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Abstract 

 
Today’s data centers may contain tens of thousands of computers with significant aggregate bandwidth 

requirements. The network architecture typically consists of a tree of routing and switching elements with 

progressively more specialized and expensive equipment moving up the network hierarchy. Unfortunately, even 

when deploying the highest-end IP switches/routers, resulting topologies may only support 50% of the aggregate 

bandwidth available at the edge of the network, while still incurring tremendous cost. Non- uniform bandwidth 

among data center nodes complicates application design and limits overall system performance. In this paper, 

we show how to leverage largely commodity Ethernet switches to support the full aggregate bandwidth of 

clusters consisting of tens of thousands of elements. Similar to how clusters of commodity computers have 

largely replaced more specialized SMPs and MPPs, we argue that appropriately architected and inter- connected 

commodity switches may deliver more performance at less cost than available from today’s higher-end 

solutions. Our approach requires no modifications to the end host network interface, operating system, or 

applications; critically, it is fully backward compatible with Ethernet, IP, and TCP. 

 

Keywords: Data center topology, equal-cost routing 

 

INTRODUCTION 

Growing expertise with clusters of commodity PCs have enabled a number of institutions to harness 

petaflops of computation power and petabytes of storage in a cost-efficient manner. Clusters consisting 

of tens of thousands of PCs are not unheard of in the largest institutions and thousand-node clusters are 

increasingly common in universities, research labs, and companies. Important applications classes 

include scientific computing, financial analysis, data analysis and warehousing, and large-scale 

network services. 

Today, the principle bottleneck in large-scale clusters is often inter-node communication bandwidth. 

Many applications must ex- change information with remote nodes to proceed with their local 

computation. For example, Map Reduce [12] must perform significant data shuffling to transport the 

output of its map phase before proceeding with its reduce phase. Applications running on cluster- 

based file systems [13, 16] often require remote-node access before proceeding with their I/O 

operations. A query to a web search engine often requires parallel communication with every node in 

the cluster hosting the inverted index to return the most relevant results [7]. Even between logically 

distinct clusters, there are often significant communication requirements, e.g., when up- dating the 

inverted index for individual clusters performing search from the site responsible for building the 

index. Internet services increasingly employ service oriented architectures [13], where the retrieval of a 

single web page can require coordination and communication with literally hundreds of individual sub-

services running on remote nodes. Finally, the significant communication requirements of parallel 

scientific applications are well known [7, 8]. 

There are two high-level choices for building the communication fabric for large-scale clusters. One 

option leverages specialized hardware and communication protocols, such as InfiniBand [2] or Myrinet 

[6]. While these solutions can scale to clusters of thou- sands of nodes with high bandwidth, they do 

not leverage commodity parts (and are hence more expensive) and are not natively compatible with 

TCP/IP applications. The second choice lever- ages commodity Ethernet switches and routers to 
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interconnect cluster machines. This approach supports a familiar management infrastructure along with 

unmodified applications, operating systems, and hardware. Unfortunately, aggregate cluster bandwidth 

scales poorly with cluster size, and achieving the highest levels of band- width incurs non-linear cost 

increases with cluster size. For compatibility and cost reasons, most cluster communication systems 

follow the second approach.  

However, communication bandwidth in large clusters may become oversubscribed by a significant 

factor depending on the communication patterns. That is, two nodes connected to the same physical 

switch may be able to communicate at full bandwidth (e.g., 1Gbps) but moving between switches, 

potentially across multiple levels in a hierarchy, may limit available bandwidth severely. Addressing 

these bottlenecks requires non-commodity solutions, e.g., large 10Gbps switches and routers. Further, 

typical single path routing along trees of interconnected switches means that overall cluster bandwidth 

is limited by the bandwidth available at the root of the communication hierarchy. Even as we are at a 

transition point where 10Gbps technology is becoming cost-competitive, the largest 10Gbps switches 

still incur significant cost and still limit overall available bandwidth for the largest clusters. In this 

context, the goal of this paper is to design a data center communication architecture that meets the 

following goals: 

 

Scalable interconnection bandwidth: it should be possible for an arbitrary host in the data center to 

communicate with any other host in the network at the full bandwidth of its local network interface. 

 

Economies of scale: just as commodity personal computers became the basis for large-scale 

computing environments, we hope to leverage the same economies of scale to make cheap off-the-shelf 

Ethernet switches the basis for large- scale data center networks. 

 

Backward compatibility: the entire system should be back- ward compatible with hosts running 

Ethernet and IP. That is, existing data centers, which almost universally leverage com- modify Ethernet 

and run IP, should be able to take advantage of the new interconnect architecture with no 

modifications. 

We show that by interconnecting commodity switches in a fat- tree architecture, we can achieve the 

full bisection bandwidth of clusters consisting of tens of thousands of nodes. Specifically, one instance 

of our architecture employs 48-port Ethernet switches capable of providing full bandwidth to up 

27,648 hosts. By leveraging strictly commodity switches, we achieve lower cost than existing solutions 

while simultaneously delivering more bandwidth. Our solution requires no changes to end hosts, is 

fully TCP/IP compatible, and imposes only moderate modifications to the forwarding functions of the 

switches themselves. We also expect that our approach will be the only way to deliver full bandwidth 

for large clusters once 10 Gage switches become commodity at the edge, given the current lack of any 

higher-speed Ethernet alternatives (at any cost). Even when higher-speed Ethernet solutions become 

available, they will initially have small port densities at significant cost. 

 

BACKGROUND 

Current Data Center Network Topologies 

We conducted a study to determine the current best practices for data center communication networks. 

We focus here on commodity designs leveraging Ethernet and IP; we discuss the relationship of our 

work to alternative technologies in Section 7. 

 

Topology 

Typical architectures today consist of either two- or three-level trees of switches or routers. A three-

tiered design (see Figure 1) has a core tier in the root of the tree, an aggregation tier in the middle and 

an edge tier at the leaves of the tree. A two-tiered design has only the core and the edge tiers. 

Typically, a two-tiered design can support between 5K to 8K hosts. Since we target approximately 

25,000 hosts, we restrict our attention to the three-tier design. 

