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Abstract 

The exponentially rise in the demands of Internet-of-Things (IoTs) enabled Wireless Body 
Area Network (WBAN) and Personalized e-Health systems for which compressive sensing 
(CS) technique has played decisive role. CS being potential towards low redundant data 
communication and resource efficient transmission is of great significance; however, 
majority of classical CS methods don’t address non-linear sparsity problems in physiological 
signals that confines it to exhibit low reconstruction quality and high compression error. In 
this paper a novel wavelets data-driven Extreme Learning Machine Auto-Encoder (ELM-AE) 
based CS model is developed for multiple physiological signal reconstruction. The proposed 
CS model at first estimates different wavelets containing approximated coefficient and 
detailed coefficient values, where the first is learnt over the modified ELM-AE to obtain 
sparse representation of the input physiological-signal. Executing ELM-AE learning over the 
approximated coefficients, we performed threshold-adaptive optimal sparse feature 
generation, which was subsequently processed for Inverse-SWT in conjunction with the SWT-
detailed coefficient to perform signal-reconstruction. Simulation over ECG and PPG signals 
revealed that the proposed CS model achieves better performance in terms of Percent Root 
Mean Square Difference (PRD), Signal to Noise Ratio (SNR), Compression Ratio and 
compression quality score (QS) for the different physiological signals.  

 
Keywords: Adaptive Thresholding; Auto-Encoder; Compressive Sensing; Extreme 

Learning Machine; Machine Learning;  Stationary Wavelet Transform  

1. Introduction 

    The exponential rise technologies and allied applications have revitalized academia-
industries to achieve more efficient solutions. Amongst the major applications, healthcare 
sector has always been the dominant research area motivating academia-industries to explore 
and identify suitable solution for up-surging or contemporary health issues. Computer Aided 
Diagnosis (CAD), bio-physiologic parameter’s tele-monitoring, tele-medicine etc have gained 
wide-spread attention globally. The technology’s revolution has given rise to a new 

dimension called e-health technology, which exploits efficacy of software computing, signal 
processing and communication systems to detect bio-physiological signals, monitor, examine 
and make early decisions. On the other hand, tele-monitoring and tele-medicine purposes too 
have gained widespread attention globally. Towards these purposes, technology scaling has 
enabled ultra-low power and time-efficient Wearable body sensor network (BSN) which 

International Journal of Future Generation Communication and Networking
                                                             Vol. 13, No. 3, (2020), pp. 742 – 763

ISSN: 2233-7857 IJFGCN
Copyright ⓒ 2020 SERSC

742



 
2 

 

continuously monitors bio-physiological parameters, compress it and transmits to the body 
node coordinator (BNC) or base station to make optimal timely decision. This process 
employs multiple distributed bio-sensors which are often resource constrained and battery-
powered. Additionally, these distributed bio-sensors constitute or employ Wireless Body Area 
Network (WBAN) protocol to enable continuous bio-parameter (tele-) monitoring, 
rehabilitation, personalized health monitoring, and well-being management. However, being 
resource constrained network with limited energy and resource it often undergoes exhaustion 
imposing severe condition of link-vulnerability and disruption making tele-monitoring and 
allied diagnosis difficult, especially in real-time applications. On the other hand, e-health 
technologies geared with Internet-of-Things (IoTs) and WBAN performs continuous data 
communication with varying size and rate, and thus the occurred non-linearity makes signal 
retrieval complex and sometime ineffective. Thus, to achieve an optimal e-health system it 
becomes inevitable to design an ultra-powered sensor system with low computational cost, 
low power exhaustion, delay and enhanced quality of signal. Noticeably, in major wearable 
healthcare systems, BSNs or WBAN systems the efficient signal reconstruction (say, quality 
signal retrieval) and resource efficient transmission has always been the challenge for 
industries. On the other hand, the different personalized medicine processes encompass tele-
monitoring the Electro-Myogram, Electro-cardiogram (ECG), Photoplethysmographic (PPG), 
fetal- analysis ECG (fECG), Magnetic Resonance Imaging (MRI), etc possess different 
resolutions and spatio-temporal characteristics. Additionally, these tele-monitoring 
applications with bio-sensors continue transmitting bio-signals to the base station and hence 
are energy as well as resource exhaustive. On contrary, being resource constrained sensors 
and channel it demands more resource efficient signal processing mechanism. Addition to 
energy and time efficiency, maintaining optimal signal quality is of inevitable significance.       

      Classically, to achieve resource-efficient transmission compression techniques have 
been proposed; however majority of the classical methods undergo reduced signal quality at 
the received due to data loss, reconstruction inefficacy etc. As a viable signal reconstruction 
and communication, Compressed Sensing (CS) technology intends to sample sparse signal 
below the Nyquist frequency. Data sparsity enables CS technology to provide time-efficient, 
energy-efficient, quality-centric and resource efficient data transmission for different BSN or 
WBAN based tele-monitoring purposes. Additionally, CS helps achieving energy-efficient 
wireless sensors for long-term health monitoring. CS has been applied in numerous low-
complexity compression purposes for ECG, fECG and EEG tele-monitoring over WBAN. 
Though, CS methods have played vital role to achieve energy-efficient signal detection and 
communication for aforesaid purposes; however classical model-driven approaches are 
limited due to confined compression ratio, reconstruction quality, etc. Practically, CS 
techniques have been designed to meet personalized purposes such as data compression, 
signal sparse representation and reconstruction, secure communication etc. On contrary, the 
difference in sparsity, non-linear sparsity, standalone feature (traits) such as time or frequency 
components make majority of the classical CS methods limited to deal with multi-model data 
compression and optimal reconstruction (at the receiver) for resource-efficient transmission 
over BSN or WLANs. Undeniably, CS methods reduce the quantity of data to be transmitted 
over channel and hence make overall process resource as well as time efficient. However, in 
major classical approaches retaining leveraging higher compression and enhanced 
reconstruction quality has remained challenge. In past, different CS methods have been 
proposed including wavelet based compression, rakeness-decoder based CS, where the sparse 
signal(s) are analyzed in time as well as frequency domain. Majority of the existing CS 
methods hypothesizes sparsity to be constant over time, on contrary researches reveal that 
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signal-sparsity varies over time, especially in ECG, EEG and PPG bio-signals. The variations 
or the non-linearity of sparsity over operating period makes major existing approaches 
limited. Additionally, the varying sparsity imposes reconstruction error and instability making 
it inferior. Exploiting significant feature extraction, wavelet analysis, spatial as well as 
temporal feature-correlation assessment and learning can enable a better CS scheme for bio-
physiological signal detection, analysis, compression, transmission and reconstruction. In 
other words, multi-model bio-physiological parameter detection, transmission and 
reconstruction exploiting significant wavelet representation, coefficient learning and its 
dependencies assessment can be of utmost significance. Observing literatures, It has been 
found that the use of machine learning methods can be of utmost significance to learn over 
the sparse information throughout the data, and it can also reduce the less-significant data to 
be transmitted (as it can be trained over the extracted features and can contain non-zero 
values for further signal reconstruction). In other words, the use of machine learning can help 
reducing size as well as allied computational overhead that eventually will help retrieving 
suitable sparse matrix representation for efficient signal reconstruction. Though, wavelet 
techniques such as DWT based methods have achieved better performance in existing 
literatures, however, it often lacks translation invariance. Literatures find that wavelet 
techniques such as stationary wavelet transform (SWT) can achieve translation invariance by 
eliminating the down-samplers and up-samples in DWT. In addition, SWT exhibits up-
sampling of the wavelet-filter coefficients by certain factors to the n-th level and thus retains 
significant inherent features of the input signal even after decomposition of N-levels. Being 
shift invariant in nature, it is more suitable for compressive sensing purposes. Similarly, as 
feature learning or data learning approach, machine learning can be vital to perform signal 
compression and reconstruction, though it requires better (sparse) signal adaptive sampling 
matrix generation ability.   

