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ABSTRACT 

 

Facial keypoints detection is an essential task in computer vision and augmented reality domains. We put 
forth a novel solution for this problem which different than existing techniques. We implement a 

Convolutional Neural Network-based model with Autoencoders to detect facial keypoints. The deep 

structure of Convolutional Neural Networks (CNN) enables extraction of high-level features and gives 

more accuracy while locating each key point. Convolutional networks are shaped to predict all the points 
simultaneously. With autoencoders it is possible to boost the performance of the model. Autoencoders are 

data-specific and can work effectively if similar data was used while training. 

 

Keywords: 

 Facial keypoints detection, computer vision, augmented reality, Convolutional Neural Networks, 

Autoencoders. 

 

1. INTRODUCTION 

 
Facial key point detection is a task of predicting keypoints on the human face. This Method is used for solving 

diverse facial-analysis-problems, e.g. face recognition, face morphing. Some other applications include tracking 

faces in images and videos, analyzing facial expression, biometrics and with the advent of Augmented Reality the 

superimposition of filters realistically. In recent years, significant research has been done on this problem and 

various model have been developed for accurately locating the facial keypoints. This problem is especially 

challenging when face images are taken with extreme angles, lightings, expressions and occlusions. 

 

Among the various approaches cascaded regression methods[1], combining model-driven and data-driven approach 
for facial keypoints detection[2] and the use of Deep Convolutional Network Cascade (CNN) for facial keypoints[3] 

detection are noteworthy methods which have shown ability to efficiently and accurately localize the facial 

keypoints even in challenging scenarios. In cascaded regression methods at each cascading stage visual features 

extraction is done by the current predicted keypoints are then they are updated via regression from the extracted 

features; and these points are used for regression in the next stage. And the previous information is lost. The merits 

of the combination of data-driven and model-driven approach is that it can be used for getting a fine-tuned output as 

it is amalgamation of several techniques. Convolutional Neural Network cascading involves first making accurate 

predictions at first level, the network takes full face as input to make the best use of texture context information and 

more global features are extracted in successive layers. Convolutional Neural Networks can be trained so that it can 

predict all the keypoints simultaneously. The last few levels of CNN are used to refine the estimation of keypoints. 

 
Convolutional Neural Networks and Deep Learning models have been successfully implemented in computer vision 

tasks. In this paper, we study a Deep Learning based model comprising CNN to identify the facial keypoints 

accurately. Apart from being less complex than existing methods it is also easy to implement and is adequate for 

most of the applications. We try to study different aspects of a CNN based keypoints detector and how it can be 

improved to give better results. 
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1.1 Computer Vision 

Computer vision is an inter-domain area that deals with a high-level understanding of digital image or video with the 
perspective of engineering. It helps to automate numerous tasks in different domains that are done by the human 

optic system i.e. Eyes. The start of computer vision date back to the 1960s where Artificial intelligence was 

blooming and a desire to see through a computer. Computer Vision is vaguely divided into various tasks like 

Acquiring data, Processing of data, Analyzing the data. The data is acquired by a sensor like a camera or a webcam 

which help a system to get images or video depending on the purpose. After the data is taken the features or key 

points are detected for the particular task and are obtained for analysis. 

 

In modern days Computer Vision has become very popular and is been applied to various fields. But then too there 

is still a lot of scopes left in it to explore, Computer Vision does not deal with the image but other things related to 

vision, which are motion capture, edge detection and 3 dimensional reconstruction of multiple images, etc. 

Computer vision work on seeing thing therefore the data is a reference to image or video which are visual data. In 

the low-level video are nothing but a stack or array of images that are played one by one to give motion. The higher 
the frames rate the finer the video is and video size also increases.  

e.g. A video of 60FPS and 1 Min long we be represented as 60(Images)*60(Sec) = 3600 images. 

 

Images are sorted in multi or single dimension array depending on the color of the image and size of an image. 

Therefore, if we take an example of an image. It will be represented as 96*128*3:  

 

 
Figure 1: Representation of an image using arrays 

 

1.2 Artificial Neural Network 

 
Biological neurons are brain cells which take electrical signals as an input, do some processing on the signal and 

then send it to the next neuron. 

Artificial neurons are less complicated, simplified versions of biological neurons. They try to mimic the ability of 

biological neurons to process information and have a similar structure. These artificial neurons when connected in 

different possible ways give “Artificial Neural Networks” (ANN). There can be multiple inputs for each neuron. 

