Conveyor – Modern System for Fruit Categorization

Shreya Mali¹, P. G. Chilveri², PriyaRai³, SakshiThore⁴ ^{1,2,3,4} Dept. of E & TC Engg., Smt. Kashibai Navale College of Engineering, Savitribai Phule Pune University, Pune

> ¹malishreya6@gmail.com ²pgchilveri@gmail.com ³buchunaug25@gmail.com ⁴sakshithore1234@gmail.com

Abstract

Nowadays classical way of farming is being replaced by the advanced technology so as to get better productivity and effectiveness on many fronts. Such fast sorting system helps farmer or industry personnel with minimum human involvement. In this paper, system for sorting and segregating for fruits is proposed. Camera is being used for capturing the images of fruits. It identifies between desired and undesired fruit moving on conveyor belt and separates in different boxes. It also maintains the record of bulk of fruits in each pack. For the implementation of system image processing techniques on python software are used. Raspberry pi is utilized for sorting mechanism. Knowledge base is quite high for Raspberry pi.

Keywords: sorting, desired, undesired, image processing.

I. INTRODUCTION

Better health is central to human happiness and well-being. It also make an important contribution to economic progress of our nation, as healthy populations live longer, are more productive, and save more. Many factors influence health status. Good quality food is main in this. Our proposed system distinguishes between healthy and unhealthy fruits. To help the farmers and industry people, for sorting of quality fruits from bulk of fruits. The system proposed makes this segregation process speedily and effectively. Many business industries are now days involved in import and export of fruit items and it has become one of the prominent businesses. The best example is tomatoes-export. Classification of tomatoes is based on colour variations, size, desired and undesired. As these parameters are measured manually it takes lot of time, contains human errors and reduces time to market. Automation is the best solution to it. The relevance of the proposed system is more for farming and packaging automation. The image of the fruit is captured by the camera. For the segregation purpose, fruits are being moved on conveyor belt and are processed by the processor. The colour and size of the fruits are being measured. The decision based on these parameters is taken for segregation. Further number of count of fruits in each pack is also monitored. Thus the process of segregation has become faster and more accurate with little involvement of human

II LITERATURE SURVEY

Sr.	Reference	Purpose	Merits	Demerits
No.	Kelerenee	T urpose	wichts	Dements
1]	Colour based quality analysis of fruits for automatic grading using Raspberry PI (P. R. Chavan, Dr. S. V. Rode)	Detection of fruit quality based on colour and size. To implement automatic fruit size grading.	Accurate, reliable and consistent system. Can handle large volumes.	The initiated system is a demo vision.
2]	Determination of ripeness and grading of tomato using image analysis on Raspberry Pi (Ruchita R. Mhaski, P. B. Chopade, M. P. Dale)	Inspecting quality of tomato based on shape, size and degree of ripeness.	Cost effective system	It is applicable for grading of tomato only.
3]	Improved quality detection technique for fruits using GLCM and Multiclass SVM (AishwaryaChand ini, Uma Maheshwari B)	To detect and segregate best quality fruits.	The work can be further extended. The system exhibits better performance.	The accuracy of system is 85.64%.
4]	Automatic fruit quality inspection system (Manali R. Satpute, Sumati M. Jagdale)	Sorting and grading of tomato. Detection of defected tomato.	The accuracy of defect fruit detection is up to 90%.	It is applicable for grading of tomato only.
5]	Identification of fruit size and maturity through fruit images using OpenCV-Python and Rasberry Pi (IzadoraBintiMus taffa, SyawalFikri Bin Mohd)	Identification of maturity of mango fruit. To determine size and colour of fruit.	It is better alternative to manual classification which is tedious.	It focuses on identification of maturity of mango fruit.
6]	Vision Based Fruit Sorting System Measures of Fuzziness and Degree Of Matching	Fuzzy algorithms were integrated with machine vision guiding robotic sorting system for fruits.	Fuzzy method was superior to the traditional statistical methods and gives 93.3% of	Sorting of fruits is purely based on fuzziness of fruits only.