    Considering above discussion and allied motives, in this paper a robust data-driven 
machine learning assisted CS method has been proposed by exploiting efficacy of stationary 
wavelet transform (SWT) technique followed by a modified ELM Auto-Encoder (ELM-AE) 
to achieve optimal sparse matrix or sample matrix for signal reconstruction. The proposed 
SWT and ELM-AE model has been applied over different bio-physiological signals for 
compression and respective performance has been assessed in terms of CR, PRD, 
Compression Quality, and Signal to Noise Ratio performance. Functionally, our proposed 
model at first applies SWT over the input bio-physiological signal(s) and estimates two 
different coefficients including approximated coefficient and detailed coefficient, which is 
also called horizontal coefficient. Thus, obtaining the approximated coefficient, it was fed as 
input to the proposed threshold adaptive weight adjustment based ELM-AE model. Our 
proposed ELM-AE model obtains the optimal set of the sparse matrix also called optimal 
sparse matrix (OSM) as the weights of the hidden layer. Obtaining the OSM sampling matrix 
(obtained from the approximated coefficient of the SWT), it was fed as input to the Inverse-
SWT that in conjunction with the detailed coefficient reconstructed the original signal or the 
compressed signal. The efficiency of the proposed model has been examined in terms of 
Compression Ratio (CR), Percent Root Mean Square Difference (PRD), Quality Score (QS) 
and Signal to Noise Ratio (SNR). MATLAB based simulation over different bio-
physiological signals including ECG and PPG revealed that the proposed SWT (HAAR) 
wavelet assisted (threshold adaptive weight adjustment based) ELM-AE CS model achieves 
high CR and SNR while maintaining low PRD. On the other hand, the moderate value of QS 
too was found suitable over different input bio-signals (ECG and PPG). 
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    The remaining sections of the presented manuscript are divided as follows. Section 2 
discusses the related works pertaining to the at hand CS research domain, while Section 3 
presents the research questions. In Section 4 proposed methodology and allied 
implementation is discussed, which is followed by results and discussion. 

2. Related Work  

     To enable CS based fetal-ECG (fECG) detection, Poian et al [1] focused on sparse-
representation over the components obtained from independent component analysis 
(ICA). Similarly, Patel et al [2] exploited sparse binary matrix exploitation based sparse 
representation of the ECG waveforms to perform fetal arrhythmias monitoring. Unlike, 
[1], authors [3] recommended using pre-processing technique such as notch filtering to 
remove noise components like impulsive artifacts from fetal ECG detection [4]. Similar 
to [1], Kuo et al [5] proposed CS-ECG monitoring system for atrial fibrillation (AF) 
detection. Authors recommended applying discrete wavelet transform (DWT) based AF 
signal compression to achieve better sensitivity and specificity. Exploiting the ICA 
components and projecting it for sparse representation, Gurve et al [6] performed fetal 
ECG detection with multichannel abdominal ECG signal. Authors applied ICA to 
distinguish fetal-ECG from mother on the compressed signal. To achieve better 
reconstruction quality, they applied ℓ-p regularized least-squares (ℓ p-RLS) algorithm. 
Polanía et al [3] designed CS concept for energy-efficient WBAN applications to be 
used for ECG tele-monitoring. Authors exploited the structure of the wavelet 
representation of ECG signal to enhance reconstruction quality and compression 
efficiency. Additionally, the use of prior information signifying wavelet dependencies 
across scales enabled better reconstruction. Pareschi et al [7] proposed rakeness based 
CS for ECG signal detection and communication. Authors designed rakeness based CS-
decoder for low-redundant ECG sensing. Marchioni et al [8] developed disturbance 
rejection with rakeness-based CS for ECG signal detection. Rakeness based decoder at 
the receiver enabled better signal reconstruction while rejecting the disturbance 
dynamically. Similarly, Mangia et al [9] inherited rakeness based CS concept which 
exploited the uneven energy-distribution over the sensed ECG signal to enable better 
performance with low computational cost and resource consumption. Bortolotti et al 
[10] found rakeness based CS more energy-efficient and with better reconstruction 
quality. Mangia et al [11] proposed rakeness based CS, where second order statistical 
features were used for signal reconstruction. Applying weighted ℓ1-minimization Zhang 
et al [12] designed an energy-efficient CS-ECG model for wireless biosensors. For 
reconstruction, authors applied minimal mutual coherence pursuit, which helped to 
achieve sparse binary measurement matrices for ECG signal encoding. The weighted 
    minimization exploited the multisource prior knowledge in wavelet domain to 
perform signal reconstruction.    