• 

• 

• 
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Switches1 at the leaves of the tree have some number of Gage ports (48–288) as well as some number 

of 10 Gage uplinks to one or more layers of network elements that aggregate and transfer packets 

between the leaf switches. In the higher levels of the hierarchy there are switches with 10 Gage ports 

(typically 32–128) and significant switching capacity to aggregate traffic between the edges. We 

assume the use of two types of switches, which represent the current high-end in both port density and 

bandwidth. The first, used at the edge of the tree, is a 48-port Gage switch, with four 10 Gage uplinks. 

For higher levels of a communication hierarchy, we consider 128-port 10 Gage switches. Both types of 

switches allow all directly connected hosts to communicate with one another at the full speed of their 

network interface. 

 

Oversubscription 

Many data center designs introduce oversubscription as a means to lower the total cost of the design. 

We define the term over- subscription to be the ratio of the worst-case achievable aggregate bandwidth 

among the end hosts to the total bisection bandwidth of a particular communication topology. An 

oversubscription of 1:1 indicates that all hosts may potentially communicate with arbitrary other hosts 

at the full bandwidth of their network interface (e.g., 1 Gb/s for commodity Ethernet designs). An 

oversubscription value of 5:1 means that only 20% of available host bandwidth is avail- able for some 

communication patterns. Typical designs are over- subscribed by a factor of 2.5:1 (400 Mbps) to 8:1 

(125 Mbps) [1]. Although data centers with oversubscription of 1:1 are possible for 1 Gb/s Ethernet, as 

we discuss in Section 2.1.4, the cost for such designs is typically prohibitive, even for modest-size data 

centers. Achieving full bisection bandwidth for 10 Gb/s Ethernet is not currently possible when 

moving beyond a single switch. 

 

Multi-path Routing 

Delivering full bandwidth between arbitrary hosts in larger clusters requires a “multi-rooted” tree with 

multiple core switches (see Figure 1). This in turn requires a multi-path routing technique, such as 

ECMP [11]. Currently, most enterprise core switches sup- port ECMP. Without the use of ECMP, the 

largest cluster that can be supported with a singly rooted core with 1:1 oversubscription would be 

limited to 1,280 nodes (corresponding to the bandwidth available from a single 128-port 10 Gage 

switch). 

To take advantage of multiple paths, ECMP performs static load splitting among flows. This does not 

account for flow bandwidth in making allocation decisions, which can lead to oversubscription even 

for simple communication patterns. Further, current ECMP implementations limit the multiplicity of 

paths to 8–16, which is often less diversity than required to deliver high bisection band- width for 

larger data centers. In addition, the number of routing table entries grows multiplicatively with the 

number of paths considered, which increases cost and can also increase lookup latency. 

 

Cost 

The cost for building a network interconnect for a large cluster greatly affects design decisions. As we 

discussed above, oversubscription is typically introduced to lower the total cost. Here we give the 

rough cost of various configurations for different number of hosts and oversubscription using current 

best practices. We assume a cost of $7,000 for each 48-port Gage switch at the edge and $700,000 for 

128-port 10 Gage switches in the aggregation and core layers. We do not consider cabling costs in 

these calculations. Figure 2 plots the cost in millions of US dollars as a function of the total number of 

end hosts on the x axis. Each curve rep- resents a target oversubscription ratio. For instance, the 

switching hardware to interconnect 20,000 hosts with full bandwidth among all hosts comes to 

approximately $37M. The curve corresponding to an oversubscription of 3:1 plots the cost to 

interconnect end hosts where the maximum available bandwidth for arbitrary end host communication 

would be limited to approximately 330 Mbps. 
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Figure 1: Common data center interconnect topology. Host to switch links are Gageand links between 

switches are 10 GigE. 

 

 
Table 1: The maximum possible cluster size with an oversubscription ratio of 1:1 for different years. 

 

 
 

Figure 2: Current cost estimate vs. maximum possible number of hosts for different oversubscription 

ratios. 

 

We also include the cost to deliver an oversubscription of 1:1 using our proposed fat-tree architecture 

for comparison. Overall, we find that existing techniques for delivering high levels of bandwidth in 

large clusters incur significant cost and that fat-tree based cluster interconnects hold significant 

promise for de- levering scalable bandwidth at moderate cost. However, in some sense, Figure 2 

understates the difficulty and expense of employing the highest-end components in building data center 

architectures. In 2008, 10 Gage switches are on the verge of becoming commodity parts; there is 

roughly a factor of 5 differential in price per port per bit/sec when comparing Gage to 10 Gage 

switches, and this differential continues to shrink. To explore the historical trend,  we show in Table 1 
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the cost of the largest cluster configuration that could be supported using the highest-end switches 

available in a particular year. We based these values on a historical study of product announcements 

from various vendors of high-end 10 Gage switches in 2002, 2004, 2006, and 2008. 

We use our findings to build the largest cluster configuration that technology in that year could support 

while maintaining an over- subscription of 1:1. Table 1 shows the largest 10 Gage switch avail- able in 

a particular year; we employ these switches in the core and aggregation layers for the hierarchical 

design. Tables 1 also shows the largest commodity Gage switch available in that year; we employ these 

switches at all layers of the fat-tree and at the edge layer for the hierarchical design. 

 

ARCHITECTURE 

In this section, we describe an architecture to interconnect commodity switches in a fat-tree topology. 

We first motivate the need for a slight modification in the routing table structure. We then describe 

how we assign IP addresses to hosts in the cluster. Next, 2Note that switch homogeneity is not 

required, as bigger switches could be used at the core (e.g. for multiplexing). While these likely have a 

longer mean time to failure (MTTF), this defeats the cost benefits, and maintains the same cabling 

overhead. 

we introduce the concept of two-level route lookups to assist with multi-path routing across the fat-

tree. We then present the algorithms we employ to populate the forwarding table in each switch. We 

also describe flow classification and flow scheduling techniques as alternate multi-path routing 

methods. And finally,  we present  a simple fault-tolerance scheme, as well as describe the heat and 

power characteristics of our approach. 

