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Abstract 

 

Convolutional Neural Network (CNN) in Deep Learning (DL) has been has been achieving success in 
various objectives of pattern recognizing and classification. Training CNN model in an acceptable time is 

necessary. This is computationally intensive task. We have analyzed speedup in training of complex DL 

model using single core CPU and GPU. In the distributed setting, we studied weight update algorithms. 

We analyzed performance characteristics using our own designed DL model for facial expression 
recognition task. The novelty of this effort is to demonstrate performance acceleration in distributed DL 

frame-work. Analysis and study show that DL training performance improved over six times speedup for 

the own model. 
Keywords: Convolutional Neural Network, GPU, Deep Learning. 

1. Introduction 

CNN has shown better classification accuracies in various applications of computer vision. In various 

applications like computer vision, CNN is found to be more effective [1]. Learning capability can be 
processed in better using Deeper network [2].Learning of CNN is mostly carried out using SGD 

algorithms. Parallelization CNN is comparatively challenging due to inherent sequential nature of 

algorithm. In this approach input data set is divided as mini-batch. Minimizing cost by updating 
parameters of the model using gradients is the goal in training of CNN model [3].Commonly used 

optimization methods for optimizing SGD: Adam, AdaMax, Adagrad, Adadelta. Model parameters are 

updated using gradients at each iteration on mini-batches of input data set. Across mini-batches there is 
data depend on the parameters. There are millions of parameters in typical CNN model. This requires a 

large amount of data to learn these parameters of the model. This results into slow training of the model. 

Typically, it takes order of days of training the CNN model. One of the successful models -VGG took 

order of days to train on a single core CPU. It accelerates speed to 1/c on a single machine where there are 

 cores in the CPU. It typically reduces to in order of hours for training. But the bottleneck is due to large 
datasets it is practically difficult to store whole data set on a single machine. Parallelism and distribution 

of model and training can run much faster. This can significantly reduce the end to end training of CNN. 

2. Convolutional Neural Network 

 CNN is a special instance of ANN in which the connectivity pattern between its neurons is inspired by 
the organization of animal visual cortex. The visual cortex has small regions of cells in the brain fires 

only when exposed to vertical, horizontal and diagonal edges. CNN has Convolutional, ReLU, Pooling 

and fully connected layers [4].  
A. SGD CNN Training Algorithm 

Back propagation algorithm is adapted in training of CNN model [5]. The training consists of two phase’s 

forward and backward propagation forward propagation the activations are calculated using input images. 

The output at each layer is propagated in forward direction. In backward propagation, errors are 
calculated based on the activation at the last layer. The error propagation is  in backward direction. The 

errors and activations are calculated using 

)                                  (1) 

                                                 (2) 

                                         (3) 

                                                   (4) 
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Algorithm 1: SGD -CNN Training algorithm 

 (T: Number of mini-batches , N: Number of Layers in CNN,) 

 

1: for mini-batch t = 0,…T-1   do 

2:  Δθ = 0 

3: Get the tth mini-batch,  
4: for layer l = 0,… N-1  do 

5:       compute Al based on Dt (activation). 

6: end for 

7: for layer l = N- 1,…0 do 

8:       compute El (error). 

9:       compute  Δθl (weight Gradients). 

10: end for 
11: for layer l = 0; …N-1 do 

12:        Update parameters,  and . 
13: end for 

14: end for 

Algorithm 1 presents training of CNN. The input data set is partitioned into T total number of mini-
batches. CNN is trained on subsets of data sets of mini-batches. Training on single mini-batch is known 

as one iteration. mster loop in 1 has a major data-dependency. This is limitation to the scalability of SGD 

training. The overall accuracy of this algorithm is  T is the number of mini-batches,  is the 

total number of layers in model, B is size of each mini-batch.  is the largest number of neurons among 
all the layers in CNN model. 

3. Parallelization of CNN 

A. Distributed SGD 
Parallelization and distribution of SGD computation across nodes/machines and multiple cores are the 

approaches can be applied. In multi-core processing the CNN model and data are stored on a single node. 