    Chou et al [13] used subspace-based dictionary for both encrypting and decoding the 
CS measurements online. Authors prepared subspace based dictionary by dividing 
signal space into discriminative and complementary subspace offline. However, its 
computational complexity can’t be ignored. Similarly, Tsai et al [14] considered pre -
trained subspace-based dictionary to project interfered and compressed data onto the 
subspace with high learn-ability and low complexity to achieve better ECG signal tele-
monitoring. Zhang et al [15] designed CS-ECG signal reconstruction model by 
performing ECG signal (random) sub-sampling and subsequent mapping into onto a 2D-
space using Cut and Align (CAB) technique. It enabled better signal sparsity to achieve 
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better reconstruction. Authors used a nonlinear optimization scheme for 2D signal 
construction. To perform signal compression, authors mapped ECG signal into 
frequency domain, followed by a sequence of multiplication and addition between the 
original ECG and a Gaussian random matrix. For signal reconstruction, authors used 
matching pursuits (MP) algorithm with two blocks sparse Bayesian learning (BSBL). 
Wang et al [16] proposed a data data-driven sampling matrix Boolean optimization 
concept for CS-based biomedical signal detection and tele-monitoring. To enable 
reliable and low-redundant transmission Lalos et al [17] developed random linear 
network condign (RLNC) for cooperative-CS for energy-efficient biomedical signal 
tele-monitoring. Authors found their approach more efficient under link-vulnerability. 
Singh et al [18] proposed block-sparsity based joint-CS for multi-channel ECG signal 
reconstruction over WBAN. Recalling the fact that in multi-channel ECG contains 
spatio-temporal correlations, authors processed with Bayesian learning method to 
perform signal reconstruction. Authors [10] proposed DWT domain block sparsity 
analysis to perform simultaneous signal reconstruction. Zhang et al [19] designed a 
weighted ℓ 1,2 minimization method for multichannel ECG signal reconstruction. 
Authors applied both multi-source prior in wavelet domain and inter-channel 
correlation to perform signal reconstruction. Yu et al [20] developed an adaptive 
compressive engine for real-time ECG monitoring under varying (signal) sparsity. 
Authors proposed sparsity variation accumulation method based on adaptive feedback 
architecture for CS-ECG tele-monitoring. Zhang et al [21] designed different CS-ECG 
signal reconstruction schemes, encompassing compressed sampling matching pursuit 
(CoSaMP), orthogonal matching pursuit (OMP), expectation-maximum-based block 
sparse Bayesian learning (BSBLEM) and bound-optimization-based block sparse 
Bayesian learning (BSBL BO). Authors found BSBL_BO and BSBL_EM methods 
performing better. To recover non-sparse physiological signals Akil et al [22] applied 
Block Sparse Bayesian Learning (BSBL) algorithm over fECG signals. Kanhe et al [23] 
designed 2D DWT features and Hermite coefficients assisted ECG signal compression. 
Authors spread ECG signal over the discrete Hermite functions basis, which was 
processed for 2D wavelet based compression. To enhance performance of CS-ECG 
signal detection and reconstruction, Craven et al [24] designed an adaptive dictionary 
reconstruction model. This approach encompassed multiple dictionary learning based 
dictionaries for CS signal reconstruction. Authors found their model more efficient that 
wavelet based lossy compression techniques.  

     Liu et al [25] applied Quantized-CS (QCS) model for energy-efficient data 
compression in wireless tele-monitoring. To reconstruct signal from the quantized 
compressed signal, authors applied Bayesian de quantization (BDQ) algorithm, which 
exploited quantization errors and correlated structure. Yang et al [26] focused on 
reducing aliasing components generated during signal reconstruction in CS-MRI. 
Authors used split Bregman method by minimizing a joint optimization term containing 
the total variation term, fitting data term and a median filter term to achieve better 
signal reconstruction. To reduce scan-time in MRI, Datta et al [27] proposed 
interpolated compressed signal reconstruction for 3D-MRI applications. Authors used 
weighted wavelet forest sparsity, and joint total variation regularization norms on 
different interpolated/non-interpolated slices to achieve signal reconstruction. However, 
computationally complexity can’t be ignored. Tashan et al [28] designed a multilevel 

CS-MRI where authors split image into equi-sized multiple frames and projected pixels 
into sparse domain to be subsequently processed for CS compression over each frame 
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with different compression’s level. To retain better tradeoff between signal 

reconstruction quality and compression ratio, Liu et al [29] applied adaptive 
compression ratio for ECG signal. Employing relationship between compression ratio 
and sparsity authors performed signal reconstruction. Rahimi et al [30] designed an 
efficient serialized Walsh-Hadamard transform based feature-extraction for 
information-aware CS for bio-physiological signal(s) reconstruction in wearable 
applications. Authors executed feature learning using quadratic Support Vector 
Machine (SVM) to detect signal. As data driven approach Pant et al [31] applied 
machine learning for CS-ECG signal detection and reconstruction for arrhythmia 
detection. Obtaining the QRS complex information, authors applied two distinct 
features; sum of absolute differences (SAD) and maximum of absolute differences  
(MAD) for each ECG segment, which were learnt for better-quality signal 
reconstruction. Pei et al [32] designed block sparse Bayesian learning (BSBL) for CS-
ECG signal reconstruction. Marchioni et al [33] developed a sparse sensing matrix 
based CS-ECG signal detection and reconstruction. Xu et al [34] designed a data-driven 
CS model suitable for energy-efficient wearable sensing. Though, numerous CS 
methods are proposed for ECG signal(s); however very fewer efforts have been made 
towards PPG signal, which has been gaining widespread attention due to its increasing 
biomedical CAD significances. PPG signals demand CS with high-resolution process 
capacity. Designing a robust CS model with the ability to process different bio -
physiological signals comprising ECG, EEG and PPG can be of great significance. 
Natarajan et al [35] developed an end-to-end CS model for continuous bio-signal(s) 
compression for wearable body sensor network (BSN). Authors used Binary Permuted 
Block Diagonal (P-BPBD) matrix encoder and input-signal (symmetric) padding to 
achieve high CR performance for ECG and PPG signals. Muduli et al [36] proposed a 
deep learning based CS model for fECG signal reconstruction. Authors proposed a non -
linear mapping model with a stacked de-noising auto-encoder (SDAE) in which initially 
the non-sparse fECG signal was compressed at the transmitter using deep learning 
method. Authors enhanced pre-training and tuning by mini-batch gradient descent back-
propagation algorithm. The reduced matrix vector multiplication enabled SDAE model 
more time-efficient at the receiver. Yang et al [37] proposed a refinement learning to 
alleviate aliasing issue in CS-MRI for optimal signal reconstruction. As refinement 
learning authors performed U-Net stabilization to achieve aliasing-free signal 
reconstruction. Additionally, authors used texture and edge information in frequency-
domain to achieve better reconstruction quality. Sun et al [38] applied deep learning 
model named a binarized auto-encoder based CS for wireless neural recording. Their 
model optimizes binary sensing matrix and a non-iterative recovery solver concurrently 
to retain better performance. Gogna et al [39] proposed a semi-supervised stacked label 
consistent auto-encoder for ECG reconstruction. 

