A Survey on Stock Price Prediction Using Deep Learning

Kalpak Kale^{1,} Shreya B. Ahire ²

- 1. Department of Computer Engineering, NBNSSOE, Ambegaon, Pune, Maharashtra, India
- 2. Department of Computer Engineering, NBNSSOE, Ambegaon, Pune, Maharashtra, India

Abstract

Stock market price forecasts have been a topic that both analysts and researchers have long been interested in. Stock prices are difficult to analyse because of the excessive volatility nature that rest on many economic factors. Stock price forecasts based on historical data have proven to be inadequate. A study of sentiment analysis found a relationship between stock price movements and the publication of news articles. Many sentiment analyses use a variety of algorithms, such as support vector machines, naïve Bayesian regression, and deep learning, to look at how they are performed at different levels. The accuracy of the algorithm depends on the amount of training data provided. However, the amount of text information collected and analysed in previous studies is not yet sufficient and produces low-precision predictions.

In this paper, collect large amounts of time series data and use deep learning models to analyse related news articles to improve the accuracy of stock price forecasting. Naïve Bayesian classifiers are used to classify news texts with negative or positive emotions. Along with the number of positive and negative emotions in each day's news articles, and past data, close prices and distribution of adjacent days are used for predictive purposes and accuracy of 65.30 to 91.2% achieved in different machine learning technologies.

Keywords: Stock market, support vector machines, Naïve Bayesian regression, deep learning, RNN

I Introduction

There are many factors that affect the price of the stock market. One of the aspects is investors' responses to monetary news and daily events. Today, the accessibility of news is increasing dramatically. It is difficult for investors to determine stock price trends built on the basis of large amounts of news. Therefore, automated systems for predicting future stock prices are useful for investors. Automated systems collect pecuniary news allied to interested companies in real time and use historical stock quotes to run machine learning models to predict prices. Over the years, research has been conducted to predict stock prices based solely on historical stock data or using text and historical data.

Some of the previous works were used by Twitter as text data for emotions, financial blogs and news articles. Our job is to avoid fake news that may be widespread on social media with financial news stories from well-known sources. Using previous stock prices and existing financial news, we predicted the closing price of the day. We believe that financial news related to the company will have a significant impact on stock prices.

II LI TERATURE SURVEY

Below Table 1 shows the various papers survey based on the method

III SYSTEM ARCHITECTURE

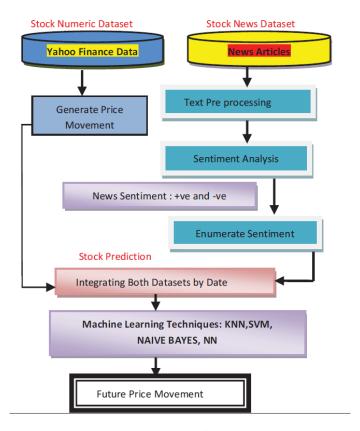


Fig. 1 Prediction Model for Stock Market

Serial	Year	<u>Author</u>	Concept	Method	Advantages	Disadvantages
1	2019	Saloni	Our paper improves the	Deep	We know	Model is Good
		Mohan,	accuracy of stock price	Learning	better results	execution in
		Sahitya	forecasting. Collect large		in RNN.	case If the
		et.al	amounts of time series data		There is a	stock price is
			and use deep learning models		correlation	Low or highly
			to analyse them in relative to		between text	volatile.
			news articles.		information	
					and the	
					direction of	
					stock prices.	
2	2019	Sneh Kalra	This study focuses on	Deep	The highest	Deep learning
		, Jay	observing stock price	Learning	predictive	usually
		Shankar	fluctuations in related news		accuracy	requires much
		Prasad	articles in companies. Also, it		realized by	more data than
			proposes a daily forecasting		KNN is	it used to be
			model using past data and		91.2%. The	Machine
			news articles to predict the		results of the	learning
			movement of the Indian stock		proposed	algorithms, as
			market. Categorized Child		method are	in the case of at