 

Motivation 

Achieving maximum bisection bandwidth in this network requires spreading outgoing traffic from any 

given pod  as evenly  as possible among the core switches. Routing protocols such as OSPF2 [4] 

usually take the hop-count as their metric of “shortest- path,” and in the  k-ary fat-tree topology  (see  

Section 2.2),  there are (k/2)2 such shortest-paths between any two hosts on different pods, but only 

one is chosen. Switches, therefore, concentrate traffic going to a given subnet to a single port even 

though other choices exist that give the same cost. Furthermore, depending on the interleaving of the 

arrival times of OSPF messages, it is possible for a small subset of core switches, perhaps only one, to 

be chosen as the intermediate links between pods. This will cause severe congestion at those points and 

does not take advantage of path redundancy in the fat-tree. 

Extensions such as OSPF-ECMP [10], in addition to being un- available in the class of switches under 

consideration, cause an explosion in the number of required prefixes.  A lower-level pod switch would 

need (k/2) prefixes for every other subnet; a total of k (k/2)2 prefixes. 

We therefore need a simple, fine-grained method of traffic dif- fusion between pods that takes 

advantage of the structure of the topology. The switches must be able to recognize, and give special 

treatment to, the class of traffic that needs to be evenly spread. To achieve this, we propose using two-

level routing tables that spread outgoing traffic based on the low-order bits of the destination IP 

address . 

 

Two-Level Routing Table 

To provide the even-distribution mechanism motivated in Section 3.1, we modify routing tables to 

allow two-level prefix lookup. Each entry in the main routing table will potentially have an additional 

pointer to a small secondary table of (suffix, port) entries. A first-level prefix is terminating if it does 

not contain any second- level suffixes, and a secondary table may be pointed to by more 
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Edge 

 

  Figure 3: Simple fat-tree topology. Using the two-level routing tables described , packets from 

source 10.0.1.2 to destination 10.2.0.3 would take the dashed path. 

 

 
Figure 4:  Two-level  table example.  This is the table at switch 10.2.2.1.    An  incoming  packet  with  

destination  IP address 10.2.1.2 is forwarded on port 1, whereas a packet with destination IP address 

10.3.0.3 is forwarded on port 3. 

 

Two-Level Lookup Implementation 

We now describe how the two-level lookup can be implemented in hardware using Content-

Addressable Memory (CAM) [9]. CAMs are used in search-intensive applications and are faster than 

algorithmic approaches [15] for finding a match against a bit pattern.  A CAM can perform parallel 

searches among  all  its entries in a single clock cycle. Lookup engines use a special kind of CAM, 

called Ternary CAM (TCAM). A TCAM can store don’t care bits in addition to matching 0’s and 1’s 

in particular positions, making it suitable for storing variable length prefixes, such as the ones found in 

routing tables. On the downside, CAMs have rather low storage density,  they are very power  hungry,  

and 

 
Figure 5: TCAM two-level routing table implementation. 

 

expensive per bit. However, in our architecture, routing tables can be implemented in a TCAM of a 

relatively modest size (k entries each 32 bits wide). Figure 5 shows our proposed implementation of 

the two-level lookup engine. A TCAM stores address prefixes and suffixes, which in turn indexes a 

RAM that stores the IP address of the next hop and the output port. We store left-handed (prefix) 

entries in numerically smaller addresses and right-handed (suffix) entries in larger addresses. We 

encode the output of the CAM so that the entry with the numerically smallest matching address is 

output. This satisfies the semantics of our specific application of two-level lookup: when the 

destination IP address of a packet matches both a left-handed and a right-handed entry, then the left-

handed entry is chosen. For example, using the routing table in Figure 5, a packet with destination IP 

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2 

10.0.2.1 10.2.2.1 

10.2.0.1 
10.0.1.1 
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address 10.2.0.3 matches the left-handed entry 10.2.0.X  and the right-handed  entry X.X.X.3.   The   

packet  is correctly forwarded on port 0. However, a packet with destination IP address 10.3.1.2 

matches only the right-handed entry X.X.X.2 and is forwarded on port 2. 

 

Routing Algorithm 

The first two levels of switches in a fat-tree act as filtering traffic diffusers; the lower- and upper-layer 

switches in any given pod have terminating prefixes to the subnets in that pod. Hence, if a host sends a 

packet to another host in the same pod but on a different subnet, then all upper-level switches in that 

pod will have a terminating prefix pointing to the destination subnet’s switch. 

For all other outgoing inter-pod traffic, the pod switches have  a default /0 prefix with a secondary 

table matching host IDs (the least-significant byte of the destination IP address). We employ the host 

IDs as a source of deterministic entropy; they will cause traffic to be evenly spread upward among the 

outgoing links to the core switches3. This will also cause subsequent packets to the same host to follow 

the same path, and therefore avoid packet reordering. 

In the core switches, we assign terminating first-level prefixes for all network IDs, each pointing to the 

appropriate pod containing that network. Once a packet reaches a core switch, there is exactly one link 

to its destination pod, and that switch will include a terminating /16 prefix for the pod of that packet 

(10.pod.0.0/16, port). Once a packet reaches its destination pod, the receiving upper-level pod switch 

will also include a (10.pod.switch.0/24, port) prefix  to direct that packet  to its destination  subnet 

switch,  where  it  is finally switched to its destination host. Hence, traffic diffusion occurs only in the 

first half of a packet’s journey. 

It is possible to design distributed protocols to build the necessary forwarding state incrementally in 

each switch. For simplicity however, we assume a central entity with full knowledge of cluster 

interconnect topology. This central route control is responsible for statically generating all routing 

tables and loading the tables into the switches at the network setup phase. Dynamic routing proto- cols 

would also be responsible for detecting failures of individual switches and performing path failover 

(see Section 3.8). Below, we summarize the steps for generating forwarding tables at both the pods and 

core switches. 

 

Pod Switches 

In each pod switch, we assign terminating prefixes for subnets contained in the same pod. For inter-pod 

traffic, we add a /0 pre- fix with a secondary table matching host IDs. Algorithm 1 shows the pseudo-

code for generating the routing tables for the upper pod switches. The reason for the modulo shift in 

the outgoing port is to avoid traffic from different lower-layer switches addressed to a host with the 

same host ID going to the same upper-layer switch. For the lower pod switches, we simply omit the /24 

subnet pre- fix step, in line 3, since that subnet’s own traffic is switched, and intra- and inter-pod traffic 

should be evenly split among the upper switches. 