3. Research Questions  

 Considering the overall research motives and allied (identified) methods, a few 
research questions have been identified. These research questions intends to assess 
whether the proposed methodology in can achieve the intended goals.  
RQ1: Can the use of Stationary Wavelet Transform (SWT) be efficient to yield more 

significant features or patterns to enable optimal sparse representation for bio -
physiological signal compression, detection and (signal) reconstruction? 
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RQ2: Can the implementation of ELM-AE be an efficient solution to perform data-
driven sparse representation and optimal sample matrix generation? 

RQ3: Can the use of adaptive thresholding concept enhance ELM-AE to achieve better 
sparse representation for bio-physiological signal compression and 
reconstruction? 

RQ4: Can the strategic and efficient implementation of above stated SWT ELM-AE 
model enable an optimal compressive sensing solution for bio-physiological 
signals (ECG and PPG) detection, compression and reconstruction? 

4. System Model    

 This section primarily discusses the proposed CS model and its implementation. 
Before discussing the proposed ELM-AE based sparse CS, a snippet of sparse signal 
reconstruction problem in bio-physiological signal is given as follows: 
 
A. Sparse Reconstruction for Continuous Bio-Physiological Signals : Problem 
Formulation and Conceptualization 
 
 Consider   be the bio-physiological signal representing continuous system with 
instant value of     . For the aforesaid value let the corresponding sparse 
representation be  ̃    , where    . Then, with above stated case, the sparse 
(signal) reconstruction problem signifies the problem to extract or reconstruct    with the 
available  ̃  comprising the bio-sensor(s) position in the form of a sample or the 
measurement matrix    as defined in (1). Noticeably, here the matrix   signifies the 
sparse representation of the input (or sensed) bio-signal  ̃ obtained from the sensed data 
 . The other variables   states the total number of the sparse measurements, while   
refers the high resolution field’s dimension. Mathematically, the sparse representation 

of the input   can be presented as (1).  
 
 ̃              (1) 

 
 In the proposed CS model, we primarily emphasize on the sparse vector   possessing 
sparse representation in certain basis space given as       . Noticeably,        
is acceptable only when    , so as to ensure eventual result as     . Typically, 
due to information loss in a system, the signal reconstruction turns out to be non-
absolute and gives rise to the reconstruction error. In this case, merely performing 
inverse of   can’t give or reconstruct the signal   as depicted in (2). This is because it is 
infeasible since the inverse would turn-out to be the same as obtaining or solving an 
under-determined system.  
 
   ̃              (2) 
 Undeniably, sparse representation and reconstruction concept has played vital role 
towards inverse problems and hence so far has the irreplaceable significance in 
different research and applications including geophysics [40, 41], image processing, 
signal reconstruction [42, 43]. Broadly speaking, aforesaid applications signify the 
inverse problems [44], where sparse reconstruction theory has played inevitable role 
[45-50]. However, its implementation strategy or approaches have been different for the 
different applications, data environment or expected signal nature. Since, the current 
study focuses on CS of the bio-physiological signals the further discussion emphasizes 
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on sparse reconstruction problem in bio-signal(s) reconstruction in WNS or WBAN for 
personalized e-health applications.  In general, majority of the bio-signals used to be 
"compressible”, signifying their sparsity in  -sparse basis   . Mathematically,  
 

  ∑     
  
    or               (3) 

  
In (3),         and         Noticeably, in (3)   presents the non-zero elements. 
For bio-physiological signals to achieve sparse reconstruction the more favourable 
condition can be         as compared to       . This condition is more suitable 
when the sparsity of the system   is not known a priori. This as a result requires a more 
sophisticated basis set with dimension       . Practically, the feaisble basis count 
is not inevitably needs to be equal to N and can be     . This is because to represent 
the sensed signal up to certain expected quality merely   (basis counts) are required. 
This condition states a situation where the K-sparse basis   embodies the most suitable 
or optimal data-driven basis vectors. Thus, the (bio-) signal reconstruction problem 
functions towards the identification of those   coefficients. There are numerous real-
time bio-signal analysis or reconstruction scenario or even application environment 
where   and   are not known as a priori, and consider       as user-defined input. The 
transform coding approaches, especially in compression purposes at first perform 
gathering the high resolution sample, which is then processed using Fourier or wavelet 
basis space where the data used to be in sparse and obtains the optimal K-sparse 
structure while alleviating and dropping remaining information. This approach not only 
reduces redundant data processing or transmission but also enhances computational 
efficiency, thus making bio-signal communication more energy and resource efficient. 
Considering this motive, in this paper we applied wavelet basis space over the input 
bio-signal(s) which were later processed using (data-driven) machine learning method 
to retain optimal sample matrix for signal reconstruction. However, practically the 
samples and compression technique needs high resolution signal or sample acquisition, 
before performing dimensional reduction. Unfortunately, it is a highly complex and 
tedious task because of continuous large scale data, which demands significantly large 
processing power, memory, and time. As alternative solution, CS enables direct sparse 
sensing by assessing K-sparse coefficients, as depicted in (4).  
 
 ̃                   (4) 

 
 In (4),         signifies a map derived in between the basis coefficient(s)   and 
the sparse measurements  ̃. To be noted, in (4),   states the data in feature space, while 
 ̃ used to be in physical space. Thus, the key problem in solving reconstruction problem 
(for  ) using (1), especially in bio-signals is that the measurement matrix   can be ill-
posed or ill-conditioned, and even   can be non-sparse in nature. On contrary, with   as 
sparse within  , the signal reconstruction with the help of   in (4) becomes feasible. It 
becomes possible by solving for the basis coefficients   which is nothing else but the 
  sparse. In this manner, with   constraints one can solve reconstruction problem by 
estimating a sparse solution   using (7) by means of certain s-norm minimization.   can 
be reconstructed as per the model derived in (3). Here, towards the original bio -signal 
( ) reconstruction, the value of   selected is 2, signifying   -norm reconstruction which 
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achieves   with better computational efficiency and minimum energy. Here, we 
formulate   -norm minimization as (5).  
 
   ‖ ̃    ‖ 

            (5) 
 

Applying pseudo-inverse of  , above derived   -norm minimization problem (5) can be 
converted as (6). 
 
  ( )  ̃           (6) 

 
 In (6),    can be easily be approximated as a solution to the following formulation 
(7). 
 
