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Abstract 

Recently IoT, as one of the emerging and developing concepts, is rapidly evolving into other aspects 

such as smart cities and smart buildings, by enabling physical things and devices, including sensors, 

smartphones, and cameras, to interact .The exponential increase in the number of connected things 

has accelerated the development of new applications and services. These applications and services 

have new requirements, including dynamic management and control, and QoS that conventional 

network platforms are unable to meet. In other words, Software-Defined Networking (SDN) and 

Multi-access Edge Computing (MEC) can be a promising solution in IoT. SDN separates the control 

plane from the forwarding plane to enable more automated provisioning and policy-based 

management of network resources. With edge computing solutions we can enhance the data delivery 

ratio and processing power, decrease delays. So in this article, we propose and evaluate an SDN-

based architecture for the smart city applications using the SDN and MEC concepts. Simulation 

results show that the proposed SDN-based architecture outperforms conventional architecture. 
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1. Introduction 
 

With the rapid growth of the internet and computer networking technologies, including IoT, we are 

witnessing the emergence of new concepts (e.g. smart cities). The consequence of this growth is the increase 

in the number of connected devices such as smartphones and the increase in users. According to Cisco annual 

internet report white paper, the number of connected devices will be 14.7 billion and over 70 percent of the 

global population will have mobile connectivity and the total number of global mobile subscribers will grow 

from 5.1 billion (66 percent of the population) in 2018 to 5.7 billion (71 percent of the population) by 2023 

[1]. This poses major challenges in their respective networks. The most important challenges of this rapid 

growth are the complexity of network management and the lack of scalability. Other problems are the increase 

in network traffic, delay, and congestion. Smart city services and applications resource requests often requested 

on demand from many IoT devices and end-user devices at different locations. These applications have 

stringent requirements, such as low latency. Some smart city applications and services such as e-health and 

even security and energy are not only useful but also critical to serve at an expected time with higher QoS. 

With current networking technologies, those challenges and requirements cannot meet. To meet these strict 

requirements it is essential that networking technologies adapt to future needs by applying new concepts such 

as Software Defined Networking or SDN and Multi-access Edge Computing or MEC. Open Networking 

Foundation or ONF defined SDN as an emerging architecture and perfect for the high-bandwidth, dynamic 

nature of today’s applications. This is because of the dynamic, manageable, cost-effective, and adaptable 

characteristics of SDN [2]. SDN architecture separates the network control from forwarding functions. With 

the separation of the network control plane and data plane or forwarding functions we can make the network 

control to become directly programmable and the underlying infrastructure to be abstracted for applications 

and network services. SDN can centrally control and manage the entire network and this can take by dynamic 

network programming. 
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A centralized SDN controller as the heart of the network can optimize network operation dynamically. 

Multi-access Edge Computing or MEC as described by ETS offers application developers and content 

providers cloud-computing capabilities and an IT service environment at the edge of the network [3]. The edge 

of the network is characterized by ultra-low latency and high bandwidth as well as real-time access to radio 

network information that can be leveraged by applications [3]. By using MEC real-time and low latency 

applications can serve efficiently. ETSI in collaboration with OpenFog Consortium is currently producing 

standards for MEC API. ETSI formed an industry specification group (ISG) that is tasked with creating MEC 

standards that optimize the benefits for all players.  

The main goal focuses on cooperation between network operators, applications, and content providers to 

boost the overall user experience. The IoT environments such as smart cities consist of a massive number of 

heterogeneous sensors, actuators, smartphones and so on that connect together with network infrastructure, so 

it needs flexible architecture to dynamically manage and control devices and networks. In this paper first, we 

propose a simple model for smart city networks that leverage SDN and then evaluate and compare network 

performances with or without SDN technology. In fact, the main objective is to evaluate the performances of 

the network under different types of traffics and study the role of the SDN controller. The remainder of the 

paper is organized as follows: Section II reviews some related works. In section III a brief overview of SDN 

is explained. Section IV proposes the SDSC model. Section V analyzes results and the paper concluded in 

section VI. 

 

2. Related Works 
 

Muhammet et al. [4] to deal with big data problem that generated by physical objects in IoT environments, 

propose an IoT architecture based on Software Defined Networking (SDN). To overcome the big data problem 

of IoT, they evaluated the usefulness of the sensed values in the lower layer, especially in the gateway layer, 

instead of the application layer. Therefore the number of packets that being sent to the internet is reduced. 