Here we are assuming that whole model and data can fit into a memory of single node having multiple 

cores. These cores will process on multiple data set at once in each layer or in another approach multiple 
cores performs SGD on mini-batches in parallel. We can use GPU for computational intensive tasks like 

matrix vector multiplication in algorithm. It can be possible to use both mulit-core as well as GPU where 

all cores share GPU and computationally intensive task can handle by the GPU. When practically it is not 
possible to fit a data set or model on single node, it will be better to split data set or model across multiple 

nodes/machines. In data parallelism approach data is distributed across multiple nodes. In model 

parallelism model can be split across nodes.in parallel SGD algorithm 4 the first step is to shuffle the 
input data set so as to each node in the cluster of nodes will have a representative subset of it. 

B. GPU 

Usually the first layer in CNN is convolution layer. In convolution operation a filter known as kernel is 

sided over an image [8]. This does an element-wise multiplication it has an overlap. Sum of this product 
will be assigned to the pixel under processing which is center to the block under processing. The 

convolution operations extract features from the input images like edges. In typical CNN which have 

many layers of convolution and each layer have multiple stacks of kernels. This overall convolution 
operation for network will require more computation time if computed with CPU i.e. in sequential 

execution. Therefore, an important way to improve the performance of the whole network is to reduce the 

run-time of convolution. The CPU handles all the complicated logic part of this process. Algorithm 2 and 

3 gives the difference in processing mechanism with CPU and GPU respectively. Iterations in 
convolutions are concurrently processed in multi-threaded architecture of GPU. Multi-GPU platforms are 

widely adopted to speed up DNN training through parallel execution [9]. 
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4. Analysis of Parallel  SGD Algorithm 

Computation cost and communication time analysis is carried out in this section. This is apart from cost 

of shuffling data sets. 
 

Algorithm 2:CPU convolution (each point in the 
image) 

Algorithm 3: GPU convolution (have many cores, 
each core corresponds to point in  the image) 
 

1: for i in output row: do 
2: for j in output column: do 
3: for k in output layer: do 
2:     do convolution  
5: end for 
6:       end for 
7:    end for 

               1: for every thread do 
               2: do convolution 
                3: end for 

The computation time for convolution of image of size N x N and size of kernel m x m is 

 where is average time for computation operation. Convolution is the most 

expensive operation in CNN.  additions and  multiplications require for each pixel in the image. 

The computation time for convolution with several kernels K and all kernels of size   is 

 .In parallel convolution approaches data is decomposed into subsets and distributed 

among P processes. Each process is responsible for subset of size . The computation time for each 

process is  

                 (5) 

The processor communication cost is: 

    (6) 

 

Algorithm 4: Parallel SGD (parameters, data, k) 
 

1: Shuffle the data set on all nodes in the cluster so that each node has a representative subset of original 

data set 

2: for each node  do 

3:              di  SGD (parameters; data) 

4: end for 

5: Aggregate from all machines d <-  and return . 

 

 denotes message startup time and tb represents transfer time per byte. S is total number of messages 

needing to be sent concurrently. Network topology, algorithm and communication pattern determines 

parameter S. The execution Time: SN(m-1)              (7) 

  From above equations speedup S is:                                     (8)  

Computation Cost: The data set is distributed over nodes. Each node has data set on which SGD run 

locally. The cost of computation for SGD at each node is  where,  is the size of parameters. 

Therefore computation is  with  nodes. 

Communication Cost: Locally on each node SGD is computed. There is no communication cost require 

for SGD method. Once all the parameters are updated for each node locally, it’s necessary to perform all 

to one communication messaging to master node where it will be averaged.  
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The communication cost will be:  . For broadcasting parameters the communication cost 

in the last step is i.e. computing average (all to one)  as (  Therefore, the total 

communication cost is  Communication Time: The communication cost is  

There are  rounds of parallel communication over the cluster. This requires  communication 

time. Convex loss function is strongly used in Parallel SGD which gives a unique minimum. To improve 

accuracy shuffling data sets between nodes at each run of SGD is carried out. The communication time 

will be  where  the total communication cost will be  

4.  Results 

The configuration of machine we used to perform analysis is machine having Processor: AMD Processor 
having 4 Core(s) CPU. The GPU card used is NVIDIAs GTX520 GeForce, 48 cores with compute 

capability. Table I summaries the specifications of GPU used in this research. 

A. GPU speedup for convolution 
There are two major computation phases’ forward computation and backward computation. We 

observed the propagation time for these phases for fully connected layer as well convolutional 

layer for different sizes of image data. The result is presented in Fig. 1. 
 