	(Sinn-Cheng		accuracy.	
	Lin*,Pai-Yi			
	Huang *,Yung-			
	Yaw Chen*)			
7]	Authentication of	To classify the plants	The work can be	Classification is limited
	Herbal Medicinal	according to its	extended to	to only medicinal usage
	Leaf image	medicinal usage using	neural networks,	of leaf.
	Processing using	real time processor	techniques such	
	Raspberry Pi	Raspberry pi with the	as KNN-K	
	Processor	image of the leaf.	Nearest Neighbor	
	(Vijayashree. T,		,Probabilistic	
	Dr. A. Gopal)		Neural	
	1 /		Network(PNN),fu	
			zzy logic.	
8]	Object Sorting	To examine the utility	Reduces human	Flash light and Light
0]	Automated	and effective use of	labour and hence	Dependent Resistor
	System using	Raspberry pi as a	accuracy	were required to get the
	Raspberry Pi	mechanical system in	increases.	clear image of the
	(SushrutNageshK	sorting of objects.	mereuses.	object.
	ulkarni, Sanjay	sorting of objects.		00,000
	Kumar Singh)			
9]	Portable Smart	To develop a portable	The system can	This is only applied for
7]	Sorting and	fruit sorting and	do sorting of	the oranges.
	Grading Machine	grading machine based	fruits in 500 ms	the oranges.
	-	on computer vision for		
	for Fruits Using	1	with precision result.	
	Computer Vision	small agro-industries.	result.	
	(HadhaAfrisal*,			
	Muhammad Faris, GuntuUtomo			
	P.,LafionaGrezeld			
	,			
	a,IndahSoesanti,			
	MochammadAndr			
101	i F.)		T	
10]	An Automated	To develop a computer	Low cost, more	Speed of the system is
	Machine Vision	vision based system for	intelligent system	limited due the use of
	Based System for	automatic grading and		conveyor belt.
	Fruit Sorting and	sorting of agricultural		
	Grading	product like Mango		
	(Chandra Sekhar	based on maturity level.		
	Nandi,			
	BipanTudu,			
4.43	chiranjibKoley)			T . T . T .
11]	Identification of	To identify the	Efficiency is very	It can detect the
	Artificially	artificially ripened	high.	ripeness only by its
	Ripened Fruits	fruits using MATLAB		image.
	using MATLAB	software.		
	(Miss. Nikita S.			
	Hatmode, Prof.			
	M. N. Thakare)			
12]	A Consumer –	To describe a	Machine Learning	Smartphone is required

ISSN: 2233-7857 IJFGCN Copyright ©2020 SERSC

	Friendly Mechine	nondestructive method	is used to identify	for running of the
	Friendly Machine Learning Based		is used to identify among fruits.	_
	Mechanism to	to detect artificially fruit ripening.	among nuns.	application.
		nun npening.		
	Recognise the			
	Quality of			
	Commercially Available Fruits			
	(Deepti C.,Arjit Jindal, Prudhvi			
	Reddy, Amrutha			
	D.)			
13]	Tomato grading	To grade tomatoes	This system uses	The system uses user
15]	system based on	using neural network	ML algorithm of	defined database of
	colour models by	trained on the colour	neural network	tomatoes to train model.
	using neural	parameters like red and	and back	System requires more
	network	green.	propagation hence	time to train model.
	(PrathameshAwal	Breem	it is real time	
	ekar, L. S.		application. This	
	Admuthe)		system is helpful	
)		due to mixture of	
			hardware and	
			software. Grading	
			of tomatoes is	
			performed.	
14]	Identification of	Sorting of artificially	The proposed	The system requires
	artificially	ripened fruits from	system has an	smartphone which runs
	ripened fruits	naturally ripened fruits	efficiency of 91%	android application.
	using	using smartphones is	in the	
	smartphones	performed.	identification.	
	(S. Maheshwaran,		The system	
	S. Sathesh, P.		identifies the	
	Priyadarshini)		fruits ripened by	
			artificial means.	
15]	Oranges sorting	Sorting of oranges	Includes colour	Perfect technique for
	using arduino	based on colour and	sorting and shape	orange sorting is not
	microcontroller	size using TCS 3200	and size detection	discussed. Survey on
	(VikasChakole,	colour sensor &arduino	system. Makes	different colour based
	PranayIlamkar,	microcontroller.	use of TCS 3200	sorting is discussed.
	RupeshGajbhiye,		colour sensor	
	SuhasNagrale)		&arduino	
			microcontroller.	