Tryfon et al. [5] introduce an SDN solution for WSNs called CORAL-SDN. Their proposal try to solve 

problems that arise with integrating SDN with WSN such as an increased amount of control packets that SDN 

produces and impairs the low quality of radio communication.  Do Sinh et al. [6] propose an SDN/NFV 

architecture to meet IoT requirements for deploying IoT framework. Their proposed architecture is capable of 

orchestrating the whole network by SDN controller applications. They studied the roles of SDN/NFV in 

deploying IoT services. Intidhar et al. [7] analyze and compare the performances of the SDN-based networking 

architecture with the traditional networking architecture. Then they use different SDN controllers deploying 

to three topologies and send traffic from different protocols. After measurements of some of the network’s 

criteria, they compare performances of the underlying networks. Raül et al. [8] propose IoT-aware multilayer 

transport software-defined networking and edge/cloud orchestration architecture. Their architecture deploys 

an IoT traffic control and congestion avoidance mechanism that considers the dynamic distribution of IoT 

processing to the edge of the network in terms of actual network resource state. Chuan Feng Xu et al. [9] 

according to Traffic Classification (DDTC) for smart cities, propose a DDoS attack Defense strategy. To 

increase flexibility and reduce the load of SDN against DDoS attacks, they use software-defined network 

function virtualization or SDNFV with a mechanism for traffic classification. Chuan Lin et al. [10] to schedule 

the transfer of delay-sensitive traffic, propose a TE engine DTE-SDN by using SDN. DTE-SDN monitor QoS 

metrics such as throughput and delay of each network link by grabbing an overall view of the network in real-

time that is possible by using OpenFlow protocol.  

Shen Wang et al. [11] by using transfer learning and IEC 61850 standards, propose a mechanism called 

SSDS or smart software-defined security for one of the most important components for smart cities called 

vehicle-to-grid or V2G which provide novel energy storage and scheduling approach. Ji-Young Kwak et al. 

[12]  by functions of the flexibility of control and analytics based on SDN,  propose the SDN controller for 

intelligent inter-datacenter (inter-DC) cloud networking. Their proposal enables optimal traffic loads 

distribution across the distributed datacenters with the global inter-DC view of link states and flows statistics 

by applying the network-aware flow scheduling on a policy-driven inter-DC traffic control layer.  

Djabir Abdeldjalil Chekired et al. [13] by using a decentralized cloud computing architecture based on SDN 

and NFV, present a pricing model that is real-time and dynamic for EVs charging and discharging service and 

building energy management, in order to reduce the peak loads. Zhiyong Zhang et al. [14] with a practical 

SDN-based network architecture for IoT propose an Optimal Control Channel (OCC) policy. In order to reduce 
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the performance loss caused by unstable IoT nodes, OCC selects the minimum number of nodes to establish a 

stable OpenFlow channel.  

Albert Rego et al. [15] for managing and controlling the actions of emergency services and the evacuation 

plans, propose an SDN based architecture. This work focuses on SDN based networks that deploy in smart 

cities. Samir Kumar Tarai et al. [16] propose a well-defined strategy of Master-Equal-Slave (M-E-S) 

controllers combination that takes care of controller fault tolerance. This work optimizes the flow setup time 

for dynamically changing network conditions by focuses on the dual problem of optimal and secure controller 

placement in an SDN based network. Jean-Charles Grégoire [17] presents a solution to the problem of 

integrating networks of sensors and actuator devices for smart city applications. The author proposes 

architectural elements and discusses the use of the implementation of this framework from modern hybrid 

networking/computing technology, such as SDN/NFV. Igor Miladinovic et al. [18] for the optimal allocation 

of smart city applications between MEC and cloud, propose an IoT architecture based on SDN.   They use 

machine learning methods to taking decisions.  

Shirajum Munir et al. [19] concentrate on a large volume of multidimensional smart city network data 

challenges. They propose a distributed model for smart city network, based on the SDN IoT network to solve 

that challenge. Their proposal introduce a fog-based SDN controller with three modules: an intelligent agent, 

fog unit and virtual mesh topology. They use a reinforcement learning (RL) algorithm for IoT network that 

accomplishes city services. Jahidul Islam et al. [20] propose a distributed secure SDN-IoT architecture with 

NFV implementation for smart cities called Black SDN-IoT. Their proposal improves security, reliability, and 

privacy by using SDN, for both metadata and payload within each layer. With Black SDN-IoT, they tried to 

present a more effective approach for building clusters. 

