
International Journal of Future Generation Communication and Networking
 Vol. 13, No. 2s, (2020), pp. 113–117

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC 113

Designing of a Virtual File System

Prasad Dumbre
1
, Kiran Ghuge

2

Student, Department of E & TC

SKNCOE, Pune, India
1 prasaddumbre98@gmail.com

2kghuge49@gmail.com

Abstract

- In every operating System there is File system which is used to perform various operation on file like

read, write, and modify which are performed as per the requirement of the user. Every OS has its own
File System. There are different types of File System which are used by the different OS’s. Main File

Systems which are used by different OS are NTFS, FAT, EXT 2, EXT3, EXT4, JMS, XFS. In this paper

similar tasks will be implemented virtually. This paper will design a Virtual File System like the File

System Which is used by Linux. C language is used for writing code indesigning. Eclipse software
will also be used. 20 MB RAM is required to run the code, so it is like a Virtual File System.

Keywords- partial dynamic reconfiguration, virtual file system, abstraction.

I. INTRODUCTION

In order to visit the temporary files frequently, Linux OS provides virtual memory file system. It

can make files store in the virtual Memory. The virtual memory uses RAM also uses swap partition to

store data, from the user's view of accessing files, it is not different between storing files on virtual

memory and storing on hard disks. Using VFS can solve the problems of operating files directly in
memory. But because of the capacity of physical memory, also when the computer power off, VFS will

disappear automatically. VFS is a temporary file system, when the file has changed, the corresponding

disk files without being changed. Due to the physical memory size, VFS cannot guarantee all files
stored in physical memory, users need to decide which file should exist in the physical memory

II. LITERATURE SURVEY

TABLE I. COMPARISON OF REFERENCE PAPERS

Title and Author About Advantage Disadvantage Outcome

A Virtual Memory File

System Based on
tmpfs

by

Hao Li,
YongpingXiong and

Jian Ma

Presents the design and
implementation of a file

functions using Linear

data structure

low cost

and

operating
speed is

very fast.

Hard to
performed

Overtmpfs has all the

performance

parametersof tmpfs, and
also keeps pace with

hard disk File system.

The Analysis and

Design of Linux File

System Based on
Computer Forensic by

 CHEN Wei, LIU

Chun-mei.

Mining and analyzing

the useful data of the
Linux operating system

as it isImportant means

and research directions

of computer forensic
analysis using Data

structures and file

Operation

speed of file

parsing is

high.

Complex

algorithm.

Author has analyzed and
designed Linux file

system on computer

forensic using data

structures and file
system parsing.

mailto:2kghuge49@gmail.com

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 2s, (2020), pp. 113–117

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC 114

system parsing.

Analysis and

Implementation of
NTFS File

System Based on

Computer Forensics by
Zhang Kai, Cheng

En, Gao Qinquan.

Here, the aim is to

analyze and implement
NTFS File System

Based on Computer

Forensics using NTFS
file system, and file

parsing system.

High speed

file

processing.

Expensive,

complex

design.

The result of analysis is

displayed in a

Friendly interface. A
reliable data source for

the computer

forensics is provided.

Generic Virtual File

systems for
Reconfigurable

Devices.

By
Benjamin Krill, Abbes

Amira, Hassan Rabah

Aim of this paper is

to develop and

implement generic
virtual file

systems for

reconfigurable devices
using Generic virtual

file system.

High speed

file

processing

Expensive,

complex

design.

The complete

framework is
implemented as a

kernel module

without any
modifications on

thekernelcode which

enables the file system to

supportnew
kernelreleases.

XFS: A Wide Area

Mass Storage File

System
by

Randolph Y. Wang,

Thomas E. Anderson.

Author has used XFS to
achieve better

performance availability

than current generation

network file systemsrun
in the wide area.

For this use of

Integration ofmultilevel
storage is done

High speed

file
processing.

Expensive,

complex
design.