III METHODOLOGY

The proposed system is divided into two phases:

- 1. Processing of captured image using python and identifying the fruits which are desired and undesired
- 2. The segregation of required fruits using Raspberry-pi and conveyor belt.

International Journal of Future Generation Communication and Networking Vol. 13, No. 2s, (2020), pp. 367–373

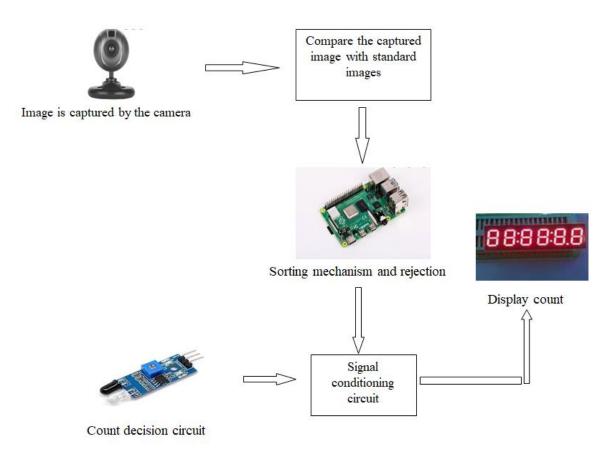


Fig 1: Block Diagram

The work description in detail is given below -

Put the fruit below the camera and it will capture the image of fruit. It will send to image processing software where colour of the fruit and size will be checked. Accordingly, it will send message to processing board. If fruit is desired and does get matched with the specifications, it will be passed in clockwise direction on conveyor belt, otherwise it will move in anticlockwise direction and it is dropped into a box. Count sensor will check continuously the count. Once the required count is reached, then signal is given and the box is ready to be packed. The count sensor senses the fruits and the logic circuit maintains the count of the fruits. Signal conditioning circuit converts the incoming signal from sensors to signal compatible to the logic circuit. Count decision logic triggers the display/alarm to mention the fullness of the box of fruits. Sorting mechanism consist of conveyor belt along with drive and the rejection/acceptance mechanism/actuators.

The system's software process as follows:

- 1. Development of GUI: First button is to open the web camera and capture the image. Second button is to select the image input. Third button is close web camera button.
- 2. Keyboard interrupt is given and the image is being stored in memory.
- 3. Dataset of tomatoes are given with 0 and 1 format in which 0 indicates desired and 1 indicates undesired fruit.
- 4. First training of the module is done.
- 5. Comparison between the images from memory card and dataset.
- 6. Result of the comparison comes out to be 0 or 1 (desired or desired).
- 7. Display the prediction.

The system's hardware process as follows:

1. The outcome of the software is given to the either dc motor or stepper motor of conveyor belt.

2. If the fruit is desired then conveyor belt moves 30 or 40 rounds / time delay of 5 seconds in clockwise direction.

ISSN: 2233-7857 IJFGCN Copyright ©2020 SERSC

- 3. If the fruit is undesired then conveyor belt moves in anticlockwise direction.
- 4. Thus the proposed system performed the sorting .

