12, to core switches

housed in remote pods. Note that the fact that cables move in sets of 12 from pod to pod and in sets of

48 from racks to pod switches opens additional opportunities for appropriate “cable packaging” to

reduce wiring complexity.

Finally, minimizing total cable length is another important consideration. To do so, we place racks

around the pod switch in two dimensions, as shown in Figure 8 (we do not consider three dimensional

data center layouts). Doing so will reduce cable lengths relative to more “horizontal” layouts of

individual racks in a pod. Similarly, we lay pods out in a 7 × 7 grid (with one missing spot) Machines

[13] and SGI [13]. Thinking Machines employed pseudo-random forwarding decisions to perform load

balancing among fat-tree links. While this approach achieves good load balancing, it is prone to packet

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3411

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

reordering. Myrinet switches [6] also employ fat-tree topologies and have been popular for cluster-

based supercomputers. Marinette employs source routing based on predetermined topology knowledge,

enabling cut-through low latency switch implementations. Hosts are also responsible for load

balancing among available routes by measuring round-trip latencies. Relative to all of these efforts, we

focus on leveraging commodity Ethernet switches to interconnect large-scale clusters, showing

techniques for appropriate routing and packaging.

Infinite Band [2] is a popular interconnect for high-performance computing environments and is

currently migrating to data center environments. Infinite Band also achieves scalable bandwidth using

variants of Close topologies. For instance, Sun recently announced a 3,456-port Infinite Band switch

built from 720 24-port Infinite Band switches arranged in a 5-stage fat-tree [4]. However, Infinite Band

imposes its own layer 1-4 protocols, making Ethernet/IP/TCP more attractive in certain settings

especially as the price of 10Gbps Ethernet continues to drop.

Another popular MPP interconnect topology is a Torus, for in- stance in the Blue Gene/L [5] and the

Cray XT3 [12]. A torus directly interconnects a processor to some number of its neighbors in a k-

dimensional lattice. The number of dimensions determines the expected number of hops between

source and destination. In an MPP environment, a torus has the benefit of not having any dedicated

switching elements along with electrically simpler point-to- point links. In a cluster environment, the

wiring complexity of a torus quickly becomes prohibitive and offloading all routing and forwarding

functions to commodity hosts/operating systems is typically impractical.

Our proposed forwarding techniques are related to existing routing techniques such as OSPF2 and

Equal-Cost Multipath (ECMP) [5, 3, 9]. Our proposal for multi-path leverages particular properties of

a fat-tree topology to achieve good performance. Relative to our work, ECMP proposes three classes of

stateless forwarding algorithms: (i) Round-robin and randomization; (ii) Region splitting where a

particular prefix is split into two with a larger mask length; and (iii) A hashing technique that splits

flows among a set of output ports based on the source and destination addresses. The first approach

suffers from potential packet reordering issues, especially problematic for TCP. The second approach

can lead to a blowup in the number of routing prefixes. In a network with 25,000 hosts, this will

require approximately 600,000 routing table entries. In addition to increasing cost, the table lookups at

this scale will incur significant latency. For this reason, current enterprise-scale routers allow for a

maximum of 16-way ECMP routing. The final approach does not account for flow bandwidth in

making allocation decisions, which can quickly lead to oversubscription even for simple

communication patterns.

CONCLUSIONS

Bandwidth is increasingly the scalability bottleneck in large- scale clusters. Existing solutions for

addressing this bottleneck center around hierarchies of switches, with expensive, non-commodity

switches at the top of the hierarchy. At any given point in time, the port density of high-end switches

limits overall cluster size while at the same time incurring high cost. In this paper, we present a data

center communication architecture that leverages commodity Ethernet switches to deliver scalable

bandwidth for large-scale clusters. We base our topology around the fat-tree and then present

techniques to perform scalable routing while remaining backward compatible with Ethernet, IP, and

TCP.

Overall, we find that we are able to deliver scalable bandwidth at significantly lower cost than existing

techniques. While additional work is required to fully validate our approach, we believe that larger

numbers of commodity switches have the potential to displace high-end switches in data centers in the

same way that clusters of commodity PCs have displaced supercomputers for high-end computing

environments.

REFERENCE:
[1] R. Cocchiara, H. Davis, and D. Kinnaird, ``Data center topologies for mission-critical business systems,'' IBM Syst. J., vol. 47,no.