XFS minimizes cache

coherence
stateinformation by

exploiting the

hierarchical nature of

file system name
spaceandhierarchical

nature of the cluster-

based organization. By
integrating multiple

levels ofstorage in a

uniform manner

III. DESIGN

Virtual file system consists of file storage and shared library. File storage is responsible for the

management of files in the virtual memory. File processing process calls the Shared library to read or

write files from the VFS. In order to ensure that the data of VFS storages in physical memory instead
of swap partition, considering the memory limit of 32 bits (32 bits Operating System can only access 4

G physical memory when there is not memory expansion). File loading can assume that is real-time,

specific loading time is decided by file processing process.

Fig.1 Structure of VFS

Some fields of superblock are,

 Block size: size of the block

 Inode_bitmap: inode bitmap table

 Data bitmap:data bitmap table

 Inode table:inode table

 First_data_block: the location of the first block of the data area

 Data count: the number of free data blocks

 Free_inode_count:the number of free inodes

 Inode root, inode head, inode tail: LRU and Replacement algorithm use

Super
block

Inode
table

Filetable Buffercache
Data
block

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 2s, (2020), pp. 113–117

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC 115

The superblock: It is the container for high-level metadata about a file system. The superblock is a
structure that exists on disk (actually, multiple places on disk for redundancy) and also in memory. It
provides the basis for dealing with the on-disk file system, as it defines the file system’s managing
parameters (for example, total number of blocks, free blocks, root index node).

On disk, the superblock provides information to the kernel on the structure of the file system on
disk. In memory, the superblock provides the necessary information and state to manage the active
(mounted) file system. Because Linux supports multiple concurrent file systems mounted at the same
time, each superblock structure is maintained in a list (superblocks, defined in./Linux/fs/super.c, with
the structure defined in /Linux/include/fs/fs.h).

The index node:
Linux manages all objects in a file system through an object called an inode (short for index node).

An inode can refer to a file or a directory or a symbolic link to another object. Note that because files
are used to represent other types of objects, such as devices or memory, inodes are used to represent
them also.

Note that the inode I refer to here is the layer inode (in-memory inode). Each file system also
includes an inode that lives on disk and provides details about the object specific to the particular file
system.

VFS inodes are allocated using the slab allocator (from the inode cache; see resources on the right
for a link to more information on the slab allocator). The inode consists of data and operations that
describe the inode, its contents, and the variety of operations that are possible on it. Figure 4 is a simple
illustration of a VFS inode consisting of a number of lists, one of which refers to the dentries that refer
to this inode. Object-level metadata is included here, consisting of the familiar manipulation times
(create time, access time, modify time), as are the owner and permission data (group-id, user-id, and
permissions). The inode refers to the file operations that are possible on it, most of which map directly
to the system-call interfaces (for example, open, read, write, and flush). There is also a reference to
inode-specific operations (create, lookup, link, mkdir, and so on). Finally, there’s a structure to manage
the actual data for the object that is represented by an address space object. An address space object is
an object that manages the various pages for the inode within the page cache. The address space object
is used to manage the pages for a file and also for mapping file sections into individual process address.
Space object comes with its own set of operations (write page, read page, release page, and so on).

The VFS keeps a list of the mounted file systems in the system together with their VFS superblocks.
Each VFS superblock contains information and pointers to routines that perform particular functions.

So, for example, the superblock representing a mounted EXT2 file system contains a pointer to the

EXT2 specific inode reading routine. This EXT2 inode read routine, like all of the file system specific

inode read routines, fills out the fields in a VFS inode.Each VFS superblock contains a pointer to the
first VFS inode on the file system. For the root file system, this is the inode that represents the ``/''

directory. This mapping of information is very efficient for the EXT2 file system but moderately less

so for other file systems.Internal working of below system calls:

https://developer.ibm.com/tutorials/l-virtual-filesystem-switch/#fig4

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 2s, (2020), pp. 113–117

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC 116

Fig.2 Logical diagram of virtual file system

Open:The open system call can be used to open an existing file or to create a new file if it does not

exist already. How it works find existing file on disk, create file tables Set first unused file descriptor to
point to file table entry,return file descriptor, use absolute path begin with “/” when you are not

working in the same directory of file. Use relative path which is only file name with extension, when

you are working in same directory of file.

Close: Tells the operating system you are done with a file descriptor and Close the file which pointed

by fd. How it works & Destroy file table entry referenced by element ‘fd’ of file descriptor table.