 

3. SDN overview 
 

This section presents an overview of the Open Networking Foundation SDN architecture and then apply 

SDN architecture to very common network architecture for a smart city. IoT and smart city networks have 

time-sensitive and heterogeneous traffic and it is important to reduce the bandwidth consumption and other 

timing-related needs such as throughput, packet loss, delay, and jitter. Traditional networks are hardware-

centric. In a large traditional network, it is very hard for network administrators to reconfigure network devices 

such as routers and switches, and hence network management and control are very complicated tasks. SDN 

architecture as an evolution of network technology has emerged and aimed to create networks with more 

flexibility and better management with lower complexity. The main idea of SDN is decoupling the control 

plane from the data plane. SDN enables better programmability, agility, and flexibility in the network and 

allows to manage network centrally that keeps a global view of the network [2]. With a centralized SDN 

controller, network administrators can address quickly changes in the network.  

 
 

Figure 1 – Basic SDN components [2] 

 
Based on the Open Networking Foundation definition, SDN has three planes (layers), 

i) Application plane (layer) 

This plane is at the top of the SDN architecture, which consists of one or more end-user applications 

(traffic engineering, security, visualization, etc. [21]) that interact with controller (s) to utilize an abstract 

view of the network for their internal decision-making process [22]. The task is to perform the definition 

of the requirements and behavior of the network.  

ii) Controller plane (layer)  



 

 

 

International Journal of Future Generation Communication and Networking 

Vol. 13, No. 3, (2020), pp. 2757–2767 

 

 

 

2760 

 

 

 

ISSN: 2233-7857 IJFGCN  

Copyright ⓒ 2020 SERSC 

The control plane (layer) is between applications and data plane and acts as an intermediary plane 

(layer) between applications by northbound Interface (NBI) and the data plane (layer) by the southbound 

interface (SBI) [21]. The task of this plane is an interpretation of the requirements from the application 

plane to the data plane. It consists of SDN controllers which control data plane devices. An SDN controller 

has two main components called functional components and control logic. The functional components are 

responsible to manage controller behavior and control logic is responsible for issues instructions for 

network resources to furnish with the needs of SDN applications [2]. 

iii) Data plane (Infrastructure layer) 

The Data plane is the lowest plane (layer) of the SDN architecture. This plane contains physical and 

virtual devices (such as routers, switches, and access points) that carry out forwarding and routing tasks. 

Network devices can be connected to the central SDN controller through a secure connection. SDN 

controller specifying rules and send out them to the network devices to create forwarding tables. The most 

popular control protocol used to connect data plane devices and controllers is OpenFlow [22].  
 

4. The Proposed SDN-based architecture for Smart City network 
 

In the IoT and smart city networks, a huge number of devices (sensors, actuators, smartphones, etc.) can 

connect to the network and there are many IoT and smart city applications with different QoS requirements 

such as bandwidth, throughput, and delay and so on. On the other hand, these very large numbers of devices 

will generate massive amounts of data.  

The massive amount of data is a big challenge that influences satisfying QoS requirements. With the static 

nature of conventional networks and the fact that IoT environments are dynamics, it is a challenging task to 

manage and allocate network resources with good enough QoS. Conventional layer2 and layer 3 switches do 

the same task for every input packet. In that devices the forwarding operations take place for each packet 

individually that is data plane is packet-base. In the SDN-based networks, forwarding operations take place 

for flows. Flows are sets of streams of packets for particular end-to-end-connections. With SDN and 

OpenFlow, it is possible to define forwarding behavior for each of those end-to-end connections in the switches 

and hence SDN switches operation called flow-based forwarding. Recently, to overcome the challenges, SDN-

based techniques are being deployed to IoT and smart city networks.  

In this section, we propose an SDN-based IoT architecture for the smart city use case to get better network 

performance in terms of bandwidth and latency as important factors of QoS metrics. With the centralized SDN 

controller, we suppose a very common and real scenario that consists of connectivity between end-user devices 

(clients) to some resources (servers) with the centralized SDN controller (Fig 2). With this scenario, we are 

looking to evaluate SDN technology compared to conventional network technologies to highlight SDN 

advantages. 

 
 

Figure 2. Centralized SDN controller for client-server connectivity. 

 
To cover most used protocols we generate TCP and UDP traffics as general traffics for many applications 

(the MQTT as an M2M connectivity protocol for IoT environments uses TCP). For the central controller, we 

have used a python-based controller called Ryu [23]. Ryu is an open-source network operating system and is 

a lightweight and flexible framework for developing SDN applications. It provides software components with 

well-defined APIs that enable developers to easily construct new network management and control 

applications.  
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Ryu controller supports several protocols such as OpenFlow, OF-config, and Netconf for managing network 

devices. Ryu fully supports OpenFlow including OpenFlow versions 1.0 to 1.5. All of Ryu’s codes in python 

available under the Apache 2.0 license[24]. OpenFlow version 1.3 was used for the interaction between the 

controller and the switches as forwarding plane devices.  The results obtained from the performance evaluation 

of the SDN-based scenario will be compared to the performance evaluation with the conventional network 

scenario. 

