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Abstract 

In this paper, to solve the problem of non-convex economic power system, a detailed study is 

presented of an improved version of the artificial bee colony (ABC) approach including a local 

search technique. Prohibited operating zones, valve-point loading effects and total powers 

transmission losses have been incorporated into the formulation of the problem. An IEEE reference 

system with ten thermal units was used to validate the proposed technique. Better convergence 

characteristics compared to the original ABC algorithm have been demonstrated by the simulation 

results. 
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I. Introduction 

   Due to the excessive increase of fuel prices, the optimal power generation of thermal units with 

minimum production cost has become necessary. To satisfy this requirement, several research works 

have been proposed to solve the economic dispatch (ED). Various studies have considered the 

traditional ED problem where the production cost function of each thermal unit is approximated by a 

quadratic function [1-2]. Unfortunately, modern systems are with units that have prohibited operating 

zones (POZ) due to physical operation limitations. In addition, practical ED problem includes the valve-

point loading effects (VPLE) in the cost function. These additional constraints make the problem with 

high nonlinear and discontinuous objective function. Thus, traditional optimization techniques proposed 

in the literature, such as Newton methods [3], lambda iteration [4] and linear programming [5] cannot 

provide the best solution. 

In recent years, several intelligent optimization techniques, such as genetic algorithms (GA), particle 

swarm optimization (PSO), bacterial foraging and simulated annealing have been used to solve this 

non-convex and discontinuous ED problem [6-8]. 

   Despite these metaheuristic methods have shown their ability to converge into reasonable solutions, 

they do not always guarantee the global optimal solutions. To overcome this drawback, numerous 

modified algorithms have been appeared. A combination of GA and micro-GA to improve global and 

local solution of ED problem is proposed in [9]. An elitist real-coded GA based on non-uniform 

arithmetic crossover and mutation has been used to optimally schedule the generation of all generators 

of the IEEE 25-bus system [10]. A hybrid differential evolution and sequential quadratic programming 

for solving the power dispatch problem is suggested in [11]. In [12], the variable neighborhood search 

method is incorporated in the differential evolution algorithm in order to improve the optimal solution. 

Other modified and hybrid techniques that combine different metaheuristic algorithms have been 

presented in the two past decades to solve various form of the ED problem, such as combined hybrid 

differential PSO algorithm [13], PSO with Time Varying Operators [14], hybrid PSO and gravitational 

search algorithm [15] and hybrid ant colony optimization-artificial bee colony-harmonic search 

algorithm [16]. 

   Recently, a new swarm based stochastic search algorithm called artificial bee colony that imitates the 

foraging behavior of bee colony (ABC) [17-18] is considered as efficient technique for complex 
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optimization problem. However, the ABC algorithm has been criticized to its poor convergence rate and 

premature convergence due to the unbalanced exploration-exploitation processes. To overcome this 

disadvantage, a new modified ABC algorithm is proposed in this paper for the ED problem. This 

modified algorithm incorporates a local search technique at the end of each iteration to facilitate the 

convergence into the global optimum. VPLE and POZ constraints have been included in the problem. 

The validation of the proposed optimization method has been evaluated on the well-known benchmark 

system with ten units. 

II. ED problem formulation 

   The ED problem is considered as an optimization problem that aims to schedule the outputs of the 

thermal units so as to minimize the total fuel cost subject to the system operating constraints, such as 

generation capacity, power balance, POZ and VPLE constraints. 

II.1. Total fuel cost function 

   Let consider a power system with N units. The total fuel cost in $/h including VPLE can be expressed 

by the following equation [19]. 

                2 min
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   Where, ia , ib , ic , id  and ie  are the cost coefficients of the i-th unit. Pi is the output power in MW. 

 

II.2. Problem contraints 

 Unit capacity constraints 

 
min max ,  1,...,i i iP P P i N                                          (2)                                                                                           

Where, min
iP  and max

iP  are respectively, lower and upper generation limits of the i-th generator. 

 

 Power balance constraint 
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Where, PD is total demand power. PL is the total system losses calculated using the following constant 

loss formula [20]. 
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Where, ijB , oiB , ooB  are the loss-coefficient matrix. 

 POZ constraints 

 

The POZ constraints for the i-th unit due to the vibrations in the shaft are described in the following 

equation. 
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Where, iz  is the number of the POZs for the i-th unit. ,
down

i kP  and ,
up

i kP  are respectively, minimum and 

maximum limits of the k-th POZ. 

By considering POZ constraints, the generator will have discontinuous input–output characteristics as 

shown in Fig. 1. 
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Fig. 1. Input-output characteristic  

III. Proposed optimization technique 

III.1. Original ABC  

 

ABC algorithm firstly introduced by Karaboga [17] is one of the newest swarm-based techniques. Its 

main algorithm structure consists of four steps. 

