
 
 

International Journal of Future Generation Communication and Networking 
Vol. 13, No.2s, (2020), pp. 1694–1699 

 

1694 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

Test Case Management Tool 

1Dhruvi Modi, 1Alisha Bhale, 1Karan Borana, 1Vaishnavi Chatap,  

1BE-Computer, VIIT Pune 
2L.A.Deshpande, Assistant Professor, Computer Engineering, VIIT Pune 

Abstract 

Software Testing is one of the crucial activities in developing quality software. Although a range of 

software testing techniques has been developed to efficiently identify bugs in source code, these 

techniques are not always fully employed in practice. This has many explanations, including the 

challenge of understanding the complexity of handling all the test cases for large-scale projects. Test 

case management involves organizing the testing process in a systematic manner. To be successful, 

test case management requires a high degree of discipline to accommodate the large volume of 

elements under consideration. This paper aims at the development of a powerful test case 

management tool. Our proposed methodology will manage the test cases efficiently thereby reducing 

the effort required by the testing team, saving cost and approximating the complexity of them. 

Tracking the status of every test case, from its engineering to complexity estimation, will be done 

efficiently. The main feature of the system is that it will be estimating the complexity level of the test 

cases based on a number of steps, verification points and data entry points in the test case. 

Keywords - Software Testing, Web-based Software Tool, Complexity Estimation, Status Tracking, 

Verification points, Data entry points 

I. INTRODUCTION 

People involved in a software project want to know when the testing is done and the quality of the 

testing. It is critical that the test execution is effectively monitored in order to be able to answer that 

question. So, this is done by collecting test data, or measurements, showing the test progress. The 

metrics aid in determining when corrections are required to ensure progress. Further, the testing team 

can estimate a release date for the program using these metrics [5]. 

To improve test performance and enhance test repeatability, commercial vendors have developed 

various testing tools. These software test management tools have dominated the market over the past 

decade and have been widely adopted. Yet increasingly, IT organizations are acknowledging Open 

Source test management tools as reliable and implementing them rapidly. Open source test 

management tools reduce cost, increase tester efficiency, test in-house developed applications and so 

on [3]. 

This paper discusses the development of a web-based test management tool that will be used by 

testers, test leads & managers of an organization. It will follow a centralized test management concept 

that will aid in easy communication and easily allow managing test cases and test results as well as 

maintain a standardized test case format. The complexity of the underlying database is entirely hidden 

from the system end-users. Also, the test scenarios will be managed at different user levels like a 

manager, tester and test lead. An Individual’s performance will be reflected, through the dashboards, 

to the manager and project leader. This tool will make the tracking of the status of individual tests and 

projects easier with the help of the dashboard. The cost incurred for the management of the testing 

process will also be reduced as this tool will be open source. The major advantage of this web-

application will be its ability to estimate the complexity of any test case as well as the time required 

for the execution of a test case. This estimation will help the team in adjusting the release date so as to 

ensure timely delivery to the client. 



 
 

International Journal of Future Generation Communication and Networking 
Vol. 13, No.2s, (2020), pp. 1694–1699 

 

1695 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

The rest of the paper is structured as follows: Section II explains the related work done in this area, 

Section III describes the proposed methodology and Section IV shows the results followed by the 

conclusion. 

II. RELATED WORK 

From the moment the development of software begins, it’s testing also starts. As the development 

progresses the complexity in testing increases. While spreadsheets can be used as a way for a small 

team to handle test cases, as the team expands, it can quickly turn into a huge burden. It becomes 

difficult to keep track of various test scenarios that are being handled by different testers. This can 

lead to miscommunication and ultimately resulting in client dissatisfaction [9]. 

Manually managing the testing process has various limitations :  

● Traceability is not evident between specifications and the test cases. 

● Absence of a shared database for storing the results. 

● Difficulty in managing the project activities among the team members. 

● Tracking individual and team performance is hard [1]. 

