
 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2651
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Performance Analysis of QoS for the MQTT-SN Protocol with Industry

Oriented MQTT-SN Gateway and Integration with Cloud MQTT-Server,

IOT-Application

M.ObulaReddy1 ,Dr.J.B.Seventline2

1Research Scholar, Department of Electronics and Communication Engineering, Gitam

Deemed to be Univeristy, Vishakapatnam, India, 1moreddy2003@gmail.com
2Professor, Department of Electronics and Communication Engineering, Gitam Deemed to

be Univeristy, Vishakapatnam,India. 2seventline.joseph@gitam.edu

Abstract

Internet is a global communication network to provide various services like file transfer, email

and other services using various heterogeneous application messaging protocol HTTP, MQTT,
COAP, DDS,AMQP. Each of this application messaging protocols are designed and implemented as

per different application requirements considering the computational resources and available

communication bandwidth. These protocols are not suitable for constrained sensor devices due to
limitation of computational power and bandwidth. MQTT protocol is designed and implemented for

Machine to Machine communication, but still not suitable for low power sensor devices. More

Efficient MQTT-SN protocol is (Message Queue Telemetry Transport-Sensor Network) proposed for
sensor devices considering the wireless sensor network characteristics, power constraint and

bandwidth limitations. In this paper we discussed MQTT-SN protocol important features,MQTT-SN

QOS impact analysis for the IOT applications, End to End delay(Sensor Node to IOT Application)

calculations, message overhead analysis for MQTT-SN,MQTT,COAP protocols andMQTT-SN
Gateway Integration with Industry oriented Cloud MQTT-Server.

Keywords— IOT, MQTT-SN, TCP, UDP, MQTT, HTTP, COAP, WIRESHARK

I. INTRODUCTION

Current wireless sensor networks are designed and developed for various applications like home

automation, smart cities,environmental monitoring ,structural health monitoring etc using either
preparatory application messaging protocols or incompatible protocols with current wide spread

internet communication protocols. Currently various application messaging protocols are designed

and developed for internet communication like MQTT, COAP, XMPP, DDS and HTTP. These

protocols are not suitable for constrained sensor devices due to low power and bandwidth
limitation. More Efficient Application protocol needed for sensor devices considering lossy wireless

network, low power and bandwidth limitation. Message Queue Telemetry Transport -Sensor

Network (MQTT-SN) protocol is right choice protocol for Sensor Devices due to Low message
overhead compared other available messaging protocols. MQTT-Message Queue Telemetry Transport

protocol designed and developed for machine to machine communication .MQTT is light weight

protocol, but underlying transportation mechanism used as TCP/IP. TCP transport protocol too

complex for low power sensor devices. MQTT-SN uses UPD/IP Transport communication protocol
.UDP is light weight compared with TCP/IP.As Per [1] MQTT-SN full detailed design

specification is mentioned .some of the MQTT-SN important features are discussed in Section III.As

per [2], Theoretical comparison of IOT messaging protocols are discussed in terms message
overhead, throughput and bandwidth. As per [3] MQTT-SN End to End delayperformance simulated

using NS-2 Simulator. The organization of the paper as follows: In Section II, IOT Architecture

[Sensor Node, IOT Gateway, MQTT Server, and IOT Application] is explained. Section III discusses
import MQTT-SN protocol features, MQTT-SN messages description, MQTT-SN QoS model and

MQTT-SN Topic management, message flows for different QoS. In Section IV discussesIOT

application development process. In Section V discusses Experimental setup hardware and Message

overhead, End to end Delay analysis, message loss analysis. In Section VI, Important trace logs are

mailto:1moreddy2003@gmail.com
mailto:2seventline.joseph@gitam.edu

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2652
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

discussed for all nodes (Sensor Device, IOT Gateway, MQTT Server, and IOT Application). In
Section VII results and conclusions are explained.

