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Abstract 
 In this paper, using Probability generating function method, we derive an Impatient customers in 

an 𝑀/𝑀/1 queue with working vacation and Multiple vacation. Further, we obtain the distributions of the 

additional queue length and the sojourn time of a customer in the stationary state. Numerical examples are 

given to demonstrate the system stability.  
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1 . Introduction 

In Lin et al. (2009) investigated the M/M/c queue with single working vacation. Majid and 

Manoharan (2017), have thought about M/M/c queue with single and different coordinated working 
vacation and Impatient Customers. Manoharan and Jeeva(2018), have inspected the Single Server 

Markovian Queuing System with Vacation Interruptions  and Working Vacations with Setup time and 

broadened the work with waiting server and set up times. 
 

Queueing models with clients anxiety have been concentrated by different creators, for example, 

Altman and Yechiali (2006, 2008), Boxma and de Waal (1994), Yechiali (2007), Baccelli et al. (1984), 

Daley (1965), Van Houdt et al. (2003), Yue et al. (2011,2014), where the reason for anxiety was either a 
considerable delay previously experienced in the line, or a significant delay foreseen by a client upon 

appearance. When the clock terminates, if the server neglects to restore, the clients exits from the line and 

never returns. Then again, if the server returns the due time, the client remains in the framework until the 
finishing of his administration. 

 

In section 2  and 3 of this paper is described the model and some of the performance measures have been 

been calculated.  
 

2 . Model description 

 In this paper, The customers arriving during the working period are served in slower rate 𝜇𝑣. The 
regular busy period starts after the vacation time is over. The customers becoming impatient due to 

unavailability of server during the working vacation period due slower service rate. The impatient times are 

exponentially distributed at rate 𝑛𝛼. If 
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Then {(𝑄(𝑡), 𝐽(𝑡)); 𝑡 ≥ 0} , where the vacation period, and non vacation are denoted by the states 
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(𝐾, 0)𝐾 ≥ 0, (𝐾, 1)𝐾 ≥ 1, (0,1) and (𝐾, 2)𝐾 ≥ 1,respectively and K denotes the number of customers. 
 

 (𝜆 + 𝛾)𝑝00 = 𝜇𝑏𝑝12 + (𝜇𝑣 + 𝛼)𝑝10 (1) 

 (𝜆 + 𝜇𝑣 + 𝑛𝛼 + 𝛾)𝑝𝑛0 = 𝜆𝑝(𝑛−1)0 + (𝜇𝑣 + (𝑛 + 1)𝛼)𝑝(𝑛+1)0, 𝑛 ≥ 1 (2) 

 𝜆𝑝01 = 𝛾𝑝00 (3) 

 (𝜆 + 𝜃)𝑝𝑛1 = 𝜆𝑝(𝑛−1)1𝑛 ≥ 1 (4) 

 (𝜆 + 𝜇𝑏)𝑝12 = 𝜃𝑝11 + 𝜇𝑏𝑝22 + 𝛾𝑝10 (5) 

 (𝜆 + 𝜇𝑏)𝑝𝑛2 = 𝜃𝑝𝑛1𝜆𝑝(𝑛−1)2 + 𝜇𝑏𝑝(𝑛+1)2 + 𝛾𝑝𝑛0, 𝑛 ≥ 2 (6) 

Let as define the probability generating functions  

 𝐹0(𝑧) = ∑∞
𝑛=1 𝑝𝑛0𝑧𝑛; 𝐹1(𝑧) = ∑∞

𝑛=1 𝑝𝑛1𝑧𝑛; 𝐹2(𝑧) = ∑∞
𝑛=2 𝑝𝑛2𝑍𝑛  (7) 

with 

𝐹0(1) + 𝐹1(1) + 𝐹2(1) = 1 and 𝐹0′ = ∑∞
𝑛=1 𝑛𝑍𝑛−1𝑝𝑛0 

Using (1) and (2)  

(𝜆 + 𝜇𝑣 + 𝛾) ∑

∞

𝑛=1

𝑝𝑛𝑜𝑧𝑛 + 𝛼 ∑

∞

𝑛=1

𝑝𝑛𝑜𝑧𝑛 + (𝜆 + 𝛾)𝑝00 = 𝜆𝑧 ∑

∞

𝑛=1

𝑝(𝑛−1)0𝑧𝑛  

+
𝜇𝑏

𝑧
𝜆𝑧 ∑

∞

𝑛=1

𝑝𝑛+1,0𝑧𝑛+1 + 𝛼 ∑

∞

𝑛=1

(𝑛 + 1)𝑝𝑛+1,0𝑧𝑛 + 𝜇𝑏𝑝12 + (𝜇𝑣 + 𝛼)𝑝10 

 

