
International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 1234–1239

1234 ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Parallelization of Deep Convolutional Neural Network
Umesh Chavan1, Dinesh Kulkarni2

1Department IT, Walchand College of Engineering,Sangli

 2Department IT, Walchand College of Engineering,Sangli

Abstract

Convolutional Neural Network (CNN) in Deep Learning (DL) has been has been achieving success in
various objectives of pattern recognizing and classification. Training CNN model in an acceptable time is

necessary. This is computationally intensive task. We have analyzed speedup in training of complex DL

model using single core CPU and GPU. In the distributed setting, we studied weight update algorithms.

We analyzed performance characteristics using our own designed DL model for facial expression
recognition task. The novelty of this effort is to demonstrate performance acceleration in distributed DL

frame-work. Analysis and study show that DL training performance improved over six times speedup for

the own model.
Keywords: Convolutional Neural Network, GPU, Deep Learning.

1. Introduction

CNN has shown better classification accuracies in various applications of computer vision. In various

applications like computer vision, CNN is found to be more effective [1]. Learning capability can be
processed in better using Deeper network [2].Learning of CNN is mostly carried out using SGD

algorithms. Parallelization CNN is comparatively challenging due to inherent sequential nature of

algorithm. In this approach input data set is divided as mini-batch. Minimizing cost by updating
parameters of the model using gradients is the goal in training of CNN model [3].Commonly used

optimization methods for optimizing SGD: Adam, AdaMax, Adagrad, Adadelta. Model parameters are

updated using gradients at each iteration on mini-batches of input data set. Across mini-batches there is
data depend on the parameters. There are millions of parameters in typical CNN model. This requires a

large amount of data to learn these parameters of the model. This results into slow training of the model.

Typically, it takes order of days of training the CNN model. One of the successful models -VGG took

order of days to train on a single core CPU. It accelerates speed to 1/c on a single machine where there are

 cores in the CPU. It typically reduces to in order of hours for training. But the bottleneck is due to large
datasets it is practically difficult to store whole data set on a single machine. Parallelism and distribution

of model and training can run much faster. This can significantly reduce the end to end training of CNN.

2. Convolutional Neural Network

 CNN is a special instance of ANN in which the connectivity pattern between its neurons is inspired by
the organization of animal visual cortex. The visual cortex has small regions of cells in the brain fires

only when exposed to vertical, horizontal and diagonal edges. CNN has Convolutional, ReLU, Pooling

and fully connected layers [4].
A. SGD CNN Training Algorithm

Back propagation algorithm is adapted in training of CNN model [5]. The training consists of two phase’s

forward and backward propagation forward propagation the activations are calculated using input images.

The output at each layer is propagated in forward direction. In backward propagation, errors are
calculated based on the activation at the last layer. The error propagation is in backward direction. The

errors and activations are calculated using

) (1)

 (2)

 (3)

 (4)

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 1234–1239

1235 ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Algorithm 1: SGD -CNN Training algorithm

 (T: Number of mini-batches , N: Number of Layers in CNN,)

1: for mini-batch t = 0,…T-1 do

2: Δθ = 0

3: Get the tth mini-batch,
4: for layer l = 0,… N-1 do

5: compute Al based on Dt (activation).

6: end for

7: for layer l = N- 1,…0 do

8: compute El (error).

9: compute Δθl (weight Gradients).

10: end for
11: for layer l = 0; …N-1 do

12: Update parameters, and .
13: end for

14: end for

Algorithm 1 presents training of CNN. The input data set is partitioned into T total number of mini-
batches. CNN is trained on subsets of data sets of mini-batches. Training on single mini-batch is known

as one iteration. mster loop in 1 has a major data-dependency. This is limitation to the scalability of SGD

training. The overall accuracy of this algorithm is T is the number of mini-batches, is the

total number of layers in model, B is size of each mini-batch. is the largest number of neurons among
all the layers in CNN model.

3. Parallelization of CNN

A. Distributed SGD
Parallelization and distribution of SGD computation across nodes/machines and multiple cores are the

approaches can be applied. In multi-core processing the CNN model and data are stored on a single node.

Here we are assuming that whole model and data can fit into a memory of single node having multiple

cores. These cores will process on multiple data set at once in each layer or in another approach multiple
cores performs SGD on mini-batches in parallel. We can use GPU for computational intensive tasks like

matrix vector multiplication in algorithm. It can be possible to use both mulit-core as well as GPU where

all cores share GPU and computationally intensive task can handle by the GPU. When practically it is not
possible to fit a data set or model on single node, it will be better to split data set or model across multiple

nodes/machines. In data parallelism approach data is distributed across multiple nodes. In model

parallelism model can be split across nodes.in parallel SGD algorithm 4 the first step is to shuffle the
input data set so as to each node in the cluster of nodes will have a representative subset of it.