II. IOT SYSTEM ARCHITECTURE

Overall IOT System architecture shown in Fig -01

 Fig 01: IOT System architecture

A. Sensor Node Platform

Sensor devices capture the sensor data with predefined time interval. Sensor Node platform pack the
sensor data with the JSON data format and Publish Packed sensor data to the IOT MQTT-SN

Gateway with pre-configured time interval. Sensor Node platform as shown in Fig-02

Fig 02: Sensor Node IOT platform

B. MQTT-SN Gateway

MQTT-SN Gateway is crucial computing Node in the IOT Architecture. Main function of MQTT-
SN Gateway is receives the MQTT-SN messages from sensor devices and Translate to the

MQTT Messages as per MQTT Protocol specifications. MQTT-SN (Message Queue Telemetry

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2653
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Transport-Sensor Network) and MQTT protocols are different protocols, but it is closely related.
MQTT-Gateway designed and developed with four multi-threaded tasks-MQTT-SN Receiver Task,

MQTT-SN Sender Task, MQTT Sender Task, MQTT Receiver Task and Event Queue Manager.

MQTT-SN Receiver Task: It receives MQTT-SN messages from sensor devices, decode the

messages and store the message parameters in the Event Queue Manager for sending to the MQTT-
Server and also maintain MQTT-SN Receiver Process State machine.

MQTT Sender Task: It takes the MQTT-SN parameters from the Event Queue Manager and Encode

to the MQTT Messages, send to the MQTT-Server as per MQTT Protocol Specification and maintain
the MQTT Sender Process State machine.

MQTT Receiver Task: It receives MQTT messages, decode the MQTT Messages and store the

relevant message parameters in the event queue manager.
MQTT-SN Sender Task: It takes the MQTT parameters from the event queue manager and encode

to the MQTT-SN Messages, send to the sensor IOT Platform as per MQTT-SN Protocol Specification

and maintain the MQTT-SN Sender process state machine.

Gatewayprotocol software process diagram as shown in Fig -03

C. MQTT Server

MQTT- Message Queue Telemetry Transport protocol is light weight protocol designed and

developed for machine to machine communication devices.MQTT Server receives the publish
messages from the MQTT-SN Gateway and publishes the messages to the Subscribed devices.

Publish and subscribe Mechanism is an asynchronous process. In this project MQTT-MOSQUITTO

server used for Gateway integration.

D. IOT Application

IOT Application is any type of application for taking appropriate action, control the actuator devices
and monitoring sensor/actuator devices. Sensor devices data stored in the SQL lite data base for the

future processing.

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2654
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig 03: Gateway Software Architecture

III. MQTT-SN NEW FEATURE COMPARED WITH MQTT PROTOCOL

A. Gateway Advertise feature

GW Advertise service periodically broad cast the gateway info to the clients. Sensor devices decode

the gateway address information and attach the one of available gateway. If many gateways are

available in the network, sensor device IOT platform attaches only one of the gateways. In other side,
sensor devices also transmit gateway info message for getting one of the available gateway address

dynamically. Frequent transmission of advertise message, it impacts on gateway performance. In

other side sensor node also frequently sending gateway info request to gateway, impacts on sensor
node power and bandwidth.

B. Will Topic and will message feature

Will Topic and Will messages are useful whenever sensor device is abnormally disconnected from the

gateway. Subscribers subscribe Will topic with MQTT-Server. Whenever sensor devices abnormally

disconnected with the Gateway, MQTT Server delivers the will message to the Subscribed will topic
for appropriate action. Whole sequence process as shown in Fig-04.

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2655
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig 04: Will Topic and Message Sequence

C. MQTT-SN Registration procedure

In the MQTT Protocol Architecture, topic name length is two bytes, it takes a length of topic name

string up to 65535,it is too long topic name for MQTT-SN protocol. It is not affordable for the

power and bandwidth constrained sensor devices. To resolve this issue, MQTT-SN protocol provides
registration procedure. Whenever Sensor device initiate connect req, registration request to the

gateway, gateway responds with short topic id forthat long topic name. Sensor node uses short topic

id for publish procedure. Registration procedure as shown in Fig-05

Fig 05: Registration sequence

D. Sleeping Client procedure

In MQTT-SN protocol sleeping client procedure is useful ,when no data is being send to Gateway,

Sensor device goes into sleep state and inform to gateway status of sensor device. Due to this
power is saved in the sensor device.

E. Publish and Subscribe procedures are remaining same as MQTT protocol, but short topic id used

for publishes messages instead of long topic name.