 

5. Experimental results 
 

For the simulation environment, we use Mininet [25] as it widely used for SDN test environments. 

Mininet, as a network emulator is able to create different topologies with hosts, Openflow enabled switches 

(OVSwitches), and links. Figure 3 shows the topology of the SDN-based scenario.  

 

 
 

Figure 3. The topology of the SDN-based scenario  

 
Virtual machines that used for the implementation of scenarios have been installed on a computer that uses 

Intel Core i7-  4510 CPU with 2.6 GHz and 12 GB of RAM. The SDN-based network scenario consists of three 

Openflow enabled switches that are implemented as Open VSwitche or OVS in mininet and two hosts (client 

and server) connected to each of them that controlled by an SDN controller (python code of figure 4.). We 

used a Ryu controller [23] for the central controller of the SDN-based scenario implementation.  

In order to implement Ryu controller “ryu.base.app_manager.RyuApp” used and also to use OpenFlow 1.3 

version, “simple_switch_13.py”  was applied. The conventional network scenario is composed of six hosts 

and three ordinary switches (clearly without any controller). Both scenarios are implemented on a VM. After 

the implementation of two scenarios, the performance measurement is done by using TCP and UDP (and also 

MQTT protocols as a TCP protocol). After generating the traffic we measure latency and throughput as the 

average of ten iterations for each scenario. For two scenarios, SDN-based and conventional network 

architecture the same procedure can be followed and the measured parameters are recorded during the 

execution of the scenarios. 

 
Pseudocode of the scenario 

1. Add controller: net.addController; 

 Set controller name to C0; 

Set controller ip address and port number; 

Set controller as remote with TCP connection; 

2. Add OpenFlow switches: net.addSwitch; 

 Set S1, S2 ,S3 as OVSKernelSWitches; 

3. Add Hosts: Net.addHost(h1, h2, h3, h4);  

 Set ip address for h1, h2, h3; 

4. Add links: 

 Net.addLink( h1, h2 to s1); 

Net.addLink( h3, h4 to s2); 

Net.addLink( h5, h6 to s3); 

5. Starting Controller; 

6. Starting network with host and OVSSwitches; 

7. Establish connection between hosts; 
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8. 

9. 

Establish client-server connection between h2 and h4; 

Evaluate and record QoS parameters from the network; 

 
Figure 4. 

 
For performance evaluation, the throughput and latency are two important factors. The throughput is the 

actual speed of data transmission on the network and latency is the time taken by a packet to reach the 

destination from a source. To generate traffic and measure the bandwidth and throughput, we use the Iperf 

tool.  

Iperf is a client-server tool that is able to generate TCP and UDP traffic and measure the throughput and 

quality of a network link between two hosts (such as client and server). First, we run the python script of the 

proposed scenario  and then open the terminal emulation of the hosts by running “xterm”. To establish a 

connection between client and server by Iperf we have to run Iperf with specific arguments on each client and 

server terminal emulation opened by xterm. For TCP protocol, on the server-side (host2), Iperf with “–s” 

argument was issued which determines the server-side of the connection. The argument “-p” specifies the 

listening port of the server. The complete issued command is “Iperf -s -p 6633 -i 1”. Similarly, in the client-

side, Iperf command with the “-c” argument was run which determines the client side of the connections. 

Arguments, “-p” determines the port number, “<server_ip_address>” determines server IP address and “-t” 

determines Iperf running times in seconds. The complete issued command is “Iperf –c <server_IP_address>  

-p 6633 –t 120”.  

In order to establish a UDP connection we have to use the “-u” argument in both client and server-side. 

Although Iperf supports both TCP and UDP as the transport protocol, there is a difference between TCP and 

UDP tests in the bandwidth and the results that the output of the Iperf returned. In the TCP test, the sender 

generates as much as data as enduring by the network, while in the UDP test we have to define the rate of 

transmission by the “-b” argument, otherwise it limits the rate of transmission on one megabit per second.  

In the experiment, we set the transmission rate on 40 megabits per second by the “-b” argument. By running 

the Iperf on the server-side (host-2), the server starts listening to a port that specified on the command. and 

also by running Iperf on the client-side (host-4) the client generates traffic on that port with determined 

parameters (specific transmission rate, transmission duration, and TCP window size). With the ICMP protocol 

by using the ping command, we can measure the latency between two hosts.  