			Naïve Bayes. Categorize news		consistent	least a few
			texts with negative or positive		with previous	
			emotions.		•	people millions
			emotions.		said there is a	
						samples. This
					_	*
						is not an easy
						problem.
					stock-related	
						machines to
					stock price	
					changes.	With other
						algorithms,
						learning
						problems can
						be solved with
						less data.
3	2018	Ishita	This paper Regression the Use	Machine	Primary	The accuracy
		Parmar,	of LSTM-Based Machine	Learning	Contributing	of Stock
		Navanshu	Learning		researchers to	Market
		Agarwal,	Predict stock prices. Factors to		make their	Forecasts
		Sheirsh	be considered are open, closed,		applications	System more
		Saxena,	low,		New LSTM	possible
		Ridam	High and volume.		model as a	improved by
		Arora,			means of	taking
		Shikhin			determining	advantage of
		Gupta,			stocks	Much larger
		Himanshu			Price.	dataset more
		Dhiman				than there is
						It is currently
						in use.
4	2018	Jeevan B,	This paper is mainly based on	Machine	As a result,	The first
			a method to predict stock		you can	drawback
		Vijaya	prices using long-term short-	C	predict the	RNN slope is
			term Memory (LSTM) and		stock price to	•
		Prashanth	Recurrent Neural Network		a very close	
		Kambli	(RNN)			exploding.
			Use a variety of data to predict		At the actual	
			the stock price of NSE data			training for
			Factors such as current market		model	RNN is
			price and price rate of return			difficult
			Includes basic values and other		•	Two ways: (1)
			events.		Use different	•
			· · · · · · · · · · · · · · · · · · ·			Very long
						processing
					make	Sequence if
						used
		ĺ			predictions.	useu

	tan as its
	activation
	function, (2)
	it's very
	Unstable when
	using
	As activation
	Function.
5 2017 Ashish Make predictions Mac	hine As a result, First drawback
Sharma, Regression analysis is Lear	rning stock prices RNN slope is
Dinesh primarily used. In this paper,	can be very Gone.
Bhuriya, a study of a well-known and	close to Problems
Upendra efficient regression approach	forecasting. exploding.
Singh to Predicting stock market	At the actual That
prices from stock market data	price, this Do the training
Base. Results of multiple	model for
regression in the future	captures the RNN is hard, in
Approach can be improved	hidden model two
using more and more Variable.	Use different How:
	strategies to (1) Cannot be
	work and processed
	make Very long
	predictions. sequence
	use a tan as that
	Activation
	function,
	(2) Very
	unstable
	If you want to
	use relu as that
	Activation
C 2010 D W : M: : 1 1 1 1 1 1 1 1 1	function.
6 2019 Dou Wei This survey is based on the LST	
demand for stock prices. Netv	
predictions and practical	researchers to have a certain
problems it faces, comparisons	make their effect on
and	applications The validity of
We analyse various methods of	New LSTM the model.
neural network prediction,	model as a
Finally, selected LSTM (long-	means of
term short-term memory,	determining
LSTM)	stocks
Neural Network.	Price.
	volutional The main they lose
Lounnapha	

		Zhongdong	Price prediction model	hased		neural	All i	nternal
		,Chalita	_	neural			data	incrnai
		Sookasame		icurai		that	About po	2000
		SOOKasaiiic	•	h:1:4			The orie	
			It has obvious self-adapta	iomity				піаноп
			and self-learning ability.			using	of	
						convolution	objects	and
							they rout	
						sampling	All infor	
						layer	Same ne	
						Learning	You ma	-
						function	be able	to do
						extractor,	this.	
						which allows	Of this k	ind of
						to supply	Informat	ion.
						nerves		
						This is useful		
						because it is a		
						network that		
						does not		
						perform		
						advanced		
						pre-		
						processing.		
						Features are		
						learned		
						during		
						training.		
						has high		
						accuracy and		
						high		
						application		
						values.		
8	2017	Shashank	In this paper, proposes th	ne use	Data	Feed forward	Cost of d	lata
		Tiwari,	of data analysis.		Analytics		Analysis	
		Akshay	Help investors make the		•	The network	_	
			financial forecasts	υ		provides the	-	on
			The right decisions	about		*	applicati	
		Gupta	investing can be take			U	and featu	
		- · · · · ·	investors. 2	- 3		the opening		
			The platform is used	l for			addition	
			operation: Python and R.			1	Part of th	ne data
			operation. Tython and It.			also observed		
						that different		10015
							Complex	to use
						efficient	Training	
							required.	
							required.	11115

		for	different	increase	the
		type	s of	cost to	
		stoc	ks and	company	
		price	es.	willing	
				Adopt dat	ta
				Analysis	tools
				or	
				Software.	