  Step 1: Initialization phase 

ABC algorithms start by generating SN food sources and all algorithm parameters. Each food source 

1 2[ , , , ]i i i i
DX x x x  is considered as solution and it is generated randomly on the D-dimensional 

problem space as given in equation (6). 

  min max min0,1i

j j j jx X rand X X                              (6)                                                                                  

Where min
jX  and max

jX  are limits of the food source in dimension j. 

The fitness function of each solution iX  that corresponds to the objective function is assumed as the 

nectar amount evaluated by an employed bee on the food source. It can be calculated as follows. 
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Where f is the objective function. 

  Step 2: Employed bees’ phase 

Each employed bee tries to update each selected food source iX  in order to find better location close to 

this source. The updated food source iV  is determined as follows. 

 i i i i k

j j j j jv x x x                                                                                                        (8)   

Indices k and j are chosen randomly from  1,2,...,SN  and  1,2,..., D , respectively. i

j  is a uniform real 

number in the range of  0,1 . 

 Step 3: Onlooker bees’ phase 
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 In this step, each onlooker bee selects the food source based on the nectar amount. The probability of 

selection of a food source iX  is given in equation (9).  
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                                                           (9)                                                                                                           

The selected food source will be update using equation (8). 

During this step, a greedy selection between iV  and iX . 

 Step 4: Scoot bees’ phase 

If an onlooker that its food source cannot be improved in the last step, it will be converted to a scout bee 

and it starts to search another source using equation (6). 

III.2. Modified ABC algorithm 

 
 For each food source Xi generate two 

random numbers 1 and 2 within 0 and 
1 

Replace Xi by 

  

 

Replace X
i
 by 

 

 

Update  

No Yes 

Yes 

 
Fig. 2. Local search method  

 

    The main drawback addressed to the classical ABC algorithm is the random selection of the j-th 

dimension in the applied and onlooker bees’ phases. That allows decreasing the convergence speed and 

even providing a local optimum. Within this context, this paper proposes a new search method called 

local search technique. Instead of replacing the j-th dimension, the whole food source will be updated. 

The flowchart of the local search method applied in this study to update each food source is described 

in Fig. 2. 

IV. Simulation results 

  The proposed modified ABC algorithm with local search (ABC-LS) for solving ED problem is 

performed using the benchmark test power system comprising 10 thermal units with VPLE and POZs. 

The system data are taken from [21] and they are given in Table 1. A comparison of the proposed 

technique with the classical ABC algorithm is presented in this section to demonstrate its effectiveness 

in finding the best optimum solution. The B-loss matrix of the ten-unit system is described in equation 

(10). 



International Journal of Future Generation Communication and Networking 

Vol. 13, No. 3, (2020), pp. 2483–2490 

2487 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

0.49 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.19 0.20

0.14 0.45 0.16 0.16 0.17 0.15 0.15 0.16 0.18 0.18

0.15 0.16 0.39 0.10 0.12 0.12 0.14 0.14 0.16 0.16

0.15 0.16 0.10 0.40 0.14 0.10 0.11 0.12 0.14 0.15

0.16 0.17 0.12 0.14 0.35 0.11 0.13 0.13 0.410B 
15 0.16

0.17 0.15 0.12 0.10 0.11 0.36 0.12 0.12 0.14 0.15

0.17 0.15 0.14 0.11 0.13 0.12 0.38 0.16 0.16 0.18

0.18 0.16 0.14 0.12 0.13 0.12 0.16 0.40 0.15 0.16

0.19 0.18 0.16 0.14 0.15 0.14 0.16 0.15 0.42 0.19

0.20 0.18 0.16 0.15 0.16 0.15 0.18 0.16 0.19 0.44

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (10) 

Two cases have been considered in this study. 

IV.1. Case1:Without POZs constraints  

   Fig. 3 shows the convergence of the total cost for total demand power of 1000 MW using ABC-LS 

and ABC algorithms. It is evident that the proposed algorithm gives the best solution. It can be seen that 

the minimum total cost when using ABC-LS is 59380.69 $/h, while it is 59413.58 $/h for classical 

ABC. Optimum solutions for various loads are given in Table 2. Form this table, it is clear that 

generation limits are considered and the ABC-LS provides the best results for all loads.     
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Fig. 3. Cost convergence for PD = 1000 MW 

Table 1  

SYSTEM DATA  

Unit A b c d e 
min

iP  

(MW) 

max
iP  

(MW) 

Prohibited zone 

(MW) 

1 786.7988 38.5397 0.1524 450 0.041 150 470 [150 165], [448 453] 

2 451.3251 46.1591 0.1058 600 0.036 135 470 [90 110], [240 250] 

3 1049.9977 40.3965 0.0280 320 0.028 73 340 - 

4 1243.5311 38.3055 0.0354 260 0.052 60 300 - 

5 1658.5696 36.3278 0.0211 280 0.063 73 243 - 

6 1356.6592 38.2704 0.0179 310 0.048 57 160 - 

7 1450.7045 36.5104 0.0121 300 0.086 20 130 - 

8 1450.7045 36.5104 0.0121 340 0.082 47 120 [20 30], [40 45] 