(   )      ̃           (7) 

 
  With   -norm minimization to estimate optimal K-sparse solution and to optimise 
sparsity of   we can maximize the counts of the non-zero elements and minimize ‖  ‖  
in such manner that it fulfils the condition (8). 
 
     ̃          (8) 

 
 With the considered bio-signals such as ECG or PPG with      (typically, 
   ) self-regulating assessment, the sparse coefficients can be obtained with high-
probability by means of    reconstruction. Such condition infers that for each 
assessment or measurement we need to excite a distinct basis vector    so as to identify 
the corresponding    optimally. In case multiple measurements excite the same   , then 
there can be the need of supplementary measurements so as to generate or reconstruct 
the signal of the expected quality. On contrary, for     sovereign measurements, the 
likelihood of reconstructing the sparse solution gets too compromised, which results 
into significantly large reconstruction-error. Moreover,   -norm minimization is highly 
complex task and possesses ill-conditioned process, NP-hard and even can’t guarantee 

stability of the signal reconstruction, which is must for continuous tele -monitoring or 
the bio-physiological signals over e-health infrastructures of systems. 
 
         ‖  ‖     such that      ̃           (9) 

 
The robustness of CS methods [45–48] ensures optimal or at least near-optimal (signal) 
reconstruction of the uncompressed information by means of   sparsest coefficients 
estimation. To achieve it         minimization based reconstruction can be a 
potential solution. Additionally, it provides convex optimization of the at hand problem 
where it exploits linear programming techniques to obtain the optimal coefficients and 
the basis pursuit [45, 48, 51]. Even classical brutal search can also be applied to obtain 
or localize the largest   coefficients of the basis   , however it increases the 
computational cost with increase of the dimension. To alleviate it, different greedy 
approaches [52-54] can be applied to solve   - minimization of (7) with computational 
complexity of  (  ) for      . However, with such models to get K-sparse vectors 
for reconstruction the cost optimization needs    (    (   )) measurements [45, 
48, 55]. Summarily, in bio-signal (sparse) reconstruction there can be three different 
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parameters        which can have significant influence on the reconstruction quality. 
Here,    signifies the potential (candidate) basis space dimension applied for signal 
reconstruction. Noticeably with       it can adversely affect the reconstruction 
quality. Similarly,   refers the expected sparsity, bound to the level of signal 
reconstruction quality. Therefore, it is significant to select   in such manner that with 
optimally selected or predicted features it achieves satisfactory reconstruction quality. 
To achieve it, in this research a threshold sensitive approach is applied which maintains 
smaller   to retain high sparsity and hence eventual reconstruction quality. Here, the 
variable   signifies the bio-sensor(s). Typically, the relationship in amongst the 
aforesaid variables      and   decides whether to use    or          minimization to 
achieve expected level of reconstruction quality. In practical real -time scenario of 
ECG/PPG CS,   remains unknown or (not) a priori, however highly associated with the 
expected level of reconstruction quality. Here,   and    can be selected on the basis of 
the feature space for which the reconstruction has to be done. Here,   signifies the 
expected dimension of the reconstructed (signal) state, while    presents the dimension 
of the candidate basis space where the reconstruction problem is defined. In case of 
     the optimal signal reconstruction can be accomplished by predicting   weights 
precisely (with help of    norm-minimization). On contrary for    ,    norm-
minimization can be applied. With      and       , it can show worst 
performance for K-estimation causing reduced reconstruction quality. On the other 
hand, with      and       , the best signal reconstruction can be achieved as 
the   weights by applying    or    norm-minimization. Similarly, for       , the 
optimal reconstruction would give rise to    weights in comparison to the   for the 
worst scenario. 

I. Discrete Stationary Wavelet Transform Feature Space Projection  

 In this research, at first the input or sensed (original) bio-physiological signal was 
processed for wavelet sparse analysis, where unlike classical continuous wavelet 
transform (CWT) or the discrete wavelet transform (DWT), we applied discrete 
stationary wavelet transform (SWT) algorithm so as to get low-dimensional feature 
space as input to the proposed data-driven ELM-AE model. Theoretically, SWT has 
taken different shapes based on enhancement and independent formulation by the 
different researchers. For example, SWT has also been named as undecimated wavelet 
transform (UWT), invariant wavelet transform etc. Unlike classical DWT methods, 
SWT provides better approximation results, which is usually attributed due to its linear, 
redundant and shift-invariant characteristics. Considering such robustness to yield a 
robust CS model which could deal with linear as well as non-linear bio-signal detection, 
compression and communication we have applied SWT as initial process. In the 
proposed model, the input sensed bio-physiological signal  ( ) is fed as input to the 
SWT, which as a result generates two distinct coefficients, named detailed coefficient 
    and approximated coefficient      . As depicted in Figure 2 to generate these two 
distinct coefficient values SWT applies two different filters, standard low-pass filters 
(LPF)    and high-pass wavelet filters (HPF)   . Here, in our proposed system, the 
filters    and     were obtained by performing up-sampling of the filters by applying 
previous step (say,      and     ) [6]. Typically, the value of detailed coefficient      
used to be same as the HPF output and similarly the       output too is equal to the LPF 
output.
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Figure 1.  Stationary Wavelets Assisted Data-Driven Modified Extreme Learning 
Machine based Compressive Sensing 

 
As depicted in Figure 2 SWT estimates two distinct coefficients, approximated 
coefficient and detailed coefficient using LPF and HPF, respectively. Considering level 
of significance and feature depth, in our proposed CS method, we considered mainly 
Level-2 approximated coefficient values (   ) for further computation in ELM-AE. 
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Figure  2. Discrete SWT based feature space projection 
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This selection was made based on the hypothesis to leverage the computational cost and 
level of significance of the feature space or vector. In our proposed method we applied 
a threshold (  ) based feature projection for the approximated coefficient. We selected 
   value as the percentage of the R peak. Though, the results were tested over different 
threshold values, we found         as the most suitable condition. Obtaining the 
Level-2 coefficients we applied threshold (       )  and the approximated 
coefficients with R-values lower than the threshold         were removed. The 
remaining approximated coefficients having R-value more than 0.98, here onwards we 
state as the input  , we executed the ELM-AE model for further sparse feature vector 
estimation or the optimal sampling matrix estimation (as the weight vector of ELM-AE 
as depicted in Figure 3). Noticeably, since ELM-AE processes over the approximate 
coefficients derived using SWT algorithm, we refer the at hand learning model as data -
driven learning approach. Additionally, the detailed coefficients     obtained from the 
same bio-physiological signal (from SWT) is employed by Inverse-SWT (ISWT) in 
conjunction with the ELM-AE model (optimal sparse matrix of the input bio-
physiological signal) to reconstruct the signal. The detailed discussion of the proposed 
(data-driven) ELM-AE based sparse sampling matrix estimation is given in the 
subsequent section.  