B. GPU

Usually the first layer in CNN is convolution layer. In convolution operation a filter known as kernel is

sided over an image [8]. This does an element-wise multiplication it has an overlap. Sum of this product
will be assigned to the pixel under processing which is center to the block under processing. The

convolution operations extract features from the input images like edges. In typical CNN which have

many layers of convolution and each layer have multiple stacks of kernels. This overall convolution
operation for network will require more computation time if computed with CPU i.e. in sequential

execution. Therefore, an important way to improve the performance of the whole network is to reduce the

run-time of convolution. The CPU handles all the complicated logic part of this process. Algorithm 2 and

3 gives the difference in processing mechanism with CPU and GPU respectively. Iterations in
convolutions are concurrently processed in multi-threaded architecture of GPU. Multi-GPU platforms are

widely adopted to speed up DNN training through parallel execution [9].

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 1234–1239

1236 ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

4. Analysis of Parallel SGD Algorithm

Computation cost and communication time analysis is carried out in this section. This is apart from cost

of shuffling data sets.

Algorithm 2:CPU convolution (each point in the
image)

Algorithm 3: GPU convolution (have many cores,
each core corresponds to point in the image)

1: for i in output row: do
2: for j in output column: do
3: for k in output layer: do
2: do convolution
5: end for
6: end for
7: end for

 1: for every thread do
 2: do convolution
 3: end for

The computation time for convolution of image of size N x N and size of kernel m x m is

 where is average time for computation operation. Convolution is the most

expensive operation in CNN. additions and multiplications require for each pixel in the image.

The computation time for convolution with several kernels K and all kernels of size is

 .In parallel convolution approaches data is decomposed into subsets and distributed

among P processes. Each process is responsible for subset of size . The computation time for each

process is

 (5)

The processor communication cost is:

 (6)

Algorithm 4: Parallel SGD (parameters, data, k)

1: Shuffle the data set on all nodes in the cluster so that each node has a representative subset of original

data set

2: for each node do

3: di SGD (parameters; data)

4: end for

5: Aggregate from all machines d <- and return .

 denotes message startup time and tb represents transfer time per byte. S is total number of messages

needing to be sent concurrently. Network topology, algorithm and communication pattern determines

parameter S. The execution Time: SN(m-1) (7)

 From above equations speedup S is: (8)

Computation Cost: The data set is distributed over nodes. Each node has data set on which SGD run

locally. The cost of computation for SGD at each node is where, is the size of parameters.

Therefore computation is with nodes.

Communication Cost: Locally on each node SGD is computed. There is no communication cost require

for SGD method. Once all the parameters are updated for each node locally, it’s necessary to perform all

to one communication messaging to master node where it will be averaged.

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 1234–1239

1237 ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

The communication cost will be: . For broadcasting parameters the communication cost

in the last step is i.e. computing average (all to one) as (Therefore, the total

communication cost is Communication Time: The communication cost is

There are rounds of parallel communication over the cluster. This requires communication

time. Convex loss function is strongly used in Parallel SGD which gives a unique minimum. To improve

accuracy shuffling data sets between nodes at each run of SGD is carried out. The communication time

will be where the total communication cost will be

4. Results

The configuration of machine we used to perform analysis is machine having Processor: AMD Processor
having 4 Core(s) CPU. The GPU card used is NVIDIAs GTX520 GeForce, 48 cores with compute

capability. Table I summaries the specifications of GPU used in this research.

A. GPU speedup for convolution
There are two major computation phases’ forward computation and backward computation. We

observed the propagation time for these phases for fully connected layer as well convolutional

layer for different sizes of image data. The result is presented in Fig. 1.

Fig. 1. Computation Time of CPU and GPU
for Matrix-Vector Multiplication

Fig. 2. Ratio of CPU to GPU
(speedup)

In our second experiment the speedup achieved using GPU for different image sizes are observed and

result is presented in Fig. 2.

B. GPU speedup on CNN

For this experiment, we designed the CNN model which has one fully connected layer and one

convolutional layer. We observed processing time of the network with variants of network

parameters. These parameters are: number of neurons in a layer, count of filters and size, etc. The
input image size is 28x28 keeping the output size fixed. The architecture of CNN model is

represented in format; e.g. 5-50-100 architecture where 10 indicate kernel size is of 5x5 for first

layer, 50 numbers of neurons in convolution layer. 100 number of neurons in fully connected

layer and 10 indicates total number of neurons in the last layer. The observations for learning of
CNNs with CPU and GPU are presented in Fig. 3.