 

Core Switches 

Since each core switch is connected to every pod (port i is connected to pod i), the core switches 

contains only terminating /16 prefixes pointing to their destination pods, as shown in Algorithm 2. This 

algorithm generates tables whose size is linear in k. No switch in the network contains a table with 

more than k first-level prefixes or k/2 second-level suffixes. 

 

Routing Example 

To illustrate network operation using the two-level tables, we give an example for the routing decisions 

taken for a packet from source 10.0.1.2 to destination 10.2.0.3, as shown in Figure 3. First, the gateway 

switch of the source host (10.0.1.1) will only match the packet with the /0 first-level prefix, and 

therefore will forward the packet based on the host ID byte according to the secondary table for that 

prefix. In that table, the packet matches the 0.0.0.3/8 suffix, which points to port 2 and switch 10.0.2.1. 

Switch 10.0.2.1 also follows the same steps and forwards on port 3, connected to core switch 10.4.1.1. 
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1 foreach j in [1, (k/2)] do 

2 foreach i in [1, (k/2)] do 

3 

4 

5 

foreach destination pod x in [0, (k/2) − 1] do 

addPrefix(10.k.j.i,10.x.0.0/16, x); 

end 

6 end 

7 end 

The core switch matches the packet to a terminating 10.2.0.0/16 prefix, which points to the destination 

pod 2 

 

 
 

Algorithm 1: Generating aggregation switch routing tables. Assume Function signatures add 

Prefix(switch, prefix, port), add Suffix(switch, suffix, port) and add Suffix adds a second-level suffix 

to the last-added first-level prefix. 

  

Algorithm 2: Generating core switch routing tables. 

 

on port 2, and switch 10.2.2.1. This switch belongs to the same pod as the destination subnet, and 

therefore has a terminating pre- fix, 10.2.0.0/24, which points to the switch responsible for that subnet, 

10.2.0.1 on port 0. From there, standard switching techniques deliver the packet to the destination host 

10.2.0.3. Note that for simultaneous communication from 10.0.1.3 to another host 10.2.0.2, traditional 

single-path IP routing would follow the same path as the flow above because both destinations are on 

the same subnet.  Unfortunately, this would eliminate all of the fan-out benefits of the fat-tree 

topology. Instead, our two-level table lookup allows switch 10.0.1.1 to forward the second flow to 

10.0.3.1 based on right-handed matching in the two-level table. 

 

Flow Classification 

In addition to the two-level routing technique described above, we also consider two optional dynamic 

routing techniques, as they are currently available in several commercial routers [10, 3]. Our goal is to 

quantify the potential benefits of these techniques but acknowledge that they will incur additional per-

packet overhead. Importantly, any maintained state in these schemes is soft and individual switches can 

fall back to two-level routing in case the state is lost. 

As an alternate method of traffic diffusion to the core switches, we perform flow classification with 

dynamic port-reassignment in pod switches to overcome cases of avoidable local congestion (e.g. when 

two flows compete for the same output port, even though another port that has the same cost to the 

destination is underused). We define a flow as a sequence of packets with the same entries for a subset 

of fields of the packet headers (typically source and destination IP addresses, destination transport 

port). In particular, pod switches: 

Recognize subsequent packets of the same flow, and forward them on the same outgoing port. 

1 foreach pod x in [0,k − 1] do 

3 

4 

5 

6 

7 

8 

2 foreach switch z in [(k/2),k − 1] do 

foreach subnet i in [0, (k/2) − 1] do 
addPrefix(10.x.z.1, 10.x.i.0/24, i); 

end 
addPrefix(10.x.z.1, 0.0.0.0/0, 0); 

foreach host ID i in [2, (k/2) + 1] do 

addSuffix(10.x.z.1, 0.0.0.i/8, 

9 end 
(i − 2+ z)mod(k/2) + (k/2)); 

10 end 

11 end 
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Periodically reassign a minimal number of flow output ports to minimize any disparity between the 

aggregate flow capacity of different ports. 

Step 1 is a measure against packet reordering, while step 2 aims to ensure fair distribution on flows on 

upward-pointing ports in the face of dynamically changing flow sizes. Section 4.2 describes our 

implementation and flow distribution heuristic of the flow classifier in more detail. 

 

Flow Scheduling 

Several studies have indicated that the distribution of transfer times and burst lengths of Internet traffic 

is long-tailed [14], and characterized by few large long-lived flows (responsible for most of the 

bandwidth) and many small short-lived ones [16]. We argue that routing large flows plays the most 

important role in determining the achievable bisection bandwidth of a network and therefore merits 

special handling. In this alternative approach to flow management, we schedule large flows to 

minimize overlap with one another. A central scheduler makes this choice, with global knowledge of 

all active large flows in the network. In this initial design, we only consider the case of a single large 

flow originating from each host at a time. 

 

Edge Switches 

As before, edge switches locally assign a new flow to the least- loaded port initially. However, edge 

switches additionally detect any outgoing flow whose size grows above a predefined threshold, and 

periodically send notifications to a central scheduler specifying the source and destination for all active 

large flows. This represents a request by the edge switch for placement of that flow in an un- 

contended path. 

Note that unlike Section 3.6, this scheme does not allow edge switches to independently reassign a 

flow’s port, regardless of size. The central scheduler is the only entity with the authority to order a re-

assignment. 