II. Modified ELM-AE assisted Data-driven Sparse Basis Computation 

 To reconstruct data, especially under real-time systems with no (significant) prior 
knowledge, different approaches have been proposed such as Fourier functions [45, 46], 
radial basis function (RBFs) or Gaussian function regression. RBF and Gaussian 
function regression based representations used to be more robust, especially for the 
dynamic systems and continuous evolving flow conditions [56]. Considering this fact, 
in this research we intended to use a highly robust data driven sparse basis estimation 
model using ELM auto-encoder [57, 58]. In our proposed data-driven CS model, ELM-
AE functions as a regressor by employing a Gaussian prior. Recalling the fact that the 
higher input data, which is common in continuous tele-monitoring of the bio-
physiological signals, and input layers confines classical machine learning methods due 
to unavoidable local minima and convergence issues. Moreover, in major classical 
neural-computing models, the problem of convergence and error increases with increase 
in the number of hidden layers that eventually can affect the overall reconstruction 
quality in at hand CS problem. Additionally, increased hidden layers will introduce 
more number of weights to be computed which can result into huge computational 
burden and complexity. Due to such computational issues, the conventional  neuro-
computing models can’t be suitable for CS functions [57, 58]. On contrary, ELM as 
advance neuro-computing model alleviates or avoids aforesaid problems due to its 
single-layered multi feed forward neural network (SL-MFNN) characteristics which 
make it suitable for at hand data-driven CS problem. Its ability to perform swift 
learning by performing random hidden node selection and respective weight estimation 
makes potential towards our proposed sparse-representation or coefficient estimation 
for optimal (bio-) signal reconstruction in CS task. In our proposed CS method we have 
applied ELM-AE as learning scheme which embodies a SL-MFNN with arbitrarily 
generated weights for associated hidden layers or connected hidden nodes) and bias 
components. In addition it encompasses an activation function over hidden layer before 
estimating the output weights by confining to the output data. With the number of 
hidden nodes lower than the dimension of the input bio-signal the compressed sparse 
feature representations of the original bio-signal can be obtained as the output weight of 
ELM-AE. This overall process is depicted in Figure 2. 
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Figure 3.  ELM-AE model with output expected same as the input signal   

     Consider that the input approximated coefficients of the original bio-physiological 
signal be a set of data representing        with   as the dimension and   be the 
total snapshots. In other words, let the input signal be in a vector form       for 
       . Then, this input signal can be mapped to the K-dimensional hidden layer 
signifying the feature space, then the ELM-AE output can be presented as (10).  
 

   ∑    
 
 ∑    

 
(  )

 

   

 

   

 ∑   (  
      )

 

   

 
 
        (10) 

 
In (12),      signifies the original sensed input bio-physiological data, while the 
other parameters   and N signifies the index of snapshot and the dimension of input 
data. The other parameter,       states the random input weights which help 
mapping the input nodes to the hidden nodes, and    presents the random bias 
component.  ( ) presents the non-linear activation function functional on a scalar, while 
      presents the resulting output weights which map the estimated hidden features 
to the output nodes of ELM-AE. In our proposed ELM-AE model we applied different 
kernel functions including RBF, Sigmoid, Sine, Hard Limit, and Triangular Basis 
Function (TBF) as activation function to output (11).  Though, for performance analysis 
we applied ELM-AE with different kernel functions, considering space constraints in 
this manuscript only RBF based ELM-AE model and associated performance are 
discussed.  
 

 ( )    (  )          (11) 
 

 The above derived linear model (12) can also be derived as matrix form, given in 
(12).  
 
              (12) 

 In (12),   signifies the output’s matrix possessing   
  elements (retrieved) from the 

hidden layer of the ELM-AE (13).  
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 In (13),  (  )  [  (  )     (  )]  [  
 
     

 
 ]  signifies the results generated or 

the output obtained from the   hidden nodes. Usually it used to be the row vector for 
the      input snapshot   . Noticeably,  (  )  is also referred as the feature 
transformation which often maps the input data    from the   dimensional input space 
to the   dimensional hidden layer feature space   (13). Now, the ELM-AE output 
weights can be presented as a matrix (14), with   as (15).  
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In ELM-AE model Moore-Penrose Pseudo-inverse method (16) to solve (12) and obtain 
the values of  . 
 
                    

          (16) 
 

Unlike major conventional ELM encoders, in this research we designed a novel 
dynamic weight adjustment based ELM-AE where the final weight vectors or the sparse 
vectors were obtained in reference to an expected threshold level. Here, we applied a   
        . Once solving         minimization and obtaining the pseudo inverse 
solution the final weight vector was estimated, which was subsequently processed for 
weight adjustment using following model. Consider the final ELM-AE weight vector 
be  ( ), then scale values for the obtained output was obtained using (17). 
 
             ( )          (17) 

 
Now, setting          as a minimum value component, output data was obtained 
using (18). 
 
        (                  ( ))  (     )         (18) 

 
In the subsequent phase, the weights   are updated as (19). 
 
                       (19) 

 
The final weight vector at the hidden layer of the ELM-AE is obtained as(20). 
 
         (  )          (20) 
Now, with updated weight vector   , we obtain the eventual sparse matrix output by 
solving Moore-Penrose Pseudo-Inverse method. Once obtaining the final sparse matrix 

ISSN: 2233-7857 IJFGCN
Copyright ⓒ 2020 SERSC

International Journal of Future Generation Communication and Networking
                                                             Vol. 13, No. 3, (2020), pp. 742 – 763

755



 
15 

 

it was processed for signal reconstruction using ISWT, which takes both detailed 
coefficient information of the input signal and the final ELM-AE sparse matrix output.  