𝛼𝑧(1 − 𝑧)𝐹0′(𝑧) + (𝜆𝑧2 − (𝜆 + 𝜇𝑣 + 𝛾)𝑧 + 𝜇𝑣)𝐹0(𝑧) + 𝜇𝑏𝑝12𝑧 − 𝜇𝑣(1 − 𝑧)𝑝00 = 0 (8) 

Multiplying the appropriate power of 𝑧𝑛  in (4)  

 (𝜆 + 𝜃) ∑∞
𝑛=1 𝑝𝑛1𝑧𝑛 = 𝜆𝑧 ∑∞

𝑛=1 𝑝𝑛−1,1𝑧𝑛  

 (𝜆 + 𝜃 − 𝜆𝑧)𝐹1(𝑧) = (𝜆 + 𝜃)𝑝01 (9) 
From (5) and (6)  

(𝜆 + 𝜇𝑏) ∑

∞

𝑛=2

𝑝𝑛2𝑧𝑛 = 𝜆𝑧 ∑

∞

𝑛=2

𝑝(𝑛−1)2𝑧𝑛 +
𝜇𝑏

𝑧
∑

∞

𝑛=2

𝑝(𝑛+1)2𝑧𝑛+1 + (𝜆 + 𝜇𝑏)𝑝12 

+𝛾 ∑

∞

𝑛=2

𝑝𝑛0𝑧𝑛 + 𝜃𝑝11 + 𝜇𝑏𝑝22 + 𝛾𝑝10 + 𝜃 ∑

∞

𝑛=2

𝑝𝑛1𝑧𝑛 

      (𝜆𝑧 − 𝜇𝑏)(1 − 𝑧)𝐹2(𝑧) = (𝛾𝐹0(𝑧) + 𝜃𝐹1(𝑧))𝑧 − (𝛾𝑝00 + 𝜃𝑝01) (10) 

𝐹1
′(𝑧) =

𝑑

𝑑𝑧
𝐹1(𝑧), 

Let we derive the solution of the differential equation (8), 

If 𝑧 ≠ 1, then 
 

   𝐹0′(𝑧) + {
−𝜆

𝛼
+

𝜇𝑣

𝛼𝑧
−

𝛾

𝛼(1−𝑧)
} 𝐹0(𝑧) =

−1

𝛼
(

𝜇𝑏𝑃12

1−𝑧
−

𝜇𝑏𝑃00

𝑧
) (11) 

The integrating factor is  

          𝐹0(𝑧) =
−(𝜇𝑏𝑃12)𝐾1(𝑧)+(𝜇𝑣𝑃00)𝐾2(𝑧)

𝛼𝑒
−(

𝜆
𝛼

)𝑧
(1−𝑧)

𝛾
𝛼𝑧

𝜇𝑣
𝛼

 (12) 

where  

    𝐾1(𝑧) = ∫
𝑧

0
𝑒−(

𝜆

𝛼
)𝑥(1 − 𝑥)

𝛾

𝛼
−1𝑥

𝜇𝑣
𝛼 𝑑𝑥 (13) 

 𝐾2(𝑧) = ∫
𝑧

0
𝑒−(

𝜆

𝛼
)𝑥(1 − 𝑥)

𝛾

𝛼𝑥
𝜇𝑣
𝛼

−1𝑑𝑥 (14) 

3. Performance measures 

For 𝑗 = 0,1,2, let 𝑃𝑗 = 𝐹𝑖𝑗(𝑧) = ∑∞
𝑛=0 𝑃𝑗𝑛 , and let 𝐹(𝛼𝑗) = 𝐹𝑗′(𝑥) = ∑∞

𝑛=1 𝑛𝑃𝑗𝑛. Then from (5)and (6), 

we get  

 𝛾𝑃00 + 𝜃𝑃01 = 𝛾𝐹0(1) + 𝜃𝐹1(1) (15) 
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 𝐹2(𝑧) =
(𝛾𝐹0(𝑧)+𝜃𝐹1(𝑧))𝑧−(𝛾𝐹0(1)+𝜃𝐹1(1))𝑧

(𝜆𝑧−𝜇𝑏)(1−𝑧)
 

Using L’Hospital rule, we find  

 𝐹2(1) =
𝛾𝐹0′(1)+𝜃𝐹1′(1)

𝜇𝑏−𝜆
 (16) 

where, 𝐹0′(1) = 𝐸(𝐿0), 𝐹2(1) = 1 − 𝐹1(1) − 𝐹0(1) 