 
 

Fig. 1. Computation Time of CPU and GPU 
for Matrix-Vector Multiplication 

Fig. 2.  Ratio of CPU to GPU 
(speedup) 

 
In our second experiment the speedup achieved using GPU for different image sizes are observed and 

result is presented in Fig. 2. 

                    

B. GPU speedup on CNN 

For this experiment, we designed the CNN model which has one fully connected layer and one 

convolutional layer. We observed processing time of the network with variants of network 

parameters. These parameters are: number of neurons in a layer, count of filters and size, etc. The 
input image size is 28x28 keeping the output size fixed. The architecture of CNN model is 

represented in format; e.g. 5-50-100 architecture where 10 indicate kernel size is of 5x5 for first 

layer, 50 numbers of neurons in convolution layer. 100 number of neurons in fully connected 

layer and 10 indicates total number of neurons in the last layer. The observations  for learning of 
CNNs with CPU and GPU are presented in Fig. 3. 
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Fig.3 Training time comparison for CNN models with CPU and GPU 

 

C. Speedup with Distributed Computing 

The benchmarking of multi core distributed computing was done on WCE node of WCE private 
cloud. The cloud cluster allows up to 64 cores to work in parallel. However as WCE is busy that 

we could only 16 cores available. The benchmarking used test cases with 2 to 16 cores. We noted 

the time require for training on node. The Fig. 4 shows the result of it 
 

 

 

 

 

 
 

 

 
 

 

    

     

             Fig. 4.  Execution time with number of nodes 

5. Analysis 

In this section we will make performance analysis of CNN training methods in convolution layers. In 
table I we compared the speed of several characteristics. All parallel methods are better than serial 

methods. It proves the effectiveness of using GPU in experiment. Other observation is that storing input 

to shared memory consumes almost same time as naive parallel methods. This is due to size of kernel is 
much smaller than input image. The challenges with GPU computation are that fast memories are very 

limited. The idea is to store input in shared memory and convolution filters in global memory of GPU. 

Naive parallel convolution is 600times better than serial method. Compared to naive parallel in 
kernel+memory copy method 2 times speedup is achieved. The speedup compared is shown in Table II. 

 

Layers 

 

Serial 

 

naive 

Input in 

Shared memory 

Input & filter 

In shared 

memory 

Advanced 

block setting 

       Layer1 10033 4.07 3.99 4.82 3.89 

Layer2 2205 9.27 8.95 8.02 5.08 

Layer3 798 4.27 5.23 7.84 3.99 

Layer4 908 6.06 6.86 11.21 5.55 

Layer5 605 5.28 5.48 5.70 4.62 

Total 
 

14549 

 

29.47 

 

30.51 
37.59 23.11 

TABLE I. Time consumed in Convolutional Layers. 
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Layers 

 

naive 

Input in 

Shared memory 

Input & filter 

In shared 

memory 

Advanced 

block setting 

speed compared 
to serial 

 

826 

 

630 529 701 

Speed compared to 

naive parallel 

 
/ 

 
0.96 0.82 1.26 

TABLE II. SPEED COMAPRED TO PARALLEL METHOS WITH NAIVE METHOD IN CL 

 

6. Conclusion 

The paper focus is on Parallelization of Deep Convolutional Neural Network. The main objective is 

to improve performance training model based on Deep Convolutional Neural Network using parallel 
framework. The paper discussed time in milliseconds to measure the performance. The experiment is 

carried out with Facial expression recognition image data. In the proposed system; a facial 

expression recognition system has been introducing using Machine Learning Techniques such as 
classification using convolutional neural network algorithms. It takes large amount of data and 

millions of parameters to learn CNN. To improve the accuracy and efficiency of the network, it can 

achieve by making the model more complex and bigger in size. With growing sizes of model and 

larger data sets, it can become possible to extract complex features such as facial features for 
emotion classification tasks. But it can become costly due to more computation time for training. 

This task can be accelerated using ways to parallelize and distribute training phase. We have done 

analysis on speedup of convolutional layer of CNN. In distributed environment we split the model 
across different cores or data parallelism and analyze the cost of computation and communication 

cost. The focus of future work is to analyze method on system having multiple GPU cards 
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