 

Central Scheduler 

A central scheduler, possibly replicated, tracks all active large flows and tries to assign them non-

conflicting paths if possible. The scheduler maintains Boolean state for all links in the network 

signifying their availability to carry large flows. For inter-pod traffic, recall that there are (k/2)2 

possible paths between any given pair of hosts in the network, and each of these paths corresponds to a 

core switch. When the scheduler receives  a notification of a new flow, it linearly searches through the 

core switches to find one whose corresponding path components do not include a reserved link.4 Upon 

finding such a path, the scheduler marks those links as reserved, and notifies the relevant lower- and 

upper-layer switches in the source pod with the correct outgoing port that corresponds to that flow’s 

chosen path. A similar search is performed for intra-pod large flows; this time for an uncondensed path 

through an upper-layer pod switch. The scheduler garbage collects flows whose last update is older 

than a given time, clearing their reservations. Note that the edge switches do not block and wait for the 

scheduler to perform this computation, but initially treat a large flow like any other. Fault-Tolerance 

The redundancy of available paths between any pair of hosts makes the fat-tree topology attractive for 

fault-tolerance. We pro- pose a simple failure broadcast protocol that allows switches to route around 

link- or switch-failures one or two hops downstream. In this scheme, each switch in the network 

maintains a Bidirectional Forwarding Detection session (BFD [10]) with each of its neighbors to 

determine when a link or neighboring switch fails. From a fault-tolerance perspective, two classes of 

failure can be weathered: (a) between lower- and upper-layer switches inside a pod, and (b) between 

core and a upper-level switches. Clearly, the failure of a lower-level switch will cause disconnection 

for the directly connected hosts; redundant switch elements at the leaves are the only way to tolerate 

such failures. We describe link failures here because switch failures trigger the same BFD alerts and 

elicit the same responses. 
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Lower- to Upper-layer Switches 

A link failure between lower- and upper-level switches affects three classes of traffic: Outgoing inter- 

and intra-pod traffic originating from the lower-layer switch. In this case the local flow classifier sets 

the ‘cost’ of that link to infinity and does not assign it any new flows, and chooses another available 

upper-layer switch. 

Intra-pod traffic using the upper-layer switch as an intermediary. In response, this switch broadcasts a 

tag notifying all other lower-layer switches in the same pod of the link failure. These switches would 

check when assigning new flows whether the intended output port corresponds to one of those tags and 

avoid it if possible.5 

Inter-pod traffic coming into the upper-layer switch. The core switch connected to the upper-layer 

switch has  it as  its only access to that pod, therefore the upper-layer switch broadcasts this tag to all 

its core switches signifying its in- ability to carry traffic to the lower-layer switch’s subnet. These core 

switches in turn mirror this tag to all upper-layer switches they are connected to in other pods. Finally, 

the upper-layer switches avoid the single affected core switch when assigning new flows to that subnet. 

 

Upper-layer to Core Switches 

A failure of a link from an upper-layer switch to a core affects two classes of traffic: 

Outgoing inter-pod traffic, in which case the local routing table marks the affected link as unavailable 

and locally chooses another core switch.  

Incoming inter-pod traffic. In this case the core switch broad- casts a tag to all other upper-layer 

switches it is directly connected to signifying its inability to carry traffic to that entire pod. As before, 

these upper-layer switches would avoid that core switch when assigning flows destined to that pod. 

Naturally, when failed links and switches come back up and reestablish their BFD sessions, the 

previous steps are reversed to cancel their effect. In addition, adapting the scheme of Section 3.7 to 

accommodate link- and switch-failures is relatively simple. The scheduler marks any link reported to 

be down as busy or unavailable, thereby disqualifying any path that includes it from consideration, in 

effect routing large flows around the fault. 

 

Power and Heat Issues 

Besides performance and cost, another major issue that arises in data center design is power 

consumption. The switches that make up the higher tiers of the  interconnect in data centers typically 

consume thousands of Watts, and in a large-scale data center the power requirements of the 

interconnect can be hundreds of kilowatts. Almost equally important is the issue of heat dissipation 

from the switches. Enterprise-grade switches generate considerable amounts of heat and thus require 

dedicated cooling systems. 

 
Figure 6: Comparison of power and heat dissipation. 
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In this section we analyze the power requirements and heat dissipation in our architecture and compare 

it with other typical approaches. We base our analysis on numbers reported in the switch data sheets, 

though we acknowledge that these reported values are measured in different ways by different vendors 

and hence may not always reflect system characteristics in deployment. 

Procure 2900 edge switches and 54 Big Iron RX-32 switches (36 in the aggregation and 18 in the core 

layer). The fat-tree architecture employs 2,880 Net gear GSM 7252S switches. We are able to use the 

cheaper Net Gear switch because we do not require 10 Gage uplinks (present in the Procure) in the fat-

tree interconnect.  

 

IMPLEMENTATION 

To validate the communication architecture described in this pa- per, we built a simple prototype of the 

forwarding algorithms de- scribed in the previous section. We have completed a prototype using 

NetFPGAs [14]. The NetFPGA contains an IPv4 router implementation that leverages TCAMs. We 

appropriately modified the routing table lookup routine.. Our modifications totaled less than 100 lines 

of additional code and introduced no measureable additional lookup latency, supporting our belief that 

our proposed modifications can be incorporated into existing switches. 

To carry out larger-scale evaluations, we also built a prototype using Click, the focus of our evaluation 

in this paper. Click [15] is a modular software router architecture that supports implementation of 

experimental router designs. A Click router is a graph of packet processing modules called elements 

that perform tasks such as routing table lookup or decrementing a packet’s TTL. When chained 

together, Click elements can carry out complex router functionality and protocols in software. 

 

Two Level Table 

We build a new Click element, Two Level Table, which implements the idea of a two-level routing 

table described in Section 3.3. This element has one input, and two or more outputs. The routing 

table’s contents are initialized using an input file that gives all the prefixes and suffixes. For every 

packet, the Two Level Table element looks up the longest-matching first-level prefix. If that prefix is 

terminating, it will immediately forward the packet on that prefix’s port. Otherwise, it will perform a 

right-handed longest-matching suffix search on the secondary table and forward on the corresponding 

port. 

This element can replace the central routing table element of the standards-compliant IP router 

configuration example provided in [12]. We generate an analogous 4-port version of the IP router with 

the added modification of bandwidth-limiting elements on all ports to emulate link saturation capacity. 

 

 
Figure 7: Comparison of total power consumption and heat dissipation. 
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// Call on every incoming packet 

1 IncomingPacket(packet) 
2 begin 

3 Hash source and destination IP fields of packet; 

// Have we seen this flow before? 