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 1234–1239

1238 ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Fig.3 Training time comparison for CNN models with CPU and GPU

C. Speedup with Distributed Computing

The benchmarking of multi core distributed computing was done on WCE node of WCE private
cloud. The cloud cluster allows up to 64 cores to work in parallel. However as WCE is busy that

we could only 16 cores available. The benchmarking used test cases with 2 to 16 cores. We noted

the time require for training on node. The Fig. 4 shows the result of it

 Fig. 4. Execution time with number of nodes

5. Analysis

In this section we will make performance analysis of CNN training methods in convolution layers. In
table I we compared the speed of several characteristics. All parallel methods are better than serial

methods. It proves the effectiveness of using GPU in experiment. Other observation is that storing input

to shared memory consumes almost same time as naive parallel methods. This is due to size of kernel is
much smaller than input image. The challenges with GPU computation are that fast memories are very

limited. The idea is to store input in shared memory and convolution filters in global memory of GPU.

Naive parallel convolution is 600times better than serial method. Compared to naive parallel in
kernel+memory copy method 2 times speedup is achieved. The speedup compared is shown in Table II.

Layers

Serial

naive

Input in

Shared memory

Input & filter

In shared

memory

Advanced

block setting

 Layer1 10033 4.07 3.99 4.82 3.89

Layer2 2205 9.27 8.95 8.02 5.08

Layer3 798 4.27 5.23 7.84 3.99

Layer4 908 6.06 6.86 11.21 5.55

Layer5 605 5.28 5.48 5.70 4.62

Total

14549

29.47

30.51
37.59 23.11

TABLE I. Time consumed in Convolutional Layers.

International Journal of Future Generation Communication and Networking
 Vol. 13, No. 3, (2020), pp. 1234–1239

1239 ISSN: 2233-7857 IJFGCN

Copyright ⓒ2020 SERSC

Layers

naive

Input in

Shared memory

Input & filter

In shared

memory

Advanced

block setting

speed compared
to serial

826

630 529 701

Speed compared to

naive parallel

/

0.96 0.82 1.26

TABLE II. SPEED COMAPRED TO PARALLEL METHOS WITH NAIVE METHOD IN CL

6. Conclusion

The paper focus is on Parallelization of Deep Convolutional Neural Network. The main objective is

to improve performance training model based on Deep Convolutional Neural Network using parallel
framework. The paper discussed time in milliseconds to measure the performance. The experiment is

carried out with Facial expression recognition image data. In the proposed system; a facial

expression recognition system has been introducing using Machine Learning Techniques such as
classification using convolutional neural network algorithms. It takes large amount of data and

millions of parameters to learn CNN. To improve the accuracy and efficiency of the network, it can

achieve by making the model more complex and bigger in size. With growing sizes of model and

larger data sets, it can become possible to extract complex features such as facial features for
emotion classification tasks. But it can become costly due to more computation time for training.

This task can be accelerated using ways to parallelize and distribute training phase. We have done

analysis on speedup of convolutional layer of CNN. In distributed environment we split the model
across different cores or data parallelism and analyze the cost of computation and communication

cost. The focus of future work is to analyze method on system having multiple GPU cards

References

 [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

 neural networks,” in Advances in neural information processing systems, 2012, pp.1097-1105.

 [2] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q.
 V. Le et al., “Large scale distributed deep networks,” in Advances in neural information

 processing systems, 2012, pp. 12231231.

 [3] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

 arXiv:1609.04747, 2016.
 [4] J.Schmidhuber, ”Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp.

 85117, 2015.

 [5] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng,” On optimization methods
 for deep learning, “in Proceedings of the 28th International Conference on Machine Learning

 (ICML-11), 2011.

 [6] Vishakh Hegde and Sheema Usmani, “Parallel and Distributed Deep Learning,”, 2016.
 [7] Sunwoo Lee, Dipendra Jha, Ankit Agrawal, Alok Choudhary, and Wei-keng Liao, “Parallel Deep

 Convolutional Neural Network Training by Exploiting the Overlapping of Computation and

 Communication,” IEEE 24th International Conference on High Performance Computing, 2017.

 [8] Mouna Afif, Yahia Said, Mohamed Atri,” Efficient 2D Convolution Filters Implementations on
 Graphics Processing Unit Using NVIDIA CUDA”, I.J. Image, Graphics and Signal Processing,

 2018.

 [9] Harlap, A., Narayanan, D., Phanishayee, A., Seshadri,V., Devanur, N. R., Ganger, G. R., and
 Gibbons, P. B. Pipedream: Fast and efficient pipeline parallel DNN training. CoRR, 2018.