IV HARDWARE AND SOFTWARE

The hardware used as follows:

- 1. Raspberry-pi
- 2. Webcam
- 3. Conveyor belt
- 4. IR sensor

The software used as follows:

- 1. Python -version 3
- 2. Tkinter library for GUI
- 3. Tensorflow for object detection

V CONCLUSION

Conveyor- fruit categorization system is being implemented with automatic control and segregation process. The number of fruit count is also monitor by the system. The system is programmable hence it is possible to modify for the better speed and accuracy. The prime utility is in such applications where less human intervention is expected. The system is relevant because it has high accuracy and speed.

REFERENCES

- [1] P. R. Chavan and Dr. S. V. Rode, "Colour based quality analysis of fruits for automatic grading using Raspberry PI", International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, Vol. 6, Issue 3, March 2018.
- [2] Ruchita R. Mhaski, P. B. Chopade, and M. P. Dale, "Determination of ripeness and grading of tomato using image analysis on Raspberry Pi", 2015 International Conference on Communication, Control and Intelligent Systems (CCIS), 2015.
- [3] Aishwarya Chandini and Uma Maheshwari B, "Improved quality detection technique for fruits using GLCM and Multiclass SVM", 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI).
- [4] Manali R. Satpute and Sumati M. Jagdale, "Automatic fruit quality inspection system", 2016 International Conference on Inventive Computation Technologies (ICICT).
- [5] IzadoraBintiMustaffa and SyawalFikri Bin Mohd, "Identification of fruit size and maturity through fruit images using OpenCV-Python and Rasberry Pi", 2017 International Conference on Robotics, Automation and Sciences (ICORAS).
- [6] Sinn-Cheng Lin*, Pai-Yi Huang *, Yung-Yaw Chen*, "Vision Based Fruit Sorting System Measures of Fuzziness and Degree Of Matching", Proceedings of IEEE International Conference on Systems, Man and Cybernetics.
- [7] Vijayashree. T and Dr. A. Gopal, "Authentication of Herbal Medicinal Leaf image Processing using Raspberry Pi Processor", 2017 International Conference on Intelligent Computing and Control Systems (ICICCS).
- [8] SushrutNageshKulkarni and Sanjay Kumar Singh, "Object Sorting Automated System using Raspberry Pi", International Conference on Communication and Electronics Systems (ICCES 2018).
- [9] HadhaAfrisal*, Muhammad Faris, GuntuUtomo P.,LafionaGrezelda,IndahSoesanti,MochammadAndri F., "Portable Smart Sorting and Grading Machine for Fruits Using Computer Vision", 2013 International Conference on Computer, Control, Informatics and its Applications.

ISSN: 2233-7857 IJFGCN Copyright ©2020 SERSC

- [10] ChandraSekhar Nandi, BipanTudu and chiranjibKoley, "An Automated Machine Vision Based System for Fruit Sorting and Grading", 2012 Sixth International Conference on Sensing Technology (ICST).
- [11] Miss. Nikita S. Hatmode and Prof. M. N. Thakare, "Identification of Artificially Ripened Fruits using MATLAB", International Research Journal of Engineering and Technology (IRJET).
- [12] Deepti C., Arjit Jindal, Prudhvi Reddy and Amrutha D., "A Consumer Friendly Machine Learning Based Mechanism to Recognise the Quality of Commercially Available Fruits", International Journal of Engineering and Advanced Technology (IJEAT).
- [13] PrathameshAwalekar, L. S. Admuthe, "Tomato grading system based on colour models by using neural network", International Research Journal of Engineering and Technology.
- [14] S. Maheshwaran, S. Sathesh, P. Priyadarshini, "Identification of artificially ripened fruits using smartphones", 2017 International Conference on Intelligent Computing and Control.
- [15] VikasChakole, PranayIlamkar, Rupesh Gajbhiye, SuhasNagrale, "Oranges sorting using arduino microcontroller", International Research Journal of Engineering and Technology.