9 1455.6056 39.5804 0.1090 270 0.098 20 80 - 

10 1469.4026 40.5407 0.1295 380 0.094 10 55 [12 17], [35 45] 

Table 2  

OPTIMUM SOLUTION IN MW WITHOUT POZS CONSTRAINTS 

PD  

(MW) 
1000 

 
1200 

 
1400 

 
1600 
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Method ABC-LS ABC  ABC-LS ABC  ABC-LS ABC  ABC-LS ABC 

P1  150.3980 150.2608  50.1183 150.1993  150.1176 150.1631  150.2688 150.4402 

P2  135.0000 135.0000  135.0000 135.0000  135.0000 135.0000  135.0000 135.0000 

P3 73.8300 79.5581  182.6786 79.4907  190.8530 195.7603  298.3047 294.5893 

P4 60.0000 60.0000  119.2166 173.3380  184.1652 181.3227  300.0000 300.0000 

P5 172.0393 173.6729  172.4413 221.4741  242.5004 243.0000  231.0179 235.2401 

P6 115.2207 139.9312  121.2681 123.1007  159.5337 156.8323  157.8854 157.8426 

P7 130.0000 130.0000  129.4122 128.2707  130.0000 130.0000  129.4678 129.7292 

P8 120.0000 120.0000  119.9208 119.1100  120.0000 119.9977  120.0000 120.0000 

P9 52.0065 20.0000  52.2784 53.2920  79.5927 79.2334  80.0000 80.0000 

P10 10.0000 10.0000  43.7297 42.9229  43.4245 43.8966  44.3790 43.4682 

Cost 59380.69 59413.58  68987.01 69111.71  79593.61 79650.95  91123.12 91128.65 

Losses 18.4943 18.4230  26.0641 26.1984  35.1870 35.2061  46.3235 46.3095 

Table 3  

OPTIMUM SOLUTION WITH POZS CONSTRAINTS 

PD 1000  1200  1400  1600 

Method ABC-LS ABC  ABC-LS ABC  ABC-LS ABC  ABC-LS ABC 

P1 165.1204 165.1523  165.2710 165.1318  165.0909 165.0722  166.6105 165.3441 

P2 135.0000 135.0000  135.0000 135.1689  135.0734 135.0000  135.0000 135.0000 

P3 76.5427 74.1883  173.3861 86.3128  199.5952 189.7696  295.6962 302.1017 

P4 64.9224 133.8604  124.3907 180.6893  182.8316 181.9040  300.0000 266.8232 

P5 173.8728 73.0000  228.8840 229.2110  223.6764 222.9506  243.0000 242.3350 

P6 123.1177 122.6770  122.9827 123.1096  159.8934 159.2527  159.6806 159.7217 

P7 130.0000 130.0000  127.9262 130.0000  129.2105 129.5609  129.6302 129.8065 

P8 120.0000 120.0000  117.4995 119.4790  120.0000 119.9245  119.1480 120.0000 

P9 20.0000 54.5960  20.8457 47.1720  74.5740 79.2713  52.1945 79.9178 

P10 10.0000 10.0000  10.0000 10.0000  45.3529 52.6214  45.4802 45.3456 

Cost 60140.41 60726.68  70003.49 70024.86  80447.9 80499.54  91921.37 92055.08 

Losses 18.5759 18.4740  26.1858 26.2744  35.2982 35.3272  46.4403 46.3956 

IV.2. Case2:Modified ABC algorithm 

In this case, POZs constraints have been considered in the ED problem. Optimum generated powers 

obtained using ABC-LS and ABC algorithms are depicted in Table 3. It is shown that the proposed 

approach outperforms the classical ABC.  

In order to examine the impact of POZs constraints on the ED problem solution, the variation of the 

difference ∆C in $/h between costs obtained using the proposed algorithm for the cases with and 

without POZs, versus various loads has been illustrated in Fig. 4. It can be seen that ∆C is positive for 

all loads. Thus, we can conclude that when POZs are included in the problem, the optimum cost 

increases due to the limitation of the search space. 
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Fig. 4. Effect of POZs on the optimum cost 

 

V. Conclusion 

In present work, a new artificial bee colony (ABC) based approach is proposed to solve the non-smooth 

and non-convex economic power dispatch (EPD). This technique combines the ABC algorithm and a 

local search approach in order to improving the exploration of the search space. The EPD problem has 

been converted in to a mono-objective problem optimization that aims to minimize total production 

cost. Valve-point loading effects, total power losses and other operating constraints have been 

considered. The mentioned problem is solved with and without considering prohibited operating zones.   

Simulations results are carried out using the ten-unit system for various loads. It is observed that: 

 The optimum cost increase when POZs have been considered due to the reduction of the search 

space. 

 The new technique outperforms the original ABC algorithm. 
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