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Abstract: 

 

The structure of the Railway Track consists of (i) Super-Structure - the Rail, Fastening System 

and Sleepers; (ii) Sub-Structure - Non-Cohesive Granular Materials viz Stone Ballast. The 

Railway Track is a Continuous Beam Structure that is supported on the Elastic Foundation 

having Sleepers, Rail Pad, Liners and Elastic Clips tied to the Rail. 
 
This review paper describes the efforts done by researchers to identify the Mathematical 

Behavior of the Rail or the Rail Track. It gives an overview of the Static and Dynamic Stiffness of 

the Track and provides the global picture on the Analytical and Numerical Track Modeling. The 

Zimmermann Model with Beam on Elastic Foundation (BOEF) is most widely used in the one 

parameter, linear models. The Pasternak foundation is popular among the complex mathematical 

formulations that uses moving mass or moving loads. The dynamic behavior of tracks with multi-

parameter models, non-linear behavior of the foundation is employed and studied by various 

researchers, one can choose it based on the different boundary conditions. 
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1. Introduction: Why the Modeling of Track is important?  

The structure of the Railway Track consists of (i) Super-Structure - the Rail, Fastening System 

and Sleepers; (ii) Sub-Structure - non-cohesive Granular Materials viz stone Ballast. 
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Fig.1 A schematic of Rail Track and Rail Fastening System  
[Source: http://www.pandrolrahee.com/] 

 

 

Till date, there are thousands of research papers published on Rail. Every year, there is 

continuous addition of papers. These continuous efforts of research is useful to understand and 

improve the rail (combining the rail track, super and sub structures) performances, track 

geometries, stresses in rails, Modal Testing of rail, dynamics of rail (in terms of vertical / lateral 

vibration, natural frequencies, stiffness, and noise), rail-track interaction, contact mechanism, rail 

joints, welds, life of rail and its components, maintenance of rail, track deterioration. In return, it 

improves the comfort of passengers. There are few dedicated codes (software) like GEOTRACK, 

TRACK, DYNATACK, DARTS, DIFF, DIFF3D, NUCARS, ADAM/RAIL, MEDYNA, 

GENSYS, SIMPACK, VAMPIRE etc… 

 
Railway track stiffness (vertical track load divided by track deflection) is a basic parameter of 

track design which influences the bearing capacity, the dynamic behavior of passing vehicles and, 

track geometry quality and the life of track components. The Dynamic track modelling is needed 

to allow more accurate prediction of track degradation and associated Railway Track 

maintenance and structural capacity of Railway Track and its components. 

 
Modal Testing Experimental Modal Analysis (EMA) or modal testing is a non-destructive testing 

strategy based on the response of structures to vibration. Since the 1940s, modal testing has been 

widely used to help understand the dynamic behavior of structures. The original modal testing 

technique was based on the simple sine dwell method. After some years, innovations based on 

Fast Fourier Transform (FFT) have been developed and are currently used (Brown, 1982; 

Allemang and Brown, 1986; Mitchell, 1986; Allemang, 1993; Ewin, 1995; He and Fu, 2001). 

 
2. An early brake through on the Modeling of Track 

 

Following is the Mathematical Modelling of Train – Track Dynamic interaction are discussed in 

Railway Track Dynamics - a survey by Tore Dahlberg [1], as follows:  
A. Beam (Rail) on Continuous Elastic Foundation  
B. Vehicle – Bridge Interaction (Moving Mass on Simply Supported Beam)  
C. Beam (Rail) on Discrete Supports  
D. Beam (Rail) on Discrete Supports including Ballast Model  
E. Beam (Rail) on Sleepers Embedded in Continuum, including 3-D FEM Models 

 
The dynamic behavior of beams on elastic foundations have been investigated by many 

researchers in engineering and especially in Railway Engineering. These studies mostly 

considered the Winkler elastic foundation model that consists of infinite closely-spaced linear 

springs [2 – 4] which is also termed as one-parameter model. 
 