4 if seen(hash) then 

5 

6 

7 else 

8 

9 

10 

11 end 

12 end 

Lookup previously assigned port x; Send packet on port x; 

Record the new flow f ; 
Assign f to the least-loaded upward port x; Send the packet 
on port x; 

// Call every t seconds 
13 RearrangeFlows() 

14 begin 
15 for i=0 to 2 do 

16 Find upward ports pmax and pmin with the largest and smallest aggregate outgoing traffic, 
respectively; 

17 Calculate D, the difference between pmax and pmin; 

18 Find the largest flow f assigned to port pmax whose size is smaller than D; 
19 if such a flow exists then 

20 Switch the output port of flow f to pmin; 
21 end 

22 end 

23 end 

To compare the power requirement for each class of switch, we normalize the total power consumption 

and heat dissipation by the switch over the total aggregate bandwidth that a switch can support in 

Gbps. Figure 6 plots the average over three different switch models. As we can see, 10 Gage switches 

(the last three on the x-axis) consume roughly double the Watts per Gbps and dissipate roughly three 

times the heat of commodity Gage switches when normalized for bandwidth. Finally, we also 

calculated the estimated total power consumption and heat dissipation for an interconnect that can 

support roughly 27k hosts. For the hierarchical design, we employ 576 Flow Classifier To provide the 

flow classification functionality described in Section 3.6, we describe our implementation of the Click 

element Flow Classifier that has one input and two or more outputs. It performs simple flow 

classification based on the source and destination IP addresses of the incoming packets, such that 

subsequent packets with the same source and destination exit the same port (to avoid packet 

reordering). The element has the added goal of minimizing the difference between the aggregate flow 

capacity of its highest- and lowest-loaded output ports. 

Even if the individual flow sizes are known in advance, this problem is a variant of the NP-hard Bin 

Packing optimization problem [17]. However, the flow sizes are in fact not known a priori, making the 

problem more difficult. We follow the greedy heuristic outlined in Algorithm 3. Every few seconds, 

the heuristic at- tempts to switch, if needed, the output port of at most three flows to minimize the 

difference between the aggregate flow capacity of its output ports. 

 

Algorithm 3: The flow classifier heuristic. For the experiments in Section 5, t is 1 second. 

 

Recall that the Flow Classifier element is an alternative to the two-level table for traffic diffusion. 

Networks using these elements would employ ordinary routing tables. For example, the routing table of 

an upper pod switch contains all the subnet prefixes assigned to that pod like before. However, in 

addition, we add a /0 prefix to match all remaining inter-pod traffic that needs to be evenly spread 

upwards to the core layer. All packets that match only that prefix are directed to the input of the Flow 

Classifier. The classifier tries to evenly distribute outgoing inter-pod flows among its outputs ac- 

cording to the described heuristic, and its outputs are connected directly to the core switches. The core 

switches do not need a classifier, and their routing tables are unchanged. 

Note that this solution has soft state that is not needed for correctness, but only used as a performance 
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optimization. This classifier is occasionally disruptive, as a minimal number of flows may be re-

arranged periodically, potentially resulting in packet reordering. However, it is also adaptive to 

dynamically changing flow sizes and ‘fair’ in the long-term.6 

 

Flow Scheduler 

we implemented the element Flow Reporter, which resides in all edge switches, and detects outgoing 

flows whose size is larger than a given threshold. It sends regular notifications to the central scheduler 

about these active large flows. 

The Flow Scheduler element receives notifications regarding active large flows from edge switches 

and tries to find uncondensed paths for them. To this end, it keeps the binary status of all the links in 

the network, as well as a list of previously placed flows. For any new large flow, the scheduler 

performs a linear search among all equal-cost paths between the source and destination hosts to find 

one whose path components are all unreserved. Upon finding such a path, the flow scheduler marks all 

the component links as reserved and sends notifications regarding this flow’s path to the concerned pod 

switches. We also modify the pod switches to process these port re-assignment messages from the 

scheduler. 

The scheduler maintains two main data structures: a binary array of all the links in the network (a total 

of 4   k   (k/2)2 links), and  a hash table of previously placed flows and their assigned paths. The linear 

search for new flow placement requires on average 2 (k/2)2 memory accesses, making the 

computational complexity of the scheduler to be O(k3) for space and O(k2) for time. A typical value 

for k (the number of ports per switch) is 48, making both these values manageable. 

 

EVALUATION 

To measure the total bisection bandwidth of our design, we generate a benchmark suite of 

communication mappings to evaluate the performance of the 4-port fat-tree using the Two Level Table 

switches, the Flow Classifier and the Flow Scheduler. We compare these methods to a standard 

hierarchical tree with a 3.6:1 oversubscription ratio, similar to ones found in current data center 

designs. 

 

Experiment Description 

In the 4-port fat-tree, there are 16 hosts, four pods (each with four switches), and four core switches. 

Thus,  there is a total of  20 switches and 16 end hosts (for larger clusters, the number of switches will 

be smaller than the number of hosts). We multiplex these 36 elements onto ten physical machines, 

interconnected by a 48-port Procure 2900 switch with 1 Gigabit Ethernet links. These machines have 

dual-core Intel Xeon CPUs at 2.33GHz, with 4096KB cache and 4GB of RAM, running Debian 

GNU/Linux 2.6.17.3.   

Each pod of switches is hosted on one machine; each pod’s hosts are hosted on one machine; and the 

two remaining machines run two core switches each. Both the switches and the hosts are Click 

configurations, running in user level. All virtual links between the Click elements in the network are 

bandwidth-limited to 96Mbit/s to ensure that the configuration is not CPU limited. 