 
Table 1: Configuration setting 

OS Ubuntu 18 

Environment Mininet 2.3.0d6 

SDN-controller OpenFlow 1.3 

Simulation duration 120 seconds 

TCP window size 85.3 Kbytes (standard) 

UDP buffer size 208 Kbytes 

ICMP (ping) packet size 1500 bytes (1472+20+8, data, IP header, ICMP header) 

Number of Controllers 1 

Number of OpenFlow 

switches 

3 

Number of hosts 6 

Time (seconds) to listen for 

new traffic connections 

1 

 Interpacket gap (IPG) 280 us 

 
MQTT is an IoT or M2M data transmission protocol that runs over the TCP/IP protocol. It is a lightweight 

publish-subscribe messaging protocol [26]. This protocol consists of MQTT server or broker and devices that 

want to send data to the broker (publish operation) and devices that want to receive data from the broker 

(subscriber operation). We can use Mosquito broker which is widely used among many brokers that implement 

MQTT protocol.  
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Figure 5 shows the throughput comparison obtained by the SDN-based network and conventional network 

approach TCP flow during 120 seconds. As it observed average throughput achieved by the SDN-controller is 

about 34.3 Gbits/s while the average throughput achieved by the conventional network is about 33.4 Gbit/s. 

The results for UDP protocol are very close (as it is shown in figure 6). Figure 7 shows that the jitter is lower 

under the SDN-based network. It is showed that the SDN-based network achieved higher throughput under 

TCP and UDP protocol and also better jitter under UDP protocol. 
 

 
 

Figure 5. TCP protocol: Throughput consumption in SDN-based compare to conventional 
networking technology 

 

 
 

Figure 6. UDP protocol: Throughput consumption in SDN-based compare to conventional 
networking technology 
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Figure 7. Jitter comparison between SDN-based and conventional networks. 

 
The latency comparisons between SDN-based and conventional networks shown in figure 8. The minimum, 

average, and maximum network latency is measured by standard ICMP packet size. It is observed that the 

SDN-based network has lower latency in comparison to the conventional network. 

 

 

 
 

Figure 8. Latency comparison between SDN-based and conventional network 

 
The experiment was repeated with one hundred parallel TCP connections from the client to the server in 

both scenarios. The results are shown in figure 9. As it observed average throughput achieved by SDN-based 

network is 49.62 Gbits/s and average throughput achieved by the conventional network is 43 Gbits/s. 
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Figure 9. Throughput comparison between conventional and SDN-based network – with 100 TCP 
connection. 

 

As shown in figure 10, the average volume of data transferred by the SDN-based network, during the test 

with 100 connection is 5.8 Gbytes in 20 seconds while the average volume of data transferred by the 

conventional network is 5.1 Gbytes. 

 

 
 

Figure 10. Data transfer comparison between SDN-based and conventional network – with 100 
connection on the client 

 
According to the graphs, it was observed that the SDN-based network can achieve better performances in 

comparison to conventional network technologies. It is important to note that we have evaluated the scenarios 

with a limited number of hosts and switches and the results achieved by SDN may be better when network 

scaled up. Also, we use the Ryu controller in the SDN scenario, but there are many controllers that are needed 

to study and compare. 
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6. Conclusion 
 

SDN is an emerging technology that creates new and impactful aspects for networking and hence it is a 

promising technology. According to its programmability, flexibility and central management of the network 

enables us to do better network management, monitor, control, and improve QoS parameters. 

In this paper, we have presented an SDN-Based network architecture for IoT and Smart city environments.  

Also, we have tried to study and analysis of the effect of using the SDN approach to the networks by comparing 

performances of the SDN and conventional approaches. The experiments for the evaluations of throughput, 

latency, and jitter were done in two scenarios, SDN-based network architecture and conventional network 

architecture.  

TCP and UDP flows generated and performances of each protocol were obtained. In addition, 100 parallel 

TCP connections generated and performances of the network were obtained. With regard to the performances 

obtained by the tests, we can conclude that the SDN is achieved better performance in throughput and latency 

in comparison to the conventional networks. The experimentation has limited to the hardware characteristics 

such as CPU, RAM and etc, and clearly, by improving some of the limitations, larger networks with different 

configurations can be taken into consideration. Also, in the SDN-based scenario use of various protocols for 

the central controller may achieve different results that need to study and analyze. 
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