Substituting the above values in (16), we get  

 1 − 𝐹1(1) − 𝐹0(1) =
𝛾𝐸(𝐿0)+𝜃𝐸(𝐿1)

𝜇𝑏−𝜆
 

 𝐸(𝐿0) =
(𝜇𝑏−𝜆)

𝛾
(1 − 𝐹1(1) − 𝐹0(1)) −

𝜃

𝛾
𝐸(𝐿1) (17) 

so that 𝐸(𝐿0) can be obtained by adding (3),(4) and (6) and by rearranging the terms, we obtain  

𝜆𝑃𝑛0 + 𝜆𝑃𝑛1 + 𝜆𝑃𝑛2 − [(𝜇𝑣 + (𝑛 + 1)𝛼)𝑃𝑛+1,0 + 𝜇𝑏𝑃𝑛+1,2]

= 𝜆𝑃𝑛−1,0 + 𝜆𝑃𝑛−1,1 + 𝜆𝑃𝑛−1,2 − [(𝜇𝑣 + (𝑛 − 1)𝛼)𝑃𝑛0 + 𝜇𝑏𝑃𝑛2], 𝑛 ≥ 1 

      𝜆𝑃𝑛0 + 𝜆𝑃𝑛1 + 𝜆𝑃𝑛2 = [(𝜇𝑣 + (𝑛 + 1)𝛼)𝑃𝑛+1,0 + 𝜇𝑏𝑃𝑛+1,2], 𝑛 ≥ 0 (18) 

Adding over all possible values of n in (19), we get  

𝜆𝐹0(1) + 𝜆𝐹1(1) + 𝜆𝐹2(1) = 𝜇𝑏𝐹2(1) + 𝜈𝑣(𝐹0(1) − 𝑃00) + 𝛼 ∑∞
𝑛=0 (𝑛 + 1)𝑃𝑛+1,0, 𝑛 ≥ 0 (19) 

But 𝐸(𝐿0) = ∑∞
𝑛=0 (𝑛 + 1)𝑃𝑛+1,0 and 𝐹2(1) = 1 − 𝐹0(1) − 𝐹1(1) 

Substituting the values of 𝐸(𝐿0) from (17) in (19) and solving we get  
(𝛼 + 𝛾)(𝜇𝑏 − 𝜆) = [𝛼(𝜇𝑏 − 𝜆) − (𝜇𝑣 − 𝜇𝑏)𝛾]𝐹0(1) + (𝛼(𝜇𝑏 − 𝜆) + 𝜇𝑏𝛾)𝐹1(1) + 𝜇𝑣𝛾𝑃00 +
                                      𝜃𝛼𝐸(𝐿1) (20) 

Taking limit 𝑧 → 1 in (12), and as 0 ≤ 𝐹0(1) = ∑∞
𝑛=0 𝑃𝑛0 ≤ 1 and lim

𝑧→1
(1 − 𝑧)

−𝛾

𝛼 → ∞, we must have  

 𝑃00 =
𝛾

𝜇𝑣
𝐹0(1)

𝐾1(1)

𝐾2(1)
 (21) 

Equation (9) can be simplified as  

                    𝐹1(1) =
(𝜆+𝜃)𝛾

𝜆𝜃
𝑃00 (22) 

 

 𝐸(𝐿1) = 𝐹1′(1) =
(𝜆+𝜃)𝛾

𝜃
𝑃00 

 

 𝐹2′(𝑧) =
[𝜆(1−𝑧)−(𝜆𝑧−𝜇𝑏)]

[(𝜆𝑧−𝜇𝑏)(1−𝑧)]2  

 

      =
(𝜇𝑏−𝜆)[(𝜆𝐹0′′(1)+𝜃𝐹1′′(1))+𝜆(𝛾𝐹0′(1)+𝜃𝐹1′(1))]

2(𝜇𝑏−𝜆)2  

 

 𝐸(𝐿2) =
𝜇𝑏(𝜆𝐹0′′(1)+𝜃𝐹1′′(1))+𝜆[(𝛾𝐹0′(1)+𝜃𝐹1′(1))−(𝛾𝐹0′′(1)+𝜃𝐹1′′(1))]

2(𝜇𝑏−𝜆)2  (23) 

 

 𝐸(𝐿) = 𝐸(𝐿0) + 𝐸(𝐿1) + 𝐸(𝐿2) (24) 

 𝐸(𝑤) =
1

𝜆
𝐸(𝐿) (25) 

 Which are expected queue length of the system and expected waiting time of a customer in the system 

respectively.  
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