Each input is multiplied with some weight and these products are added. The resulting value is passed through an 

“Activation function” and is converted into output. This output can again be given to another neuron as an input or it 

can be our final output depending on the architecture of the neural network. Each artificial neural network (ANN) 

has an input layer, some hidden layers and an output layer. Neural networks have become extremely popular 

because of their performance in supervised-machine-learning. One of the salient features of neural networks is that 

they can deal with structured as well as unstructured data. 
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Figure 2: A visual representation of Artificial Neural Network (ANN) 

 
Each input let’s say xi is multiplied with the weight of the connecting edge wi. For all the incoming edges the sum 

of such products is taken and it is passed through an activation function. Hence, the output value of the neuron is 

also called the activation value. The weights are model parameters that are not set manually by the practitioner. It is 

possible to estimate the values by using the data. These values are saved as part of the trained model. Various 

optimization algorithms are used for estimating parameters. Some other examples of parameters include support 
vectors in an SVM i.e. support vector machine and coefficients of linear or logistic regression. On the contrary, a 

model hyperparameter is configuration that cannot be estimated by using existing data. They have to be defined by 

the practitioner manually or can be set using heuristics. Hyperparameters can be used to estimate model parameters. 

The practitioner has to make the choice of activation function at each hidden layer and also at the final output layer. 

Some common activation functions are sigmoid function, tanh function, Relu function and Leaky Relu function. 

Relu is a de facto standard activation function used blindly by the practitioners in their models. Although other 

activation functions like sigmoid and tanh are also used in some applications. Tanh function performs better than 

sigmoid function in almost all cases except for binary classification where the expected range of output is between 0 

and 1. The functions can be visualized as:  

 

 
    Figure 3: Sigmoid          Figure 4: Tanh                Figure 5: Relu 
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1.3 Convolutional Neural Network 

Convolutional Neural Network is a type of Artificial Neural Network which is used for extracting features and 
recognizing objects from an image. Convolutional Neural Networks are different than regular Neural Networks as 

the layers are organized in three dimensions, viz. Width, height and width. Also, the neurons in a layer are not 

connected to all the neurons in the next layer unlike regular Artificial Neural Networks. The final output is a vector 

containing probability scores. It mainly comprises two components: Hidden layers and the output layer or 

classification part. Hidden layers are the part where feature extraction happens with a series of convolutions and 

pooling layers. In the classification part, fully connected layers classify images on bases of extracted features and 

give final output vector containing probability values.  

 

1.3.1 Convolutional Layer 

 
Convolution operation involves element wise product of image matrix and convolution filter or kernel. Each element 

of a filter is multiplied with all the possible sections of images having the same dimensions as the filter across all the 

color channels. The filter is slid over the input, at every location element wise product is taken and the result is 

added to a feature map which is in turn an input for next convolutional layer or fully connected layer. Just like 

Artificial Neural Network, activation function is used to make the output non-linear. Convolutional operations allow 
back-propagation to learn filters to identify the features in an image instead of having them hard coded by the 

practitioner.  

After each convolution operation on a matrix of size n*n, with a filter of size f*f we get a resultant matrix of size n-

f+1 * n-f+1. 

 

As we go on doing the convolution operation the size of the image reduces significantly. Another problem with the 

basic convolution operation is that the pixels in the corners are considered a very less time because they are 

overlapped very few times during the computation. Original input size of the image can be preserved by padding the 

original image.  The output matrix has dimensions n+2p-f+1 * n+2p-f+1 where p is the number of pixels padded on 

each side of the image. "Valid convolutions" does not involve padding whereas "Same convolutions" involve 

padding so that output size is the same as the input size. 
  

n+2p-f+1 = n 

p = (f-1)/2 

 

If the model is overfitting and we require to reduce layers in our convolutional neural network, stridden 

convolutions are used. Instead of sliding the filter by 1 step, it is slid by a specific number so we get the image in the 

desired form. The resultant matrix after padding and striding convolution operation has dimensions (n+2p-f/s) + 1 * 

(n+2p-f/s) + 1. The fraction is converted to an integer by using a floor function:  

 

f(x) = [x] 

 

1.3.2 Pooling Layer 

 
The image is divided into smaller parts and the pixel with the maximum value is taken from each of the parts. The 

number of channels remains the same in the pooling layer. Average pooling is used very rarely in Convolutional 

Neural Networks. Pooling involves no parameters but has hyper-parameters like f: filter size and s: stride which 

can’t be learned and have to be defined by the practitioner to get the image in desired size. The resultant image is of 

the size (nh-f)/s+1 * (nw-f)/s+1 * nc where nh is the height of the image, nw is the width of the image, f is the size of 

filter, s is the stride value and nc is the number of color channels. 



International Journal of Future Generation Communication and Networking 
  Vol. 13, No. 3, (2020), pp. 1222–1233 

 

ISSN: 2233-7857 IJFGCN 

Copyright ⓒ2020 SERSC 

1226 

 
Figure 6: Max Pooling and Average Pooling 

 

1.3.3 Advantages of convolutional layers over fully connected layers 

A feature detector which is useful for a part of the image is probably useful in another part of the image. This is 

called parameter sharing. Convolutional neural networks with the help of such detectors reduce time and parameters 
required to be trained. Each layer, each output value depends only on a small number of inputs instead of the 

complete input. These two mechanisms allow convolutional neural networks to be trained with smaller datasets. 