Table 1 Literature Survey

To improve the predictive accuracy of stock market movements, the proposed system cartels the difference in news sentiment values, historical data, and the closing price of adjacent days. The proposed model helps investors invest in the stock market and take various decisions to avoid financial losses and risks. This model predicts price fluctuations per day, taking into account fully available news and historical data[7 8]. Supervised machine learning technology is used to train existing data. News sentiment is mined and combined with the past price of the number to build the forecast model. In this study, we analyse the text of the news data and the polarity search of the text.

IV Conclusion

In this study, we used a time series to predict stock prices. Grouping models, neural networks, and financial news articles. The result is a strong relationship between stock prices and financial news articles. In this study, you can build a prediction model built on a time series. For example, RNN and Facebook prediction model prophets[9]. The way to build a stock forecast model is still different when the RNN achieves better results and consequently the stock price is low or very unstable, in the next stock direction model, there is a correlation between text information that the stock direction model did not work well. Some of these include building domain-specific models by grouping companies that they believe will adversely affect stock prices, and show general market stability, taking into account the company's more general industry and global news. News about other affiliates.

V FUTURE SCOPE

Future price fluctuation accuracy is improved by numeric sentiment values and historical numeric event data. KNN can achieve the highest predicted accuracy of 91.2%. The results of the research paper are finely consistent through previous studies that stated that there is a strong correlation between stock-related news and stock price changes. KNN datasets are considered to be the most commonly executed compared to other application algorithms. Future work can be taken into account by considering numerous cases of social media data, reviews, long-term blogs that affect the stock market, and news data.

REFERENCES

- [1] Saloni Mohan, Sahitya Mullapudi et al.," Stock Price Prediction Using News Sentiment Analysis", IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService),2019
- [2] Sneh Kalra, Jay Shankar Prasad," Efficacy of News Sentiment for Stock Market Prediction", *International Conference on Machine Learning, Big Data, Cloud and Parallel Computing*, 2019
- [3] Ishita Parmar, Navanshu Agarwal, et al., "Stock Market Prediction Using Machine Learning", First International Conference on Secure Cyber Computing and Communication (ICSCCC), 2018.

- [4] K. A. Althelaya, E. M. El-Alfy and S. Mohammed, "Evaluation of bidirectional LSTM for short-and long-term stock market prediction," 2018 9th International Conference on Information and Communication Systems (ICICS), Irbid, 2018, pp. 151-156
- [5] S. Liu, G. Liao and Y. Ding, "Stock transaction prediction modelling and analysis based on LSTM," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 2018, pp. 2787-2790.
- [6] T. Gao, Y. Chai and Y. Liu, "Applying long short-term memory neural networks for predicting stock closing price," 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, 2017, pp. 575-578.
- [7] Shwetambari Kharabe, C. Nalini," Robust ROI Localization Based Finger Vein Authentication Using Adaptive Thresholding Extraction with Deep Learning Technique", Journal of Advanced Research in Dynamical & Control Systems, Vol. 10, 07-Special Issue, 2018.
- [8] Shwetambari Kharabe, C. Nalini," Using Adaptive Thresholding Extraction Robust ROI Localization Based Finger Vein Authentication", Journal of Advanced Research in Dynamical & Control Systems, Vol. 10, 13-Special Issue, 2018.
- [9] Shwetambari Kharabe, C. Nalini," Evaluation of Finger vein Identification Process", International Journal of Engineering and Advanced Technology (IJEAT), International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-8 Issue-6S, August 2019.