4, pp. 695_706, 2008.

International Journal of Future Generation Communication and Networking

Vol. 13, No. 3, (2020), pp. 3395-3412

3412

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2020 SERSC

[2] T. Chen, X. Gao, and G. Chen, ``The features, hardware, and architectures of data center networks: A survey,'' J. Parallel Distrib.

Comput., vol. 96, pp. 45_74, Oct. 2016.

[3] S. Zafar, A. Bashir, and S. A. Chaudhry, ``On implementation of DCTCP on three-tier and fat-tree data center network

topologies,'' Springer- Plus, vol. 5, no. 1, p. 766, Dec. 2016.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, ``A scalable, commodity data center network architecture,'' ACM SIGCOMM

Comput. Com- mun. Rev., vol. 38, no. 4, pp. 63_74, 2008.

[5] R. N. Mysore et al., ``PortLand: A scalable fault-tolerant layer 2 data center network fabric,'' in Proc. ACM SIGCOMM Conf.

Data Commun. (SIGCOMM), 2009, pp. 39_50.

[6] R. Alshahrani and H. Peyravi, ``Modeling and simulation of data center networks,'' in Proc. 2nd ACM SIGSIM/PADS Conf.

Princ. Adv. Discrete Simulation (SIGSIM-PADS), May 2014, pp. 75_82.

[7] P. Gill, N. Jain, and N. Nagappan, ``Understanding network failures in data centers: Measurement, analysis, and implications,'' in

Proc. ACM SIGCOMM, Oct. 2011, pp. 350_361.

[8] P. Patel, A. Ranabahu, and A. Sheth, ``Service level agreement in cloud computing,'' Kno.e.sis Publications, Wright State Univ.,

Dayton, OH, USA, Tech. Rep. 78, 2009. Accessed: Oct. 18, 2018

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, ``Dcell: A scalable and fault-tolerant network structure for data centers,'' in

Proc. ACM SIGCOMM Conf. Data Commun.

[10] D. Li, ``FiConn: Using backup port for server interconnection in data centers,'' in Proc. IEEE 28th Conf. Comput. Commun.

(INFO-COM), Apr. 2009, pp. 2276_2285. [Online]. Available: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5062153

[11] C. Wang, C. Wang, Y. Yuan, and Y. Wei, ``MCube: A high performance and fault-tolerant network architecture for data

centers,'' in Proc. Int.Conf. Comput. Design Appl., Jun. 2010, pp. V5-423_V5-427. [Online].Available:

http://ieeexplore.ieee.org/document/5540940/

[12] N. Farrington et al., ``Helios: A hybrid electrical/optical switch architecture for modular data centers,'' ACM SIGCOMM

Comput. Commun. Rev., vol. 40, no. 4, pp. 339_350, Aug. 2010. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=1851275.1851223

[13] H. M. Helal and R. E. Ahmed, ``Performance evaluation of datacenter network topologies with link failures,'' in Proc. 7th Int.

Conf. Modeling, Simulation, Appl. Optim. (ICMSAO), Apr. 2017, pp. 1_5. [Online]. Available:

http://ieeexplore.ieee.org/document/7934898/

[14] N. Farrington and A. Andreyev, ``Facebook's data center network architecture,'' in Proc. IEEE Opt. Interconnects Conf., May

2013, pp. 49_50.

[15] B. Lebiednik, A. Mangal, and N. Tiwari. (May 2016). ``A survey and evaluation of data center network topologies.'' [Online].

Available: http://arxiv.org/abs/1605.01701

[16] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, ``A comparative analysis of data center network architectures,'' in Proc.

IEEE Int. Conf. Commun. (ICC), Jun. 2014, pp. 3106_3111. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6883798

[17] Ponemon Institute and Emerson Network Power. 2013 Cost of Data Center Outages. Accessed: Oct. 12, 2018. [Online].

Available: http://www.emersonnetworkpower.com/documentation/enus/

brands/liebert/documents/whitepapers/2013_emerson_data_center_cost_downtime_sl-24680.pdf

[18] R. Miller. (2008). Failure Rates in Google Data Centers. Data Center Knowledge, Business. Accessed: Oct. 20, 2018.