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2656
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

F. IOT protocol stack

IOT Protocol stacks as shown in Fig-06 for the Sensor device, Gateway and MQTT-Server.

Fig -06: IOT Protocol stack

G. MQTT-SN architecture

In the MQTT-SN protocol three types of components are available 1.MQTT-SN Clients 2.MQTT-SN

Gateways, 3.MQTT-SN Forwarder and MQTT-Server.MQTT-SN architecture as shown in Fig-07

Fig 07:MQTT-SN Architecture

MQTT-SN Gateways are divided into transparent gateway, hybrid gateway and aggregating gateway.
Transparent Gateway: In this structure, each MQTT-SN client connects with MQTT-Server

separately.

This is simple implementation in Gateway. But Number of MQTT-SN clients increases ,more
number of MQTT-Connections are required in the gateway.

Hybrid Gateway: In this structure, some of the MQTT-SN clients are grouped and for this group

only one MQTT-Connection initiated by the gateway. Moderate complexity is involved in the

Gateway.

Aggregating Gateway: In this structure all MQTT-SN clients are grouped into one group and

gateway initiate only one of MQTT-Connection with MQTT server. But more complexity involved

in the gateway implementation.

H. MQTT-SN QOS table

In MQTT-SN protocol, application designer can choose right QoSmodel as per application

requirement dynamically. Different typesof QOS models are as shown in Table-01

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2657
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

QOS Model Description

QOS-0 The message is delivered at most once, or it is not delivered at all

QOS-1 The message is always delivered at least once. If the sender does not

receive an acknowledgment, the message is sent again with

the DUP flag set until an acknowledgment is received.

QOS-2 Publish payload messages are delivered exactly once

QOS-(-1or 3) Initial connection need not be required, directly publish the message

using predefined or short topic ids.

Table-01: MQTT-SN QOS models

I. MQTT-SN Topic Management

Topic is a logical addressing entity in MQTT-SN and MQTT protocols. Subscriber can subscribe

required topics for particular type data. Whenever MQTT Server received data on the topic publishes

the data to the subscribed topics of subscribers.
Topic name is any time of string in the MQTT.But it is not standardized, application can chose

desired topic name as per requirement.

For ex Topic Name:/Hall/Room1/Temperature, :/Hall/Room1/Humidity

Wild card topic also supports
For example: /Hall/Room1/# from the /Home/Room1/ all types of data received from /Hall/Room1/

But in the lossy network and frequent transmission of data, a long topic consumes bandwidth. To

resolve this issue MQTT-SN Client can send register message with long topic name to the gateway,
gate returns the short topic id.

J. MQTT-SN QOS message flows

In MQTT-SN protocol, three message sequences are available based on the QoS model

A. QOS-0 Message Sequence flow

 Fig-8 QOS-0 Message Sequence flow

B. QOS-1 Message Sequence flow

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2658
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig 09: QOS-1 Message sequence flow

C. QOS-2 Message sequence flow

Fig 10:QOS-2 Message sequence flow

IV. IOT APPLICATION DEVELOPMENT PROCESS

MQTT Subscriber/MQTT-SN subscriber subscribe to the required sensor data through the topic

name.MQTT Server receives the sensor data to that particular topic ,MQTT server publishes the

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2659
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

sensor data to the subscribed topics.MQTT Subscriber receives the sensors data, decode it and
store the sensor data in the SQL lite data base for further processing.MQTT Subscriber

Application development process diagram as shown in Fig-11

Fig 11: MQTT-Subscriber Application IOT Diagram

V. EXPERIMENTAL SETUP HARDWARE AND MESSAGE OVERHEAD, END TO END

DELAY ANALYSIS

A. Practical Sensor Platform

DHT22 Sensor device connected to the ESP8286 low cost IOT platform .MQTT-SN stack software

designed and developed to the Ardunio platform. Sensor Node software flow diagram mentioned in

[4] by the same authors.

B. Gateway software deployment

Gateway MQTT-SN protocol software developed and deployed in the Raspberry Pi+B Hardware.

C. MQTT Server

MOSQUITTO MQTT server deployed in the desktop computing system and also cloud MQTT Server
used for this project.

D. Simulation of MQTT-SN clients
C and Python based MQTT-SN clients, Android MQTT, MQTT mosquito publisher and subscriber

frame work used for this simulation.