5. Results and Discussion 

 Taking into consideration of the significance of a robust compressive sensing 
approach, in this paper the predominant emphasis was made on exploiting the efficacy 
of advanced wavelet basis and computationally efficient neuro-computing model such 
as extreme learning machine. Here, as wavelet basis estimation we applied stationary 
wavelet transform (SWT) with level-2 coefficient estimation. Noticeably, SWT 
estimates two distinct coefficient data, approximated coefficient and the detailed 
coefficient also called as horizontal coefficient. Realizing the feature significance of 
approximated coefficient we considered a threshold adaptive coefficient selection, 
where the threshold    was selected as 0.98. With reference to the threshold values 
only those coefficients higher than 0.98 were considered for further computation. Now, 
once obtaining the eventually selected approximated coefficient, we fed that as input to 
the ELM-AE. In our proposed threshold adaptive weight adjustment based ELM-AE 
model         minimization was performed to achieve the final sparse matrix using 
Moore-Penrose Pseudo-Inverse. To be noted, unlike conventional ELM-AE methods, 
we introduced a dynamic weight adjustment model to ensure optimal weights with an 
expected threshold level of     . With the obtained weight vector or the sparse solution, 
we performed ISWT to reconstruct the original signal (Figure 1). For signal 
reconstruction we applied both detailed coefficient as well as ELM-AE generated sparse 
solution. Noticeably, to assess efficacy of the proposed modified ELM-AE model with 
reference to the different kernel function or activation functions, we applied five 
different types of kernel functions, RBF, TBF, Sine, Sigmoid and Hard Limit. 
Similarly, we tested performance over different SWT wavelets such as db4, db8 and 
HAAR. In order to examine the efficacy of the proposed model, we applied different 
bio-physiological signals including ECG and PPG signals obtained from the benchmark 
datasets such as MIT-BIH Database. Additionally, the PPG data were considered from 
IEEE Signal Processing Cup 2015 [59]. The overall proposed system was developed 
and simulated over MATLAB2019b tool, with Microsoft Window 2010 operating 
systems and Intel-i3 processor. For performance evaluation we examined each bio-
physiological signal with different wavelet selection and ELM-AE kernel or the 
activation functions. To assess statistically, we obtained three key performance 
parameters, Compression Ratio (CR), Percentage Root Mean Square Difference (PRD), 
Quality Square (QS) and Signal to Noise Ratio (SNR). Before discussing the statistical 
outputs for these above stated parameters, a snippet of their mathematical equation is 
given as follows.  

1. Compression Ratio (CR) 
 CR signifies the ratio of the original bio-signal bits(  ) bits and the reconstructed 
signal- bits (  ). Mathematically, it is obtained as (21).  

   
  

  
 

 
      (21) 
 

2. Percentage Root Mean Square Difference (PRD) 
 PRD represents the percentage of root mean square between the original signal    
and the reconstructed signal   . 
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(22) 

 
 

3. Quality Score (QS) 
QS represents the ratio of CR and PRD. Mathematically,  

 

   
  

   
        (23) 

 
 

4. Signal to Noise Ratio (SNR) 
SNR in CS model is defined as (24). 

 

          
∑ (  ( )   ̅)  

   

∑ (  ( )    ( ))
  

   

 
 

     (24) 

 

In terms of PRD, SNR can be obtained using (25). 

 

            (       )       (25) 
 

Noticeably, in this research four different types of ELM-AE kernels were applied; 
however amongst the employed kernels (sigmoid, RBF, TBF, Sine and Hard-Limit) 
RBF kernel function was found performing the best. Considering this fact, in the 
subsequent analysis we have discussed the RBF based ELM-AE learning model and its 
allied simulation results. We simulated our proposed CS model with both ECG and PPG 
datasets. To assess performance with different benchmark data, we considered five 
datasets distinctly from each signal categories (i.e., five datasets from ECG and PPG 
distinctly). The statistical results obtained for the different datasets in terms of CR, 
PRD, QS and SNR for ECG and PPG datasets are given in Table 1  and Table 2 
respectively.  

Table 1.  Performance results for ECG bio-physiological signals  

MIT-
BIH 

Single 
Channel 

ECG 
 
 

Mother wavelet 

db4 db8 HAAR 

CR PRD QS SNR CR PRD QS SNR CR PRD QS SNR 

 
100m 74.47 1.220 61.04 38.26 74.72 0.881 84.81 41.09 75.85 0.178 416.12 54.96 

215m 74.76 0.820 91.17 41.68 75.12 0.343 219.00 49.28 73.97 1.956 37.81 44.17 

124m 74.52 1.156 64.46 74.52 75.37 0.007 10767.0 82.17 75.19 0.254 296.02 51.88 

200m 74.63 1.017 73.38 39.84 74.40 1.313 56.66 37.63 75.37 0.007 10767.0 82.17 

234m 75.09 0.548 137.02 45.21 74.46 1.229 60.58 38.20 74.55 0.841 88.64 60.31 
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Table 2.  Performance results for PPG bio-physiological signals  

Single 
Channel 

PPG 

Mother wavelet 

db4 db8 HAAR 

CR PRD QS SNR CR PRD QS SNR CR PRD QS SNR 

3141595m 74.07 0.873 84.84 41.17 74.47 1.217 61.19 36.29 74.81 0.991 74.48 40.02 

a44071bm 74.63 1.007 74.11 39.93 74.79 0.869 86.06 41.21 74.85 0.711 105.27 42.91 

a45503m 74.66 0.959 77.85 40.35 74.76 0.830 90.07 41.63 74.66 0.933 80.02 40.50 

a45543m 74.78 0.799 93.49 41.93 74.70 0.911 81.99 40.80 74.62 1.010 73.88 39.98 

a45557bm 74.73 0.869 85.99 41.21 74.50 1.054 70.68 39.60 74.61 0.981 76.05 40.16 

 

Observing the overall results it can be found that for ECG signal with db4 wavelet; our 
proposed CS model achieves maximum CR of 74.76%, while PRD was obtained as 
0.548. Similarly, QS was obtained as 137.02, while the maximum SNR obtained was 
74.52%. On the other hand, with db8 mother wavelets, we found that the maximum CR 
(with db8) with ECG signals 74.72%.The PRD with db8 wavelet was 0.013, while the 
QS and SNR with db8 wavelets were 10767.0 and 77.23%. The CS simulation with 
HAAR wavelets over continuous ECG model exhibited that the proposed data-driven 
CS model achieves CR or 75.85%, minimum PRD of 0.007, while QS was obtained as 
423.12 and SNR of 82.17. These simulation results with PPG signal with db4 SWT 
wavelet exhibited maximum compression ratio of 74.78%, while PRD was obtained as 
0.799. Similarly, with db4 wavelets our proposed CS model obtained QS of 93.49, 
while SNR was 41.93%. With db8 wavelets and allied wavelet sparse basis we obtained 
maximum CR of 74.79, while the (minimum) PRD, QS and (maximum) SNR were 
obtained as 0.830, 90.07 and 41.63, respectively. With HAAR wavelets, our proposed 
CS model exhibited maximum CR of 74.85%, PRD of 0.711, QS of 105.27 and the 
maximum SNR of 42.91. Observing above stated results (Table 1  and Table 2) it can be 
found that the proposed SWT wavelet basis with HAAR mother wavelet and proposed 
modified ELM-AE the optimal CS performance can be accomplished. Thus, observing 
above stated simulation results, it can be found that the proposed SWT with HAAR 
wavelets and modified ELM-AE outperforms other combinations. Hence, considering 
space constraints in this manuscript the original signals and allied reconstructed 
signal’s outputs for all considered ECG and PPG signals are presented in Table 3  and  
Table 4 respectively. 