Read:From the file indicated by the file descriptor ‘fd’, the read() function reads ‘cnt’ bytes of input

into the memory area indicated by buffer. A successful read() updates the access time for the file.

Buffer needs to point to a valid memory location with length not smaller than the specified size
because of overflow, ‘fd’ should be a valid file descriptor returned from open() to perform read

operation because if ‘fd’ is NULL then read should generate error. ‘Cnt’ is the requested number of

bytes read, while the return value is the actual number of bytes read. Also, sometimes read system call
should read less bytes than ‘cnt’.

Write: Write means write to a file descriptor. This is the primary way to output data from a program by
directly using a system call. The destination is identified by a numeric code. The data to be written, for

instance a piece of text, is defined by a pointer and a size, given in number of bytes.

Lseek: Lseek is a system call that is used to change the location of the read/write pointer of a file
descriptor. The location can be set either in absolute or relative terms.

Stat: Stat system call is a system call in Linux to check the status of a file such as to check when the
file accessed. The stat() system call actually returns file attributes. The file attributes of an inode are

basically returned by stat() function. An inode contains the metadata of the file. An inode contains: the

type of the file, the size of the file, when the file was accessed modified and deleted, and the path of the
file, the user ID and links of the file, and physical address of file content.

Chmod: In Unix-like operating systems, the ‘chmod’ command is used to change the access mode of a
file. The references are used to distinguish the users to whom the permissions apply.

Unlink: unlink deletes a name from the file system. If that name was the last link to a file and no
processes have the file open the file is deleted and the space it was using is made availablefor reuse. If
the name was the last link to a file but any processes still have the file open the file will remain in
existence until the last file descriptor referring to it is closed.

IV. EXPECTED RESULT

Once the complete system will be developed, a Virtual File System like the File System of LINUX OS
will be functional. We will provide some functionality to our system like Linux FS. But this FS runs on

RAM, so it is renamed as a Virtual File System. This virtual file system will perform the operation on

different function and call the particular function after giving a specific command using singly linear
linked list.

V. ADVANTAGES

VFS handle the all type of files and it performs the operation on different functions & calls the
particular function after giving a specific command using singly linear linked list. So, it improves the
speed of file system

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 2s, (2020), pp. 113–117

ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC 117

VI. CONCLUSION

The VFS implementation meets its design goals. VFS has all the performance of Linux file system.

And also keeps pace with hard disk file system. Application process can load the file which meets the

demand advance. Especially when there are a lot of files need to be dealt with, one process is
responsible for loading files, another process is responsible for the operation of files. Because the file

operations are completely using the memory, improving performance. When closing a file, if the file

happens changed, then VFS will write the file back to hard disk once, improving the I/O efficiency.

REFERENCES

[1] Robert A.Gingell, Joseph P.Moran, and William, A.Shannon, ”Virtual memory architecture in

SunOS”, Proceedings of the Summer 1987 Usenix Technical Conference, Usenix

Association,Phonex Arizona, USA, June 1987.

[2] Peter Snyder, “tmpfs: A Virtual Memory File System”,EUUG Conference ,the Autumn 1990

[3] Wolfgang Mauerer, “Professional Linux Kernel Architecture”, 2010.06, pp.583–594. Received

May 17, 2018, accepted June 16, 2018, date of publication June 27, 2018, date of current version

July 30, 2018.

[4] Digital Object Identifier 10.1109/ACCESS.2018.2851192 Vanguard: A Cache-Level Sensitive

File Integrity Monitoring System in Virtual Machine Environment

[5] A New Design of In-Memory File System Based on File Virtual Address Framework Edwin H.-

M. Sha, Senior Member, IEEE, Xianzhang Chen, Qingfeng Zhuge, Member, IEEE, Liang Shi,

Member, IEEE, and Weiwen Jiang

[6] S. Oikawa, “Integrating memory management with a file system on a non-volatile main memory

system,” in Proc. 28th Annu. ACM Symp. Applied Computing, 2013, pp. 1589–1594.

[7] Generic Virtual Filesystems for Reconfigurable Devices Benjamin KrillNIBEC University of

Ulster, Jordanstown Campus, BT37 0QB, Northern Ireland