Since it is possible to train them using small datasets, they are less prone to overfitting. 

 

1.4 Autoencoders 

Auto Encoders are used for reducing the dimensionality of data or removing data noise for high performance. 

Autoencoder works on both linear or nonlinear data with fast performance concerning Principal component analysis 

[4]. Autoencoder is a feed-forward Neural network that is trained in an unsupervised manner for efficient data coding 

and feature learning. Autoencoder is used in a lot of areas like in reconstruction of the face in computer graphics, 

removing watermarks, removing blurs from an image, and a lot more. We are using autoencoders to reduce the 

dimensionality of our data set. It is done by modifying the complex data dimension into a simple data dimension and 

with that boosting the training of our neural networks for facial keypoints detection. As we know autoencoder works 

on reducing the dimensionality, it also has a decoder which reconstructs the reduced data to almost original data.  

We have used ‘binary cross-entropy’ for our loss function of the auto-encoder. Binary cross-entropy is used for 

comparing one to one pixel of the original image and reconstructed image [5].  
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Figure 7: Autoencoders 

 

2. LITERATURE REVIEW 

 

Facial keypoints detection has innumerable applications in various fields. Face detection based on Cascaded 

Convolutional Networks[1], combining Data-driven and Model-driven methods[2] are the latest research being done 

in the field of facial keypoints detection along with Deep Recurrent Regression for facial landmark detection[3]. The 

facial keypoints detection has been studied extensively over the years[6,7,8,9,10]. Classifying search windows[6,7,8,9,10] 
and directly predicting key points positions[11,12,13]. For the first category, a classifier is trained for each key point 

and decisions are taken based on local regions. In comparison directly predicting key points positions is more 

efficient since it does not need scanning. Regressors are usually used as the predictor, based on limited patches 

resembling the facial point [13], or the whole image region[12]. Spatial constraints can also be added to regressors[12,13]. 

 

One of the recent approaches includes part-based methods[14], Part based models give refined results by assembling 

the outputs form part models. Some part-based methods which typically produce a local model for each facial 

feature to recommend the update direction and use a shape model to regulate the result globally.  

 

Many researchers have tackled the problem as a regression problem[15]. Generally, approaches [15] includes cascaded 

regressors to predict the coordinates of key points directly from shape-indexed features. Recently some methods like 
[16] developing strategies like coarse-to-fine prediction and global-to-local regression in order to capture information 

at different scales. Predicting density depicting heat-maps via (Fully Convolutional Network) FCN-based networks 

is exploited for dual purpose of human pose estimation [17] and facial landmark detection. 

 

[1] H. Lai et al., "Deep Recurrent Regression for Facial Landmark Detection," 
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The approach is used a deep convolutional and deconvolutional network followed by recurrent networks. The three 

parts have the following functionalities: Encoding an input face image via a deep network, estimating initial co-

ordinates of the facial key point, Refining the co-ordinates of facial key points by a recurrent network. The model 

performed better than after combining both convolutional and deconvolutional networks. 

 

[2] H. Zhang, Q. Li, Z. Sun and Y. Liu, "Combining Data-Driven and Model-Driven Methods for 

Robust Facial Landmark Detection,"  

 
This paper proposed a new approach by combining data and model-driven methods: A fully connected convolutional 

network (FCN) was trained to compute response maps of all facial landmark points. The maximum points in the 

response maps were fitted using a pre-trained Point Distribution Model (PDM). It corrects an inaccurate location by 

considering prior information. The proposed Estimation-Correction-Tuning (ECT) method gives better or similar 
results to state-of-the-art methods. 

 

[3] Y. Sun, X. Wang and X. Tang, "Deep Convolutional Network Cascade for Facial Point 

Detection," 
 
The methodology used in this research paper was using deep convolutional networks for accurately locating each 

key point. Two advantages of this approach are: First, the texture context information is used to locate each key 

point. The trained network predicts all the key points simultaneously. Deep convolutional networks give robust 

initial estimation which is further tuned by shallower convolutional networks. 

 

[4] W. Wang, Y. Huang, Y. Wang and L. Wang, "Generalized Autoencoder: A Neural Network 

Framework for Dimensionality Reduction," 

 
This paper discusses the approach of autoencoders to reconstruct the pixel itself when decoded from the compressed 

data. So, the method proposed of generalized autoencoder in the paper adds to the working of a vanilla autoencoder 
by making each instance reconstruct other set of instances rather than itself. Also, the error calculation is changed to 

the relational function that is defined for the two instances that are affected during the reconstruction phase. The 

experiments done using the proposed architecture is done in the paper itself. 
 