E. Message overhead analysis for MQTT-SN, MQTT and COAP

A. MQTT
A complete MQTT message publishing procedure involves the following steps/traffic exchange:

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2660
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

 Since the MQTT protocol relies on TCP, a new TCP connection must be established at the
beginning of each MQTT session. This is a 3-way handshake involving both ends (packets #1-#3).

In other words, within each MQTT session an underlying TCP connection is present.

 TCP connection establishment is followed by an MQTT connection establishment procedure,

involving:
o an MQTT connect message sent by the client (#4) and the respective TCP ACK message sent

by the broker’s TCP end-point (#5)

o an MQTT connect ACK message sent by the MQTT broker (#6) and the respective TCP ACK
message sent by the client’s TCP end-point (#7)

 MQTT connection establishment is followed by the MQTT PUB procedure, which includes the

MQTT communication credentials, the topic and the IoT payload information (#8)
 MQTT message publication is followed by the release of the MQTT connection, through the

MQTT Disconnect Message sent by the client’s MQTT end-point (#9).

 Following the FIN/ACK flags included in the TCP part of the MQTT disconnect command; the

underlying TCP connection is released through a bi-directional TCP messages exchange (#10-
#12).

In Table-02 shown the exact overhead per message, including the MQTT, TCP and IP overheads.

Notice that the payload in our experiments (the [{"bn":"testdev-","n":"temp","u":"C","v":20.0}] string
message) is 47-bytes long.

Procedure MQTT

OVERHEAD

(Bytes)

TCPOVERHEAD

(Bytes)

IPOVERHEAD

(Bytes)

Total

Overhead

(Bytes)

TCP

connection

establishment

(#1-#3)

- 40+40+32=112 3×20=60 172

MQTT

connection

establishment

(#4)

115 32 20 167

MQTT

connection

establishment

TCP ACK (#5)

– 32 20 52

MQTT

connection

ACK (#6)

4 32 20 56

MQTT

connection

ACK TCP

ACK (#7)

– 32 20 52

MQTT message

publication (#8)

144 32 20 196

MQTT

disconnection

(#9)

2 32 20 54

MQTT

disconnection

(#9)

2 32 20 54

Total overhead 265 400 240 905

Table-02-MQTT Message Overhead Calculation

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2661
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

In total,905 bytes are consumed for a single 47 bytes payload transmission,i.e almost 95% of bytes
Exchanged are non-payload related. Assuming a 500KB NB-IoT data plan, this stands for roughly

550 messages per month or equivalently up to 18 messages per day,i.e less than hourly status update.

B. COAP protocol

Since CoAP is based on the UDP/IP transport protocol, there is no need for connection

establishment/release and TCP acknowledgements. Hence, the CoAP POST command is encapsulated

in a single UDP/IP message (packet #1). In the capture we also view a CoAP ACK message which is
used to notify the client about successful message transmission. This is an optional feature of CoAP,

so such a 2-way communication is not mandatory. The following table shows the overhead for each

layer

Procedure COAP

OVERHEAD

(Bytes)

UDP

OVERHEAD

(Bytes)

IPOVERHEAD

(Bytes)

Total Overhead

(Bytes)

CoAP POST

(#1)

183 8 20 211

CoAP ACK (#2)

(*optional)

6* 8* 20* 34*

Total overhead

without

Confirmed

CoAP

183 8 20 211

Total overhead

with Confirmed

CoAP

189 16 40 245

Table-3-COAP Message over head calculation
In total, for non-confirmed COAP,211 bytes are consumed for a single 47 bytes payload

transmission, Hence the overhead is significantly reduced compared to MQTT.The overall

message length has been reduced more that 4 times. Assuming a 500 KB NB-IoT data plan, this
stands for roughly 3,370 messages per month or equivalently up to 80 messages per day,i.e

approximately 3 status updates per hour.

C. MQTT-SN protocol

MQTT-SN stands “in-between” MQTT and CoAP, since it borrows the 2-way communication nature

of the TCP-based MQTT protocol, but at the same time uses UDP/IP as the underlying transport
mechanism. So, we expect some overhead savings due UDP usage.