For the comparison case of the hierarchical tree network, we have four machines running four hosts 

each, and four machines each running four pod switches with one additional uplink. The four pod 

switches are connected to a 4-port core switch running on a dedicated machine. To enforce the 3.6:1 

oversubscription on the uplinks from the pod switches to the core switch, these links are bandwidth-

limited to 106.67Mbit/s, and all other links are limited to 96Mbit/s. Each host generates a constant 

96Mbit/s of outgoing traffic. We measure the rate of its incoming traffic. The minimum aggregate in- 

coming traffic of all the hosts for all bijective communication map- pings is the effective bisection 

bandwidth of the network. 
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Test Tree Two-Level 

Table 

Flow 

Classification 

Flow 

Scheduling 

Random 53.4% 75.0% 76.3% 93.5% 

Stride (1) 100.0

% 

100.0% 100.0% 100.0% 

Stride (2) 78.1% 100.0% 100.0% 99.5% 

Stride (4) 27.9% 100.0% 100.0% 100.0% 

Stride (8) 28.0% 100.0% 100.0% 99.9% 

Staggered Prob 

(1.0, 0.0) 

100.0

% 

100.0% 100.0% 100.0% 

Staggered Prob 

(0.5, 0.3) 

83.6% 82.0% 86.2% 93.4% 

Staggered Prob 

(0.2, 0.3) 

Worst cases: 

64.9% 75.6% 80.2% 88.5% 

Inter-pod 

Incoming 

28.0% 50.6% 75.1% 99.9% 

Same-ID 

Outgoing 

27.8% 38.5% 75.4% 87.4% 

Table 2: Aggregate Bandwidth of the network, as a percentage of ideal bisection bandwidth for the 

Tree, Two-Level Table, Flow Classification, and Flow Scheduling methods. The ideal bisection 

bandwidth for the fat-tree network is 1.536Gbps. 

 

Staggered Prob (Subnet P, Pod P ): Where a host will send to another host in its subnet with probability 

Subnet P , and to its pod with probability Pod P , and to anyone else with probability 1 − SubnetP – 

Pod P. Inter-pod Incoming: Multiple pods send to different hosts in the same pod, and all happen to 

choose the same core switch. That core switch’s link to the destination pod will be oversubscribed. The 

worst-case local oversubscription ratio for this case is (k − 1) : 1. Same-ID Outgoing: Hosts in the 

same subnet send to different hosts elsewhere in the network such that the destination hosts have the 

same host ID byte. Static routing techniques force them to take the same outgoing upward port. The 

worst-case ratio for this case is (k/2) : 1. This is the case where the Flow Classifier is expected to 

improve performance the most. 

 

Results 

Table 2 shows the results of the above described experiments. These results are averages across 5 

runs/permutations of the bench- mark tests, over 1 minute each. As expected, for any all-inter-pod 

communication pattern, the traditional tree saturates the links to the core switch, and thus achieves 

around 28% of the ideal bandwidth for all hosts in that case. The tree performs significantly better the 

closer the communicating pairs are to each other. 

The two-level table switches achieve approximately 75% of the ideal bisection bandwidth for random 

communication patterns. This can be explained by the static nature of the tables; two hosts on any 

given subnet have a 50% chance of sending to hosts with the same host ID, in which case their 

combined throughput is halved since they are forwarded on the same output port. This makes the 

expectation of both to be 75%. We expect the performance for  the two-level table to improve for 

random communication with increasing k as there will be less likelihood of multiple flows colliding on 

a single link with higher k.  

The inter-pod incoming case for the two-level table gives a 50% bisection bandwidth; however, the 

same-ID outgoing effect is compounded further by congestion in the core router.Because of its 

dynamic flow assignment and re-allocation, the flow classifier out performs both  the traditional tree 

and  the two level table in all cases, with a worst-case bisection bandwidth of approximately 75%. 

However, it remains imperfect because the type of congestion it avoids is entirely local; it is possible to 

• • • 
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cause congestion at a core switch because of routing decisions made one or two hops upstream. This 

type of sub-optimal routing occurs because the switches only have local knowledge available. 

The Flow Scheduler, on the other hand, acts on global knowledge and tries to assign large flows to 

disjoint paths, thereby achieving 93% of the ideal bisection bandwidth for random communication 

mappings, and outperforming all other methods in all the bench- mark tests. The use of a centralized 

scheduler with knowledge of all active large flows and the status of all links may be infeasible for large 

arbitrary networks, but the regularity of the fat-tree topology greatly simplifies the search for 

uncontended paths. 

In a separate test, Table 3 shows the time and space requirements for the central scheduler when run on 

a modestly-provisioned 2.33GHz commodity PC. For varying k, we generated fake place- ment 

requests (one per host) to measure the average time to process a placement request, and the total 

memory required for the maintained link-state and flow-state data structures. For a network of 27k 

hosts, the scheduler requires a modest 5.6MB of memory and could place a flow in under 0.8ms. 

 

 

k Hosts Avg Time/ 

Req (µs) 

Link-state 

Memory 

Flow-state 

Memory 

4 16 50.9 64 B 4 KB 

16 1,024 55.3 4 KB 205 KB 

24 3,456 116.8 14 KB 691 KB 

32 8,192 237.6 33 KB 1.64 MB 

48 27,648 754.43 111 KB 5.53 MB 

Table 3: The flow scheduler’s time and memory requirements. 

 

PACKAGING 

One drawback of the fat-tree topology for cluster interconnects is the number of cables needed to 

interconnect all the machines. One trivial benefit of performing aggregation with 10 Gage switches is 

the factor of 10 reduction in the number of cables required to transfer the same amount of bandwidth 

up the hierarchy. In our proposed fat-tree topology, we do not leverage 10 Gage links or switches both 

because non-commodity pieces would inflate cost and, more importantly, because the fat-tree topology 

critically depends upon a large fan-out to multiple switches at each layer in the hierarchy to achieve its 

scaling properties. 

Acknowledging that increased wiring overhead is inherent to the fat tree topology, in this section we 

consider some packaging techniques to mitigate this overhead. In sum, our proposed packaging 

technique eliminates most of the required external wiring and reduces the overall length of required 

cabling, which in turn simplifies cluster management and reduces total cost. Moreover, this method 

allows for incremental deployment of the network. 

We also considered an alternate design that did not collect the switches into a central rack. In this 

approach, two 48-port switches would be distributed to each rack. Hosts would interconnect to the 

switches in sets of 24. This approach has the advantage of requiring much shorter cables to connect 

hosts to their first hop switch and for eliminating these cables all together if the racks were 

appropriately internally packaged. We discarded this approach because we would lose the opportunity 

to eliminate the 576 cables within each pod that interconnect the edge and aggregation layers. These 

cables would need to crisscross the 12 racks in each pod, adding significant complexity. 