In order to overcome the limitations of manual testing management, several tools have been 

developed over the past decade. These tools satisfy the basic functionality of managing the test cases 

as well as provide some additional features that aid the testing team. 

TABLE I 

Some existing test case management tools [6-8] 

Product Name Key Supremacy Key Weakness 

TestRail Clear metrics, and analyses in 

real-time 

Subscription cost increases as 

the number of users increases 

TestLodge Easy to use and offers templates 

for the test cases 

Can be inefficient if applied to 

large teams 

Tricentis qTest 

 

Comprehensive test case 

management features 

Not very affordable for small 

teams 

 

III. PROPOSED METHODOLOGY 

The proposed methodology reflects the management of the test cases throughout the whole testing 

process. The methodologies basically include the two major aspects, the estimation of the complexity 

of test cases and automation. 

 

The process will start with the requirement gathering from the client which basically includes the test 

case scenario, the number of steps to be covered to reflect the required result. There are three main 

user roles that will hold the core functionality to be delivered. The proposed methodology aims at 

delivering the load balancing facility for as well as the performance tracking for an individual user 

role. The overall methodology delivers core functionality for the smooth processing of the testing 

phase. 

 



 
 

International Journal of Future Generation Communication and Networking 
Vol. 13, No.2s, (2020), pp. 1694–1699 

 

1696 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

The core functionality of this methodology lies in the estimation of the complexity of each test case. 

There are three main attributes to calculate the complexity level. The result will reflect on three 

different statuses.  

 

The parameters are as follows: 

1. The number of steps. 

2. The data entry points. 

3. The verification points. 

 

TABLE II 

Estimation of test case complexity 

 

TC Complexity Steps in TC Verification Point Data Entry Point Per Day Estimate 

Simple <=10 <=8 <=10 3 

Medium <=15 <=12 <=15 2 

Complex 30+ 20+ 20+ 1 

 

A. Technologies 

Front-end technologies used are HTML, CSS (Cascading Style Sheet), Bootstrap and JavaScript for 

User-Interface development. 

Back-end technologies used are Node.js for server-side scripting and MySQL for Database. 

 

B. Architecture       

   

 
Figure 1. The architecture of the system 

     

Software Architecture Design above describes the basic software structure by separating functional 

areas into layers. It shows how this software might interact with its user, external system, data 

sources, and services. 

 



 
 

International Journal of Future Generation Communication and Networking 
Vol. 13, No.2s, (2020), pp. 1694–1699 

 

1697 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

Client-Server Texts are the input that a system will get from a client-side in the form of Build 

Definition, Build test cases and Build Repository. The software will further manage the Test input by 

creating Test suites, Test plans, Test cases, and Test Lab Definition. 

 

The config file is used to manage various settings that define a web system. It uses various Data driver 

to manage data in a system and help operating systems and devices to communicate data between 

them. Log generators are used to maintain a log of individual users at the backend[10 11]. Various 

Frameworks which are software libraries that provide a fundamental structure to support the 

development of the application for a specific environment are used. Further launching of these Test 

Automation Scripts will provide services for Test Input Data, Object Management, Reporting, and 

Test Controller. These services are then used by individual users with the help of the User Interface 

platform provided by the Application layer which provides with dashboard, input fields, datasheet, 

etc. to the user. 

 

IV. RESULTS 

 

 
Figure 2. Time vs. Complexity (For a single Test Case) 

 

Conclusion of the above graph - The above graph signifies the approx time taken by three different 

complexity of Test Cases. If a user wants to predict the approximate time required by a particular Test 

Case then the above graph can be very handy in predicting the time.  

 

According to TABLE II of Test Case Complexity given above, 3 Simple Test Case can be performed 

in a day. So considering an 8-hour workday, each test case gets approximately 2.66 hours. Therefore 

dividing the 2.66 hours for all the 3 sections of a test case, i.e Steps, Verifications pts, and Data entry 

pts take 0.89 hrs each approximately. Similarly, all the sections take 1.33 hrs and 2.66 hrs for medium 

complexity and a hard complexity test case respectively. 