  Observing reconstructed signal, it can be found that the proposed CS model achieves 
both signal-quality while maintaining low computational complexity. It makes proposed 
system suitable for any bio-physiological signal communication or transmission while 
ensuring low redundancy, low resource consumption and energy exhaustion. In this 
research and allied simulation SWT with different mother-wavelets were applied where 
it was found that SWT with db8 and HAAR wavelets exhibited significantly better than 
the classical approaches. 

 

 

ISSN: 2233-7857 IJFGCN
Copyright ⓒ 2020 SERSC

International Journal of Future Generation Communication and Networking
                                                           Vol. 13, No. 3, (2020), pp. 742 – 763

758



 
18 

 

Table 3.  ECG Reconstruction Quality assessment 

MIT-BIH 

Single 

Channel 

ECG 

Bio-signal Reconstruction Quality assessment 
(SWT with HAAR wavelet and Modified ELM-AE using RBF kernel function) 

100m 

 
 
 

215m 

 
 
 

124m 
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200m 

 
 
 

234m 

 
 

 

 
 

Table 4. Compression Quality assessment for PPG bio-physiological signals 

Single Channel 

PPG 
Bio-signal Reconstruction Quality assessment 

(SWT with HAAR wavelet and Modified ELM-AE using RBF kernel function) 

3141595m 
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a45557bm 

 
It reveals or infers the robustness of SWT to provide significant bio-signal feature space 
for further compression. The compression and associated reconstruction performance as 
discussed above too affirms suitability of SWT. It justifies the affirmative answer for 
RQ1. In other words SWT can be vital for CS. Though, SWT coefficients provides 
significant feature space for further compression; however learning over the high 
dimensional features and identifying optimal sample matrix also called sparse matrix i s 
a challenging task. With this motive, the proposed modified ELM-AE achieved optimal 
set of matrix as weights at the hidden layer, which enabled higher efficient compression 
and reconstruction without impacting quality of the bio-signals. Therefore, the research 
question RQ2 as defined in Section III gets positively satisfied. Noticeably, in this 
proposed method different thresholding concept was applied which ensured that the R-
value of the coefficient having (value) higher than a threshold only would be considered 
for further computation. It enabled dimensional reduction without influencing the signal 
quality. On the other hand, our proposed ELM-AE model to applied a thresholding 
adaptive weight estimation which is directly related to the compression qual ity or allied 
sampling matrix. This mechanism accomplished optimal performance towards the 
targeted CS function. Thus, RQ3 too gets positively justified. Summarily, considering 
overall proposed model, associated components and contributions made, it can be  stated 
that the strategic implementation of the proposed system can yield optimal CS 
performance for any type of bio-physiological signal compression and reconstruction 
without influencing CS quality. It affirms acceptance of the RQ4. The detailed 
inferences of this research are given in the subsequent section.  

6. Conclusion 

Considering the significance of low-power, energy and resource efficient bio-
physiological parameter’s sensing and tele-monitoring systems for wearable body area 
network or personalized e-Health purposes, this research identified CS as a potential 
and viable solution. However, observing the fact that the majority of classical CS 
models hypothesize sparsity as uniform over bio-signals, it contradicts with the real-
time scenario where bio-signals such as ECG and PPG might have significant variation 
or non-linearity in sparse representation. Such non-linearity might greatly affect 
compression and signal reconstruction error, limiting their respective performance in 
real-time applications. Moreover, majority of existing approaches are focused either for 
ECG or MRI signal compression and/or reconstruction, and there exist no significant 
(CS) solution, which could be applied for major bio-physiological signals, such as 
ECG, fECG, EEG and PPG. Considering it as motive, this research paper designed a 
robust Stationary Wavelets and Data-Driven Extreme Learning Machine based 
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Compressive Sensing System for Bio-Signal Compression and Reconstruction. 
Noticeably, unlike classical DWT wavelet information this research applied SWT which 
enabled retaining translation invariant features and allied coefficients to perform 
learning based signal re-sampling followed by reconstruction. Initially different bio-
physiological signals were processed for SWT, which gave rise to the two different 
features or data, approximated data and detailed (or horizontal) data, where the first was 
applied as input for machine learning based training. Unlike conventional pattern 
learning methods, the proposed system applied ELM-AE, which helped retaining the 
optimal sampling matrix of the approximated data by reducing redundant information 
and making data more quality-centric. To achieve optimal sample matrix, an adaptive 
threshold mechanism for         minimization was applied, which retained optimal 
sample –sets. This approach strengthened the wavelet information to carry significant 
information without carrying huge redundant data or imposing computational 
overheads. Noticeably, the use of ELM-AE over approximated coefficient retained 
significant information with low-pass filtered low-dimensional traits which carried 
ahead significant information to make learning. Additionally, learning over the low-
pass filtered approximated values, ELM-AE retrieved optimal sampling matrix, which 
was later used for signal-reconstruction. With the eventual retrieved weight matrix or 
sparse matrix or sample ISWT performed signal reconstruction. Here, ISWT employed 
both sparse sample as well as detailed coefficient of the original signal, which enables 
efficient bio-physiological signal reconstruction. The robustness of the proposed system 
can be understood by means of its performance in terms of CR and PRD over ECG and 
PPG signals revealed that the proposed CS model achieves the PRD up to 0.711 for 
PPG signal and 0.007 for ECG signals. Similarly, simulation over different bio-signals 
exhibited maximum possible compression ratio of 75.37%, and SNR of 82.17% which 
reveals its robustness to be used for real-time bio-signal’s tele-monitoring, compression 
and reconstruction purposes. Though, ELM is considered as one of the most advanced 
machine learning and neural computing model, the recent development recommends 
deep learning concepts such as sparse-AE to perform sparse data analysis. In future 
SWT coefficients can be learnt and explored with certain enhanced sparse-AE to 
achieve more efficient sparse matrix generation for optimal CS over WBAN. 
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