In the simplest track model described by Esveld [7], a beam (that is a model of the rail) rests 

on a continuous elastic foundation. The foundation is modelled by an evenly distributed linear 

spring stiffness was introduced by Winkler (1867) and is still in use for easy and quick track 

deflection calculations. The distributed force supporting the beam 
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then is proportional to the beam deflection. The only track parameters needed for this model is 
the Beam Bending Stiffness EI (N/m2) and the Foundation Stiffness (the Bed Modulus) k 
(N/m2), i.e. N/m per meter of rail).  
Zimmermann (1888) presented a solution for the Winkler model by assuming the rail as One – 

Dimensional Analysis of a railway structure supported by elastic springs at discrete points of a 

beam laid on a continuous support (soil subgrade or foundation). He considered the single value 

of C (N/mm3) or modulus sub-grade reaction or ballast module is used. But the components of 

rail-pad, ballast, sub-ballast mat and sub soil have different C values in the ballasted track 

systems. Hence, the material properties of those components are combined into single Ctot value 

by using the correlation of Springs in Series. 
 
In 1970, Meacham et. al. (1970) introduced a track model, assuming the track components to be 

replaced by a series of springs, with individual spring constants. Lundgren and Martin (1970), 

and Thompson and Tayabji (1976) considered discrete support for the rail in the static model of 

the track. Ahlbeck et. al (1978) simulated linear railroad track structures [based on linear theory] 

using one or two degrees of freedom with lumped-parameter model. 
 
The above developments have improved the Winkler model by taking into consideration the 

discrete properties of the support system of the rail. However, Kerr (1976) proved that the results 

obtained from the discrete support model are not significantly different from those obtained from 

the Winkler model. 
 
Timoshenko (1926) was one of the first to model the dynamic behavior of a railway track. In that 

model, the rail was considered as an infinite uniform Euler beam, laid on a continuous damped 

elastic Winkler foundation. Esveld [7] and Kaewunruen S., Remennikov A. [9] identified the 

dynamic parameters of Railway Tracks, such as natural frequency, damping constant, and 

corresponding vibration mode shape, are of substantial importance in the procedures needed for 

analysis and design of Railway Tracks. The better findings form Esveld [7], Grassie [8], 

Kaewunruen S. [9] for the static and dynamic responses of track component have researched to 

improve the capacity of existing railway Ballasted tracks and the economical analysis and design. 

 

Grassie (1982) then found in some experiments that there are only two dominant resonances in 

the frequency range of interest. The first in-phase mode at about 100 Hz corresponds to the 

sleeper and rail moving together on the ballast while the second out-of-phase mode at a frequency 

somewhere between 300 – 500 Hz depending on the rail pad parameters, corresponds to the 

opposite vibration of sleepers on ballast and rails on the rail pad. 

 

3. The complexity of the Modeling of Track 

 

In the case of moving mass, studies are limited to single [13] or multiple span [15-16] beams with 

different boundary conditions and without any elastic supports. A very few studies considered 

one parameter foundation model for prediction of beam responses subjected to a moving mass 

[13-14]. However, this one parameter models do not accurately represent the continuous 

characteristics of practical foundations since it assumes no 
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interaction between the lateral springs. Moreover, it also results in overlooking the influence of 

the soil on either side of the beam [15]. 
 
The dynamic behavior of tracks with multi-parameter models, non-linear behavior of the 

foundation is employed and studied by various researchers. The two-parameter models, also 

known as Pasternak models, have been proposed for the analysis of the dynamic behavior of 

beams under moving loads [21-23]. These are mathematically equivalent models but differ in 

foundation parameters only. However, dynamic response of the beam supported on a two-

parameter foundation model under a moving mass is not investigated so far. 
 
Moreover, the effects of shear modulus and foundation stiffness on deflection and bending 

moment responses of the beam supported by Pasternak foundation have also never been 

investigated in the presence of a moving mass. 
 
In order to capture the distributed stresses accurately, a three-parameter model has been 

developed for cohesive and non-cohesive soil foundations [24-26]. This model offers the 

continuity in the vertical displacements at the boundaries between the loaded and the unloaded 

surfaces of the soil [27]. In the analysis of vibration of beams under the moving loads and 

masses, the beam has been modeled as either a Timoshenko beam or a Euler-Bernoulli. A 

Timoshenko beam model considers the shear deformation and rotational inertia of the beam. 
 