 Recall that in standard MQTT, each time the client needs to publish something, the full topic name

should be included in each message. This could be a long name, consuming a significant amount
of bytes. In our example, the topic name is channels/8f3de729-6a42-48d5-a266-

20db9c7bda35/messages/244629b1-389e-4b33-8a82-/ which is 92-bytes long. MQTT-SN

introduces “topic registration”, where the long topic name could be mapped to a 2-byte integer,
and afterwards this 2-byte field could be used in each publish message, instead of the whole string

representation.

 In standard MQTT when the client is put to deep sleep (for energy consumption purposes) the one

end of the TCP connection fails and the whole session is broken. Hence, after the node wakes up,
the session needs to be restored from scratch. MQTT-SN introduces the asleep mode, during

which the connection stays active. To achieve this, in MQTT-SN, the client does not establish an

end-to-end TCP connection with the MQTT broker. Instead, an intermediate entity called the
MQTT-SN Gateway, is responsible for translating UDP packets arriving from/destined to the

client to MQTT packets destined to/arriving from the MQTT broker.

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2662
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Procedure MQTT

OVERHEAD

(Bytes)

UDP

OVERHEAD

(Bytes)

IPOVERHEAD

(Bytes)

Total

Overhead

(Bytes)

MQTT-SN

connection

establishment

(#1)

19 8 20 47

MQTT-SN

connection ACK

(#2)

3 8 20 31

MQTT-SN

Topic

Registration (*

needed only

once) (#3)

98 8 20 126

MQTT-SN

Topic

Registration

ACK (* needed

only once) (#4)

7 8 20 35

MQTT-SN

Message

Publication (#5)

54 8 20 82

MQTT-SN

Disconnect to

Sleep Mode (#6)

4 8 20 32

MQTT-SN

Disconnect to

Sleep Mode

ACK (#7)

2 8 20 30

Total overhead 187 56 140 383

Table-4-MQTT-SN Message (with registration) over head calculation

Second scenario

Procedure MQTT

OVERHEAD

(Bytes)

UDP

OVERHEAD

(Bytes)

IPOVERHEAD

(Bytes)

Total Overhead

(Bytes)

MQTT-SN (re-

)connection

establishment

(#1)

19 8 20 47

MQTT-SN (re-

)connection

ACK (#2)

3 8 20 31

MQTT-SN

Message

Publication (#3)

54 8 20 82

MQTT-SN

Disconnect to

Sleep Mode (#4)

4 8 20 32

MQTT-SN

Disconnect to

Sleep Mode

2 8 20 30

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2663
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

ACK (#5)

Total overhead 82 40 100 222

Table-5-MQTT-SN Message (with out registration) over head calculation

In total for MQTT-SN and assuming an IoT payload of 47 bytes, the overhead for the case where

topic registration is also included is 383 bytes, whereas for the case where registration has already
been performed is only 222 bytes, significantly lower than MQTT and similar to COAP.

D. The following table summarizes the key findings, under the following assumptions

 IoT Payload: 47 bytes

 NB-IoT monthly data plan: 500 KB

Protocol OVERHEAD

 (BYTES)

TOTAL ALLOWED

MESSAGES PER DAY

MQTT 905 18

MQTT-SN First Connection 383 43

MQTT-SN Communication

after first connection

222 75

CoAP 211 80

MQTT 905 18

Table-06- Message overhead analysis for MQTT-SN,COAP,MQTT

E. QoS impact on performance of MQTT-SN protocol
There is a simple rule when considering performance impact of QoS. It is: “The higher theQoS, the

lower the performance.” Let us evaluate performance corresponding with higherQoS. Suppose the

time taken for sending a PUBLISH message is Pt. If QoS is used, the total time taken to transfer N
number of messages will be Npt. Now in case of QoS 1, the PUBACK message (that is reply for the

PUBLISH message) will flow from server to client. This is a2-byte message and might take a lot less

time than Pt, hence call it mt. So the time taken for transferring n messages will be N(Pt + mt). And

for QoS 2, the PUBREC, PUBREL and PUBCOMP messages would be flowing. Hence the n number
of messages would take approximately N(Pt + 3mt). So if 10 messages need to be transferred from

client to server andPt is 1 second and mt is 0.4 seconds, a QoS 0 message would take 101 = 10

seconds, QoS 1message would take 10(1 + 0.4) which is 14 seconds and QoS 2 message would take
22seconds.