Example - So if a Test Case which contains Steps = 12,  Verification Points = 10, Data Entry Points = 

7 , then 

  

Time Required is - 



 
 

International Journal of Future Generation Communication and Networking 
Vol. 13, No.2s, (2020), pp. 1694–1699 

 

1698 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

Steps = 1.33 hrs    (as Steps greater than 10) 

Verifications Pts = 1.33hrs  (as Verifications Pts greater than 8) 

Data Entry Pts = 0.89 hrs  (as Data Entry Pts less than 10) 

Total Time = 1.33 + 1.33 + 0.89 = 3.55 hrs approx. 

 

So the above example Test Case can take 3.55 hrs approximately. 

 

 
Figure 3. Complexity vs. Steps in Test Case 

The above graph significantly describes how the three parameters i.e. Steps of Test Case, 

Verifications Points, Data Entry Points affect the complexity of a particular Test Case. By the above 

graph data, one can easily get a brief idea about the complexity of a particular Test Case by observing 

the variations in the values. 

 

V. CONCLUSION 

This paper discusses a web-based software tool that will be used for the management of the test cases. 

This tool will allow the testing team to efficiently manage the test cases, reduce the cost of testing and 

avoid chaos. The important feature of estimating the complexity of the test cases will provide an 

approximate test case completion time. With the help of this estimation, changes can be made to the 

deadline given to the client so as to ensure timely delivery. Further features can be added and more 

aspects of the testing phase can be automated.  A lot of research is ongoing concerning this domain. 

 

REFERENCES 

[1] Sheena Kukreja, Abhishek Singhal, Abhay Bansal, “A critical survey on test management in IT 

projects”, International Conference on Computing, Communication and Automation (ICCCA2015)  

[2] Ahmed Ibrahim Safana; Suhaimi Ibrahim, “Implementing Software Test Management Using 

SpiraTeam Tool“, Fifth International Conference on Software Engineering Advances, Aug 2010 

[3] K. Saravanan, E. Poorna Chandra Prasad, “ Open Source Software Test Automation Tools: A 

Competitive Necessity “, International Journal of Management & Development,  Vol.03, Issue 06 

(2016) pg103-110 

[4] Tauhida Parveen, Scott Tilley, George Gonzalez, “A Case Study in Test Management” 

[5] J.B.A Gemunu Priyadarshana, “Software Test Management Tool”, A dissertation submitted for 

the Degree of Master of Information Technology, University of Colombo School of Computing 2017  

[6] “TestRail tool”, https://www.gurock.com/testrail 

[7] “TestLodge tool”, https://www.testlodge.com/ 

[8] “Tricentis qTest”, https://www.tricentis.com/products/agile-dev-testing-qtest/ 

https://ieeexplore.ieee.org/author/37085560053
https://ieeexplore.ieee.org/author/37085373604
https://ieeexplore.ieee.org/author/38526856400
https://ieeexplore.ieee.org/author/37594138400
https://ieeexplore.ieee.org/author/37321641300
https://ieeexplore.ieee.org/xpl/conhome/5613991/proceeding
https://www.gurock.com/testrail
https://www.testlodge.com/
https://www.tricentis.com/products/agile-dev-testing-qtest/


 
 

International Journal of Future Generation Communication and Networking 
Vol. 13, No.2s, (2020), pp. 1694–1699 

 

1699 
ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

[9] “Understanding test case management”, https://www.getzephyr.com/insights/understanding-test-

case-management# 

[10]Dhumane, A., & Prasad, R. (2015). Routing challenges in internet of things. CSI 

Communications. 

[11] Dhumane, A. V., Prasad, R. S., & Prasad, J. R. (2017). An optimal routing algorithm for internet 

of things enabling technologies. International Journal of Rough Sets and Data Analysis, 4(3), 1–16. 

 

 

 

https://www.getzephyr.com/insights/understanding-test-case-management
https://www.getzephyr.com/insights/understanding-test-case-management