Chen and Huang [26] have graphically shown that an Euler-Bernoulli beam can accurately 

predict the response of the beam for foundation stiffness up to 108 N/m2, since the depth and 

rotary inertia of the track can be considered small compared to the translational inertia 
 
[28]. The analytical solution of the vibration of infinite beams under the moving load has 

received considerable attention by researchers. In case of two-parameter model, studies are scarce 

due to the model complexity and difficulties in estimating parameter values. 
 
In recent years, there is a growing interest on the vibration of the beam under moving load in 

railway industry in view of the use of beam type structure as a simplified physical model for 

railway track and pavements. Apart from the one, two or three parameter foundation models, 

viscoelastic and poroelastic half space models of the foundation are also common in the dynamic 

analysis of a beam due to a moving oscillating load or moving point load. These half space 

models can be single layer, or multiple layers, Responses of the beams in terms of displacements, 

bending moments, accelerations, and shear force have been analyzed in these studies. Studies 

with multilayer half space show that the response calculated for the multi-layered case exhibits 

higher frequencies and larger amplitudes than the response obtained for a uniform half-space. 
 
Fryba [2] presented a detailed solution of the moving load problem where the beam was modeled 

as infinitely long Euler-Bernoulli beam resting on Winkler foundation. A vast majority of the 

studies dealing with the moving load problems utilized the Fourier transformation method to 

solve the governing differential equations arising from either Euler-Bernoulli or Timoshenko 

theory. The responses of the infinite beam under moving load supported on either Winkler or 

Pasternak foundation were studied by means of Fourier transforms and using Green’s function. 
 
In order to consider the effect of non-linearity in beam analysis, Finite Element Analysis (FEA) 

of an infinite beam has been carried out in [32-34]. In these studies, FEA has been 
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adopted to perform the analysis of nonlinear dynamic structure under moving loads where the 

load varies with both time and space. In moving force problem, the magnitude of the moving 

force has been assumed to be constant by neglecting the inertia forces of a moving mass. 

However, in the case of moving mass, the interaction force consists of inertia of the mass, 

centrifugal force, etc. Hence, the velocity of the moving mass, structural flexibility, and the ratio 

of the moving mass to that of the structure play important roles on the overall interaction process. 

 

The Analytical and Numerical Modeling of Track Structure is presented in the tabular format. It 

describes the essential track component for the track modeling. The Track Structure considered 

as Single or Double Beam, presented by Euler or Timoshenko formulation, Continuously or 

Discretely Supported with the Suspended / Distributed Masses, either included or neglected. 
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4. Summary and Conclusion 

 

For the Linear Track Models (Single Spring or Equivalent Spring when Multiple Springs 

connected in Series), One Parameter Model, the Zimmermann (1888) model assuming the rail as 

One – Dimensional Analysis of a railway structure supported by elastic springs at discrete points 

of a beam laid on a continuous support (soil subgrade or foundation) is the most widely used. 
 
Lundgren and Martin (1970), and Thompson and Tayabji (1976) considered discrete support for 

the rail in the static model of the track. Ahlbeck et. al (1978) simulated linear railroad track 

structures [based on linear theory] using one or two degrees of freedom with lumped-parameter 

model. 

  
The Pasternak foundation is popular among the complex mathematical formulations that uses 

moving mass or moving loads. The dynamic behavior of tracks with multi-parameter models, 

non-linear behavior of the foundation is employed and studied by various researchers, one can 

choose it based on the different boundary conditions. 
 
This paper is a small step to provide compact review of the efforts done by researchers to identify 

the Mathematical Behavior of the Rail or the Rail Track is presented in this paper. It covers both 

Static and Dynamic Stiffness of the Track and provides the global picture on the Analytical and 

Numerical Track Modeling. To model the track, one should refer to the references, for the 

assumptions, mathematical derivations. 
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