F. MQTT-SN Message percentage Losses

Message payload in

bytes to published to

the MQTT-Server

using Python MQTT-

SN script

Source to

destination

message loss

calculation at

QOS-Level-0 (%)

Source to

destination

message loss

calculation at

QOS-Level-1(%)

Source to destination

message loss

calculation at QOS-

Level-2(%)

1000 1.00 0.24 .0.18

2000 1.40 0.41 0.2

3000 1.60 0.60 0.22

4000 1.80 0.78 0.24

Table-07 Message percentage losses

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2664
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

VI. PRACTICAL SIMULATION RESULTS

A. Case-01: End to End IOT Application Logs (Mosquito MQTTServer deployed in the Local

computer)

1.SensorNode Logs:

 Fig: 12-Sensor Node Logs

2.Gateway Logs:

 Fig:13-MQTT-SN Gateway Logs

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2665
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

3.MQTT-Server Logs

 Fig:14-MQTT Server Logs

4.IOT Application Logs

IOT Application is starting
Connected with result code 0

Subscribing topic

MQTT Data Received...
MQTT Topic: TEMP_MQTT_SN

data Received type <class 'str'>

data Received
{"Device":"ESP32","SensorType":"Temperature_Humidity","Temperature_farin":84.2,"Temperature

_celius":29,"Humidity":79.4,"time":32117}

Enter DHT22_Temp_Data_Handler

SensorID :ESP32
SensorType :Temperature_Humidity

Temperature_farin : 84.2

Temperature_celius : 29.0
Humidity : 79.4

Data_and_Time : 09-Jul-2020 12:45:38:926518

MQTT Data Received...
MQTT Topic: TEMP_MQTT_SN

data Received type <class 'str'>

data Received

{"Device":"ESP32","SensorType":"Temperature_Humidity","Temperature_farin":84.2,"Temperature
_celius":29,"Humidity":81.2,"time":42147}

Enter DHT22_Temp_Data_Handler

SensorID :ESP32
SensorType :Temperature_Humidity

Temperature_farin : 84.2

Temperature_celius : 29.0

Humidity : 81.2
Data_and_Time : 09-Jul-2020 12:45:48:952169

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2666
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

B. Case-02: End to End IOT Application Logs with Cloud MQTT Server

5.Sensor Node Logs

Fig:15-Sensor Node Logs(With Cloud MQTT Server)

6.Gateway Logs

Fig:16-Gateway Node Logs(With Cloud MQTT Server)

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2667
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

7.Cloud MQTT-Server Logs

Fig: 17-Cloud MQTT Server Logs (With Cloud MQTT Server)

8.IOT Application Logs

 Fig: 18-IOT Application Logs(With Cloud MQTT Server)

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2668
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

9.MQTT-SN-QOS-0,QOS-1,QOS-2 Wire shark Logs

Fig: 19-MQTT-SN-QOS-02-Wireshark Logs

Fig: 20-MQTT-SN-QOS-01-Wireshark Logs

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2669
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig: 20-MQTT-SN-QOS-0-Wireshark Logs

10.MQTT-Application Received Sensor Data

 Practical temperature and humidity sensor data received as shown in Fig-21

Fig: 21-MQTT-Application Received Sensor Data

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2670
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

11.End to End Delay versus Number of messages

Fig: 20-Number of publisher/subscriber arrived to MQTT-Server

12.End to End Delay versus message size

Fig-21 MQTT-SN Message Size in Bytes

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2671
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

13.Temperature Sensor data graph

 Fig-22-Temperature Sensor data

14.Humidity Sensor Data graph

Fig-23-Humidity Sensor data

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2672
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

VII. CONCLUSION

In this paper we discussed end to end message delay calculations for different types MQTT-SN

QoS , MQTT-SN gateway integrated with local mosquito MQTT Server and Cloud MQTT
Server. Simple MQTT IOT application developed for receiving of Sensor data from the MQTT-

Server. Infuture wewill implement this setup and different Qos Models for the practical IOT

applications.