 

RELATED WORK 

Our work in data center network architecture necessarily builds upon work in a number of related 

areas. Perhaps most closely related to our efforts are various efforts in building scalable inter- 

connects, largely coming out of the supercomputer and massively48 machines 48 machines  48 

machines  parallel processing (MPP) communities. Many MPP interconnects have been organized as 

fat-trees, including systems from Thinking to accommodate all 48 pods. Once again, this grid layout 
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will re- duce inter-pod cabling distance to appropriate core switches and will support some 

standardization of cable lengths and packaging to support inter-pod connectivity. 

 

 
 

Figure 8: Proposed packaging solution. The only external cables are between the pods and the core 

nodes. 

 

We present our approach in the context of a maximum-capacity 27,648-node cluster leveraging 48-port 

Ethernet switches as the building block of the fat-tree. This design generalizes to clusters of different 

sizes. We begin with the design of individual pods that make up the replication unit for the larger 

cluster, see Figure 8. Each pod consists of 576 machines and 48 individual 48-port Gage switches. For 

simplicity, we assume each end host takes up one rack unit (1RU) and that individual racks can 

accommodate 48 ma- chins. Thus, each pod consists of 12 racks with 48 machines each. We place the 

48 switches that make up the first two layers of the fat-tree in each pod in a centralized rack. However, 

we assume the ability to package the 48 switches into a single monolithic unit with 1,152 user-facing 

ports. We call this the pod switch. Of these ports, 576 connect directly to the machines in the pod, 

corresponding to connectivity at the edge. Another 576 ports fan out to one port on each of the 576 

switches that make up the core layer in the fat- tree.  Note that the 48 switches packaged in this manner 

actually have 2,304 total ports (48   48).   The other 1,152 ports are wired internally in the pod switch 

to account for the required interconnect between the edge and aggregation layers of the pod (see Figure 

3). We further spread the 576 required core switches that form the top of the fat-tree across the 

individual pods. Assuming a total of 48 pods, each will house 12 of the required core switches. Of the 

576 cables fanning out from each pod switch to the core, 12 will connect directly to core switches 

placed nearby in the same pod. The remaining cables would fan out, in sets of 12, to core switches 

housed in remote pods. Note that the fact that cables move in sets of 12 from pod to pod and in sets of 

48 from racks to pod switches opens additional opportunities for appropriate “cable packaging” to 

reduce wiring complexity. 

Finally, minimizing total cable length is another important consideration. To do so, we place racks 

around the pod switch in two dimensions, as shown in Figure 8 (we do not consider three dimensional 

data center layouts). Doing so will reduce cable lengths relative to more “horizontal” layouts of 

individual racks  in a pod. Similarly, we lay pods out in a 7 × 7 grid (with one missing spot) Machines 

[13] and SGI [13]. Thinking Machines employed pseudo-random forwarding decisions to perform load 

balancing among fat-tree links. While this approach achieves good load balancing, it is prone to packet 
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reordering. Myrinet switches [6] also employ fat-tree topologies and have been popular for cluster-

based supercomputers. Marinette employs source routing based on predetermined topology knowledge, 

enabling cut-through low latency switch implementations. Hosts are also responsible for load 

balancing among available routes by measuring round-trip latencies. Relative to all of these efforts, we 

focus on leveraging commodity Ethernet switches to interconnect large-scale clusters, showing 

techniques for appropriate routing and packaging. 

Infinite Band [2] is a popular interconnect for high-performance computing environments and is 

currently migrating to data center environments. Infinite Band also achieves scalable bandwidth using 

variants of Close topologies. For instance, Sun recently announced a 3,456-port Infinite Band switch 

built from 720 24-port Infinite Band switches arranged in a 5-stage fat-tree [4]. However, Infinite Band 

imposes its own layer 1-4 protocols, making Ethernet/IP/TCP more attractive in certain settings 

especially as the price of 10Gbps Ethernet continues to drop. 

Another popular MPP interconnect topology is a Torus, for in- stance in the Blue Gene/L [5] and the 

Cray XT3 [12]. A torus directly interconnects a processor to some number of its neighbors in a k-

dimensional lattice. The number of dimensions determines the expected number of hops between 

source and destination. In an MPP environment, a torus has the benefit of not having any dedicated 

switching elements along with electrically simpler point-to- point links. In a cluster environment, the 

wiring complexity of a torus quickly becomes prohibitive and offloading all routing and forwarding 

functions to commodity hosts/operating systems is typically impractical. 

Our proposed forwarding techniques are related to existing routing techniques such as OSPF2 and 

Equal-Cost Multipath (ECMP) [5, 3, 9]. Our proposal for multi-path leverages particular properties of 

a fat-tree topology to achieve good performance. Relative to our work, ECMP proposes three classes of 

stateless forwarding algorithms: (i) Round-robin and randomization; (ii) Region splitting where a 

particular prefix is split into two with a larger mask length; and (iii) A hashing technique that splits 

flows among a set of output ports based on the source and destination addresses. The first approach 

suffers from potential packet reordering issues, especially problematic for TCP. The second approach 

can lead to a blowup in the number of routing prefixes.   In a network with 25,000 hosts, this will 

require approximately 600,000 routing table entries. In addition to increasing cost, the table lookups at 

this scale will incur significant latency. For this reason, current enterprise-scale routers allow for a 

maximum of 16-way ECMP routing. The final approach does not account for flow bandwidth in 

making allocation decisions, which can quickly lead to oversubscription even for simple 

communication patterns. 

 

CONCLUSIONS 

Bandwidth is increasingly the scalability bottleneck in large- scale clusters. Existing solutions for 

addressing this bottleneck center around hierarchies of switches, with expensive, non-commodity 

switches at the top of the hierarchy. At any given point in time, the port density of high-end switches 

limits overall cluster size while at the same time incurring high cost. In this paper, we present a data 

center communication architecture that leverages commodity Ethernet switches to deliver scalable 

bandwidth for large-scale clusters. We base our topology around the fat-tree and then present 

techniques to perform scalable routing while remaining backward compatible with Ethernet, IP, and 

TCP.  

Overall, we find that we are able to deliver scalable bandwidth at significantly lower cost than existing 

techniques. While additional work is required to fully validate our approach, we believe that larger 

numbers of commodity switches have the potential to displace high-end switches in data centers in the 

same way that clusters of commodity PCs have displaced supercomputers for high-end computing 

environments. 
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