3. METHODOLOGY  

 

 
Figure 8:  Block Diagram 
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Figure 9: Flow Diagram 

 

 

3.1 Datasets  

The dataset is obtained from Kaggle Competition: Facial Keypoints Detection. There are 15 facial keypoints in all 

the images. The greyscale input images are of 96×96 pixels in size. The training dataset consists of approx. 7000 

images, with 30 target values that are (x, y) coordinates for each of 15 facial keypoints. The test dataset consists of 
around 1700 images with no target values. 

 

The dataset used for model training and testing purpose is Wider Facial Landmarks in-the-wild (WFLW)[18]. This 

dataset has 10000 faces annotated with 98 facial keypoints. The dataset has several other annotations for pose and 

expression estimation. These annotations can be used in some other computer vision applications. Compared with 

datasets like 300-W[19,20,21] and COFW[21] faces in this dataset have many variations which result in poor accuracy 

during testing. But performs better in the real world because of the intrinsic variance. 

 

3.2 Preprocessing 

In preprocessing we have removed all the null values then resize it to 96*96*1, As the images is converted to the 

greyscale for training the data, we have used 2140 images to train our model.   

 

We have converted the preprocessed input data in a single dimension array and have provided N number of 

coordinates (In our demo of 15-point model) respective coordinates to images and feed it to the model for training.  

Using Camera, we are taking a photo/video of the face and sending it to the model for predicting the face key-points.  

 

3.3 Preprocessing of 15 points Kaggle competition dataset 

In preprocessing we have removed all the null values then resize it to 96*96*1, As the images is converted to the 

greyscale for training the data, we have used 2140 images to train our model.   

 

We have converted the preprocessed input data in a single dimension array and have provided N number of 

coordinates (In our demo of 15-point model) respective coordinates to images and feed it to the model for training.  
Using Camera, we are taking a photo/video of the face and sending it to the model for predicting the face key-points. 

 

3.3.1 Preprocessing of 98 points WFLW dataset 

In preprocessing we resized images to size 100*100*1, where '*1' represents that the image is converted into the 

greyscale. Then converted it into tensor-data for training the model. We implemented a CNN architecture for 

predicting the face key points. The input data undergoes preprocessing where it is changed to meet the requirement 
of the model and fine-tune it to increase the accuracy of the model. 

 

The model consists of 2 CNN Layers, 2 flattened layers, 4 Dense/Core layers. 

 

For the real-time run, video is taking off the user and converted to greyscale video and send to the model for 

prediction, after that User can see his face on screen with an overlayer of key-points 
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3.4 Training of Model  

 
Figure 10: Training Process Flow Diagram 

 
While training the model we are taking the processed data and sending it to autoencoder for learning the encoding of 

face image and decoding it. And find a best compression ratio for boosting the training process. The trained 

encoder’s output is sent to Dense Layer/ANN for prediction of keypoints, the loss function is sent back to model for 

improving the accuracy of a model. 

 

3.5 Validation/Testing 

 

 
Figure 11 Validation / Testing of Model 

 

The validation is done on a part of dataset unknown to model for evaluation of model. By validating we got to know 

that our model was a good fit. It didn’t overfit of underfit the data. This resulted in better accuracy in test dataset. 

The Bias vs. Variance tradeoff was managed well. 

 

4. RESULT 

While training the 15 points model, we got and approx. accuracy of 90% (~ 0.9047) which can be seen in the 

Figure12, On the other hand, after training 98 points model with autoencoder we got an approx. accuracy of 81% (~ 

0.8183) as shown in the Figure 13. 
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Figure 12: 15 Keypoint Model 

 

 
Figure 13: 98 Keypoints Model 

 
Figure 14: Final Result 

 

To check the performance of the model in real we have plotted a ROC (receiver operating characteristic) and also 

found the AUC (area under the curve). This AUC is found from the ROC, ROC is formulated from the Confusion 
Matrix, in which We check the predicted value vs true values. For our model, we got an AUC of 0.8822 which is 

88.22% and ROC 
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Figure 15: ROC & AUC Graph 

5. CONCLUSIONS AND FUTURE SCOPE 

5.1 Conclusions  

After training the model on WFLW dataset with different architectures and for 1000 epochs we got an accuracy of 

~81 %. We can increase the dataset size for having a more generic and accurate model. We trained autoencoders 

with training data and then added these pretrained layers to our CNN to achieve boosted performance. This method 

takes a novel approach to solve this problem and gives good results. 

5.2 Future Scope 

This can be used in many domains and can help us in various day to day jobs like: Face recognition, Face 

identification for password and security, depending on the feature we can make various applications based on it, 

filter or an artificial video of a real person simulated over a computer. The face filter, similarly we can extract the 

body features which are bigger in the area but less packed with features to identify. These can also help to simulate 

an artificial face/body reconstruction for a various N number of job or make our own virtual character. 
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