REFERENCES

1. http://www.mqtt.org/new/wpcontent/uploads/2009/06/MQTT-SN_spec_v1.2.pdf

2. Naik.N, “Choice of effective messaging protocols for IoTsystems:MQTT, CoAP, AMQP and
HTTP”, in 2017 IEEE InternationalSystemsEngineering Symposium, 2017.

3. Govindan, K., & Azad, A. P. “End-to-end service assurance in IoT MQTT-SN.”, 12thAnnual

IEEE Consumer Communications and Networking Conference, 2015

4. UrsHunkeler, IHongLinh Truong, Andy Stanford-Clark “MQTT-S — A publish/subscribe
protocol for Wireless Sensor Networks"- 3rd International Conferences on Communication

Systems Software and Middleware and workshops, 2008.

5. Andre Gloria, Francisco Cercas, NunoSouto -“Design and implementation of an IoT gateway
to create smart environments”, in 8th International Conference on Ambient Systems,

Networks and Technologies, Elsevier, pp.568–575, 2017.

6. Guha Roy, D., Mahato, B., De, D., &Buyya, R. “Application-aware end-to-end delay and

message loss estimation in Internet of Things (IoT) — MQTT-SN protocols”. Future
Generation Computer Systems, Vol 89, pp. 300–316, 2018

7. Tantitharanukul, N., Osathanunkul, K., Hantrakul, K., Pramokchon, P.&Khoenkaw, P,

“MQTT-Topics Management System for sharing of Open Data.” in International Conference
on Digital Arts, Media and Technology “, 2017

8. Zanella, A., Bui, N., Castellani, A., Vangelista, L., &Zorzi, M. “Internet of Things for Smart

Cities.”, IEEE Internet of Things Journal, Vol 1,pp. 22–32,2014.
9. ESP8266 Arduino Core Documentation Release 2.4.0

10. https://nodered.org/

11. http://mqtt.org/documentation/MQTT v3.1.1.pdf

12. F.Jerald, M.Anand, N.Deepika,” Design of an Industrial IOT Architecture Based on MQTT

Protocol for End Device to Cloud Communication”, in International Journal of Recent

Technology and Engineering, Vol-7, ISSN: 2277-3878, 2019.
13. Gopi Krishna, P., Sreenivasa Ravi, K., Hari Kishore, K., KrishnaVeni, K., N. Siva Rao, K., &

D. Prasad, R. “Design and development of bi-directional IoT gateway using ZigBee and Wi-

Fi technologies with MQTT protocol.”, International Journal of Engineering & Technology,
Vol-7,pp. 125-129,2018.

14. Amaran, M. H. Noh, N. A. M., Rohmad, M. S., &Hashim, H. “A comparison of Lightweight

Communication Protocols in Robotic Applications.”, Procedia Computer Science, Vol 76,pp.

400–405, 2015
15. Guoqiang, S., Yanming,C.,Chao,Z.,&Yanxu, Z. “Design and Implementation of a Smart IoT

Gateway.” IEEE International Conferenceon Green Computing and Communications and

IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, 2013
16. https://www.sqlite.org

17. https://www.python.org

18. http://www.steves-internet-guide.com /mqtt-sn

19. https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/

http://www.mqtt.org/new/wpcontent/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
https://nodered.org/
http://mqtt.org/documentation/MQTT%20v3.1.1.pdf
https://www.python.org/

 International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 2651–2673

2673
ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

AUTHORS PROFILE

Mr. M.Obula Reddy received his B.Tech degree in Electronics and Communication

from JNTU University, Hyderabad, A.P. M.Tech from NIT, Calicut, Kerala. He has 11
Years of Industry experience in Telecom and Data communication protocol Engg.7

Year of Teaching experience in Engineering for UG&PG courses.

J.B.Seventline received B.Tech degree in ECE from Bharathiar University,

Coimbatore. TN.ME from Madurai kamaraj University, Madurai,TN and Ph.D in Radar
Signal Processing from Andhra University, Visakhapatnam. She has 26 years of

teaching experience and presently working as Professor of ECE, GITAM deemed to be

University, Visakhapatnam. She has almost 50 technical papers published in reputed

journals and conferences. Her research interests include Radar Signal Processing, Image Processing,
VLSI Signal Processing and Internet of things application messaging protocols

Author-2

Photo

	Second scenario

